首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 248 毫秒
1.
Analytical pyrolysis of a soil profile under Scots pine   总被引:1,自引:0,他引:1  
The chemical properties of pine needle litter cause slow decomposition, which results in an accumulation of highly lignocellulosic material on the forest floor. Decomposition of organic matter is important for the nutrient turnover in pine forests on nutrient-poor soils. We studied the biodegradation of needles in an organic layer focusing on the various stages of lignin degradation by fungi. Samples were obtained from pine needle litter and a stratified organic layer over nutrient-poor sand under a 60-year-old Scots pine (Pinus sylvestris forest stand. Pyrolysis mass spectrometry (PyMS) and pyrolysis gas chromatography mass spectrometry (PyGCMS) were used to characterize the chemical composition of the needles and the soil. The pyrolysis data show that diterpenoid acids are a main component in fresh needles, but rapidly decrease in the organic layer of the soil, as a result of decomposition. The chemical composition of the soil profile is dominated by guaiacyl lignin and polysaccharides from needle litter. The hexose/pentose ratio increases with depth in the soil profile. The partial preservation of hexose polymers is the result of the preferential decomposition of pentose polymers by white-rot fungi, and points to the input of microbially synthesized polysaccharides. Indications for the degradation of guaiacyl lignin are also found in the soil profile. Oxidative reactions by soil fungi result in a shortening of the side chain of the guaiacyl lignin derivatives and an increase of carbonyl and carboxyl groups. These degradational patterns of lignin in the soil profile under Scots pine are similar to those observed in lignin model compounds and wood lignin degraded by fungi under controlled laboratory conditions.  相似文献   

2.
The decomposition of spruce needles and beech leaves was investigated in a 30- and 120-yr-old beech, spruce and mixed (beech/spruce) forest using 1 mm mesh litterbags. The mass loss, content of C, N and water and microbial biomass, basal respiration and specific respiration of the litter materials were analyzed after exposure for 1.5, 3, 6, 9, 12, 18 and 24 months in the field. Decomposition of both types of litter was faster in beech than in spruce stands and after 24 months loss of C from litter materials was at a maximum in beech stands (>60%) and considerably less in the spruce and mixed stands (ca. 40%). Generally, spruce needles decomposed more rapidly than beech leaves, but the faster decay was not associated with higher N concentrations. Rather, N was accumulated more rapidly in beech leaves. Concomitantly, in beech stands microbial biomass of beech leaves exceeded that of spruce needles indicating that beech leaves consist of more favorable resources for microorganisms than spruce needles. Differences in decomposition between beech leaves and spruce needles were most pronounced in beech stands, intermediate in mixed stands and least pronounced in spruce stands. Decomposition, N content and microbial biomass in litter materials exposed in the 120-yr-old stand consistently exceeded that in the 30-yr-old stand indicating adverse conditions for litter decay in regrowing stands. Generally, mixed stands ranked intermediate between spruce and beech monocultures for most of the variables measured indicating that the adverse conditions for litter decay and microorganisms in spruce forest are effectively counteracted by admixture of beech to spruce monocultures. It is concluded that the accumulation of litter materials in spruce forests is not due to the recalcitrance of spruce needles to decay. Rather, adverse environmental conditions such as high polyphenol contents in the litter layer of spruce stands retard decomposition processes; spruce needles appear to be more sensitive to this retardation than beech leaves.  相似文献   

3.
川西3种亚高山针叶林的养分和凋落物格局分析   总被引:4,自引:0,他引:4  
LIN Bo  LIU Qing  WU Yan  HE Hai 《土壤圈》2006,16(3):380-389
Investigations were conducted to quantify litterfall, and litter and nutrient accumulation in forest floor, and to acquire information on litter decomposition and nitrogen and phosphorus release patterns in three different subalpine coniferous forests, a plantation (P1), a secondary forest (SF), and a primitive forest (PF), in western Sichuan, China. The litter trap method was used to evaluate litterfall with the litterbag method being utilized for litter decomposition. Seasonal patterns of litterfall were similar in the three forests, with two peaks occurring in September-November and March-May. The plantation revealed an annual litterfall of 4.38 x 103 kg ha-1, which was similar to those of SF and PF, but P1 had a lower mass loss rate and a higher C/N ratio. The C/N ratio may be a sound predictor for the decomposition differences. N concentrations of leaf litter in both the secondary forest and primitive forest increased first and then decreased, and the percentages of their final/initial values were 108.9% and 99.9%, respectively. P concentration in the three forests increased by the end of the study. The results of litterfall and decomposition indicated that in the plantation the potential to provide nutrients for soil organic matter was similar to those of SF and PF; however, its slower decomposition rate could result in a somewhat transient accumulation of litter in the forest floor.  相似文献   

4.
Initial decomposition rates, changes in organic chemical components (acid-insoluble fraction, holocellulose, polyphenols, soluble carbohydrates) and nutrient dynamics (K, Mg, Ca, P, N) were examined for fine roots and leaves of Japanese cypress (Chamaecyparis obtusa). Litterbag experiments designed to evaluate the relative effects of litter type and position of litter supply in the soil were carried out, considering that root and leaf litter typically occupy different locations and have different substrate qualities. Litterbags of roots and leaves were placed at two positions (on the soil surface and in the humus layer), and collected every 3 months over one year. The mass loss rate and N release were slower during root decomposition in the humus layer than during leaf decomposition on the soil surface. These differences between root and leaf decomposition were mainly caused by the litter type, and the effect of the position on decomposition was relatively small. Root litter was less influenced by position related effects, such as differences in humidity, than leaf litter, and this recalcitrant trait to environmental effects may be responsible for the slower mass loss rate and N release in root decomposition. The results of the present study suggest that fine roots are persistent in the soil and serve an important role in N retention in forest ecosystems because of their litter substrate quality.  相似文献   

5.
Fungal decomposition of and phosphorus transformation from spruce litter needles (Picea abies) were simulated in systems containing litter needles inoculated with individual saprotrophic fungal strains and their mixtures. Fungal strains of Setulipes androsaceus (L.) Antonín, Chalara longipes (Preus) Cooke, Ceuthospora pinastri (Fr.) Höhn., Mollisia minutella (Sacc.) Rehm, Scleroconidioma sphagnicola Tsuneda, Currah & Thormann and an unknown strain NK11 were used as representatives of autochthonous mycoflora. Systems were incubated for 5.5 months in laboratory conditions. Fungal colonization in systems and competition among strains were assessed using the reisolation of fungi from individual needles. After incubation, needles were extracted with NaOH and extracts were analysed using 31P nuclear magnetic resonance spectroscopy (NMR). Needle decomposition was determined based on the decrease in C:N ratio. Systems inoculated with the basidiomycete S. androsaceus revealed substantial decrease in C:N ratio (from 25.8 to 11.3) while the effect of ascomycetes on the C:N ratio was negligible. We suppose that tested strains of saprotrophic ascomycetes did not participate substantially in litter decomposition, but were directly involved in phosphorus transformation and together with S. androsaceus could transform orthophosphate monoesters and diesters from spruce litter needles into diphosphates, polyphosphates and phosphonates. These transformations seem to be typical for saprotrophic fungi involved in litter needle decomposition, although the proportion of individual phosphorus forms differed among studied fungal strains. Phosphonate presence in needles after fungal inoculation is of special interest because no previous investigation recorded phosphonate synthesis and accumulation by fungi. Our results confirmed that the 31P NMR spectroscopy is an excellent instrumental method for studying transformations of soil organic phosphorus during plant litter decomposition. We suggest that polyphosphate production by S. androsaceus may contribute to the phosphorus cycle in forest ecosystems because this fungus is a frequent litter colonizer that substantially participates in decomposition.  相似文献   

6.
Litter is one of the main sources of dissolved organic carbon (DOC) in forest soils and litter decomposition is an important control of carbon storage and DOC dynamics. The aim of our study was to evaluate (i) effects of tree species on DOC production and (ii) relationships between litter decomposition and the amount and quality of DOC. Five different types of leaves and needles were exposed in litterbags at two neighboring forest sites. Within 12 months we sampled the litterbags five times and leached aliquots of field moist litter in the laboratory. In the collected litter percolates we measured DOC concentrations and recorded UV and fluorescence spectra in order to estimate the aromaticity and complexity of the organic molecules. Furthermore, we investigated the biodegradability of DOC from fresh and decomposed litter during 6 weeks incubations. Fresh sycamore maple litter released the largest amounts of DOC reaching about 6.2% of litter C after applying precipitation of 94 mm. We leached 3.9, 1.6, 1.0 and 3.3% carbon from fresh mountain ash, beech, spruce and pine litter, respectively. In the initial phase of litter decomposition significantly decreasing DOC amounts were released with increasing litter mass loss. However, after mass loss exceeds 20% DOC production from needle litter tended to increase. UV and fluorescence spectra of percolates from pine and spruce litter indicated an increasing degree of aromaticity and complexity with increasing mass loss as often described for decomposing litter. However, for deciduous litter the relationship was less obvious. We assume that during litter decomposition the source of produced DOC in coniferous litter tended toward a larger contribution from lignin-derived compounds. Biodegradability of DOC from fresh litter was very high, ranging from 30 to 95% mineralized C. DOC from degraded litter was on average 34% less mineralizable than DOC from fresh litter. Taking into account the large DOC production from decomposed needles we can assume there is an important role for DOC in the accumulation of organic matter in soils during litter decomposition particularly in coniferous forests.  相似文献   

7.
Litter decomposition on the forest floor is an essential process in soil nutrient cycles and formation. These processes are controlled by abiotic factors such as climate and chemical litter quality, and by biotic factors such as microbial community diversity and activity. The aim of this study was to investigate the importance of litter depth with respect to (i) chemical litter quality as evaluated by solid-state 13C NMR, (ii) enzyme activities, and (iii) microbial functional diversity in four different litter layers (OLn, OLv, OF, and OH). A Mediterranean soil profile under an evergreen oak (Quercus ilex L.) forest was used as a model. The recalcitrant OM fraction, corresponding to the deepest layer, showed low enzyme activities. Peroxidases and fluorescein diacetate hydrolases (FDA) were more active in the OLn layer and probably originated largely from plants. High cellulase activity in the OLn and the OLv layers, which are rich in polysaccharides, corresponded with the high content of O-alkyl carbon compounds. Following polysaccharide degradation, laccases and lipases were much more evident in the intermediate layers. This spatial variation in nutrient demand reflected a preferential degradation of the specific plant polymers. Phosphatases were more active along the three upper layers and probably reflected a P limitation during litter degradation. Alkaline/acid (AcPAlP/AcP) ratio increased in the deepest layer, suggesting an increased participation of bacteria AlP in phosphatase pools. Results of BiologTM also indicated spatial variations in microbial functionality. Indeed, FF plates showed the highest functional diversity in the uppermost layer, while ECO plate functional diversity was highest in the intermediate layers. Finally, our results indicated that microbial activity and functional diversity of micro-organisms change with litter depth on a very small scale and vary with chemical organic matter (OM) composition. Thus, the observed increases in the biological variables studied were determined by the evolution of OM chemical structures, the nature and availability in C nutrients, and they ultimately resulted in a progressive accumulation of recalcitrant compounds.  相似文献   

8.
The aim of this field experiment was to quantify the contribution of soil fauna to plant litter decomposition in three forest sites differing in C/N ratio under natural conditions in Xishuangbanna, southwestern China. We conducted a survey of soil fauna communities, the forest floor litter and investigated mass loss of mixed tree species leaf litter for two years in a tropical secondary forest, an evergreen broad-leaf forest and a tropical rain forest. Exclusion treatments of different sized soil fauna from the leaf litter by using varying mesh size litter bags (2 mm and 0.15 mm) were also performed. Mass loss and C and N concentrations in litter bag leaf materials were determined at monthly intervals. We found that: (1) the three forests differed in floor litter biomass and nutrient contents but not in soil fauna richness and abundance; (2) litter mass loss and decomposition rate were slower when soil macrofauna and most of mesofauna were excluded; and (3) greatest soil fauna contribution to plant litter decomposition occurred in the rain forest, where leaf litter C/N ratio was also highest (41.5% contribution: 54.8 C/N ratio), in comparison to 8.69% in the broad-leaf forest and 19.52% in the secondary forest, both with low leaf litter C/N ratios (<32). Our results suggested that, soil fauna played a more pronounced role in the decomposition of mixed leaf litter in tropical rain forest, and significantly bigger effects from fauna were ascribed to the enhancement of N concentration and decrease of C concentration of the initially high C/N ratio litter in this forest site.  相似文献   

9.
The decomposition and nutrient content of litter was studied for 2 years in regrowth Eucalyptus diversicolor forest to which N (0, 200 kg ha-1 year-1) and P (0, 30, 200 kg ha-1) had been applied. The P addition increased, and the N addition decreased, the rate of dry weight loss of decomposing litter. Analysis of the coefficients of a double exponential decay model with components describing the release of labile and resistant fractions indicated that decomposition of the resistant component of litter was most affected by the fertilizer additions. Treatment with N reduced the rate of loss of this component and increased its half-life by approximately 30%, whereas P treatment increased its rate of decay and decreased its half-life by approximately 30%. P accumulated in litter during decomposition. P uptake and retention was greater in P-treated than untreated plots. The application of N reduced P accumulation in litter. An accumulation of N also occurred during decomposition, the amount of N imported into litter being greater on plots treated with N fertilizer. Treatment with N affected the amount of S in decomposing litter. Litter on N-treated plots either accumulated more S or released it more slowly than litter on plots not treated with N. The application of N as NH4NO3 decreased forest-floor litter pH, increased litter layer mass (by 15%), and increased the amount of N (by 34%) and S (by 32%) stored in the forest floor. Treatment with P reduced the amount of N (by 22%) stored in the litter layer. The application of 200 kg P ha-1 in the absence of N increased the store of P in the litter layer by 80%, but when N and P were applied together the amount of P in the litter was not significantly different between P treatments.  相似文献   

10.
Forest ecosystems have been widely fragmented by human land use. Fragmentation induces significant microclimatic and biological differences at the forest edge relative to the forest interior. Increased exposure to solar radiation and wind at forest edges reduces soil moisture, which in turn affects leaf litter decomposition. We investigate the effect of forest fragmentation, soil moisture, soil macrofauna and litter quality on leaf litter decomposition to test the hypothesis that decomposition will be slower at a forest edge relative to the interior and that this effect is driven by lower soil moisture at the forest edge. Experimental plots were established at Wytham Woods, UK, and an experimental watering treatment was applied in plots at the forest edge and interior. Decomposition rate was measured using litter bags of two different mesh sizes, to include or exclude invertebrate macrofauna, and containing leaf litter of two tree species: easily decomposing ash (Fraxinus excelsior L.) and recalcitrant oak (Quercus robur L.). The decomposition rate was moisture-limited at both sites. However, the soil was moister and decomposition for both species was faster in the forest interior than at the edge. The presence of macrofauna accelerated the decomposition rate regardless of moisture conditions, and was particularly important in the decomposition of the recalcitrant oak. However, there was no effect of the watering treatment on macrofauna species richness and abundance. This study demonstrates the effect of forest fragmentation on an important ecosystem process, providing new insights into the interacting effects of moisture conditions, litter quality, forest edge and soil macrofauna.  相似文献   

11.
Accumulation of soil carbon is mainly controlled by the balance between litter production and litter decomposition. Usually In Mediterranean forests there are contrasting conditions in the distribution of faunal activity and the moss layer that may have different effects on litter decomposition. Decomposition and faunal activity were studied by exposing litter of contrasting quality (Pinus halepensis Mill. and Quercus ilex L.) for 3.5 yr in three Mediterranean pine forests of the eastern Iberian Peninsula. The effects of mosses on decomposition and on faunal activity were studied by exposing P. halepensis litter either on moss patches or directly on the forest floor. Faecal pellet production was used as an indication of faunal activity. Water availability or soil characteristics seem to limit faunal activities in the drier sites. Faecal pellets were not found during the first stages of decomposition and in all sites they appeared when about a 30% of the initial litter had decomposed. Under wet conditions faecal pellet production was very high and a mass balance suggested that soil faunal activity may result in a net flow of organic matter from the lower organic horizons to the surface Oi horizon. Mosses slightly increased mass loss of pine litter probably as a consequence of high potentially mineralizable nitrogen in the Oa horizon of moss patches and also, perhaps, as a consequence of the higher moisture content measured in the Oi horizon needles sampled among the mosses. In contrast, moss patches reduced faunal activity. The effect of litter quality on mass loss was not always significant, suggesting an interaction between litter quality and site conditions. During the first stages of decomposition there was N immobilisation in P. halepensis litter (poorer in N) and N release from Q. ilex litter (richer in N). In conclusion, in these forests soil microclimate and/or N availability appear to be more important controlling litter decomposition than the distribution of faunal activity.  相似文献   

12.
We tested whether straw could induce higher N release from decomposing salal leaf litter, which ostensibly interferes with mineralization of N. We mixed forest floor material from two forest types with 15N-enriched salal leaf litter, and incubated the mixtures 3 years with and without straw amendments. The amounts of N, as well as the relative amounts of 15N, extracted in five fractions were, respectively, 29-93 and 25-82% lower in straw-amended forest floor. Results suggest that straw diverted microbial decomposition activity away from the more recalcitrant litter fractions. Previous reports of higher mineral-N availability in straw-amended forest floors are best explained by a fertilizer effect of straw as opposed to a ‘priming effect’.  相似文献   

13.
Recently there has been much interest in the effect of litter mixing as well as the effect of different forest habitats on the decomposition process. Our aim was to test two hypotheses: high quality litter promotes decomposition of poor quality litter, and litter decomposes faster in broadleaf than in coniferous forest. We conducted a litter mixing experiment using litterbags placed in two forest floors, in which treatments consisted of litter monocultures of each of two campy species (Castanopsis eyrei and Pinus massoniana), as well as mixtures of these two species. The results showed that C. eyrei leaves decomposed significantly faster in the coniferous habitat than in their native habitat. On the other hand, P. massoniana needles decomposed significantly faster in their native coniferous habitat than in the broadleaf habitat. In our experiment we found that the mixture had different effect on different quality litter. P. massoniana needles (poor quality) had a positive effect on the decomposition of C. eyrei leaves (high quality), while C. eyrei leaves had a negative effect on the decomposition of P. massoniana needles in the mixture case in both broadleaf and coniferous habitats. The diversity of the fungi identified from different litters varied among treatments and the mass loss was positively correlated with the Shannon–Weaver diversity index of fungi. It is suggested that fungi may be one of the major drivers to control the decomposition process.  相似文献   

14.
Changes in climate or forest management practices leading to increased litter production will most likely cause increased leaching rates of dissolved organic carbon (DOC) from the O horizon. The rhizosphere is often assumed to have a large carbon flux associated with root turnover and exudation. However, little has been done to quantify the amount of DOC originating from root litter. We studied decomposition of fine root and needle litter of Norway spruce (Picea abies) through a combined incubation and leaching experiment in the laboratory using five different litter types: fresh needle litter, aged needles from the litter layer, fresh and dead roots from mineral soil samples, and seven-year-old roots from a previous litterbag study. After respiration measurements, the samples were percolated with artificial throughfall water and DOC and UV absorbance were measured in the leachate. Mineralisation of dissolved organic matter in the leachate and sorption of DOC to ferrihydrite were determined as a measure of DOC ability to be stabilised by iron (hydr)oxide surfaces.The mineralisation rate and DOC production rate of root samples were always lower than that of needle samples. However, root and needle derived dissolved organic matter (DOM) were similar in terms of aromaticity, as indicated by their specific UV absorbance, and ability to be sorbed by ferrihydrite. For seven-year-old roots, a significantly higher fraction of carbon was lost as DOC (30%) than for younger roots (20%). Furthermore, DOM from old roots bound more strongly to ferrihydrite and is mineralised at a lower rate than DOC from younger roots, suggesting that roots at late stages of decomposition, although a small fraction of total litter, significantly contribute to carbon build-up in mineral soils. The slower decomposition rate of roots compared with needles must be taken into account when modelling litter decomposition.  相似文献   

15.
Jarrah (Eucalyptus marginata Donn ex Smith) forest grows on poor soils with low stores of plant-available nutrients. We evaluated the impact of fertilizers on nutrient cycling in soil under Jarrah forest using a field study with three rates of P (0, 50, 200 kg P ha–1) and three rates of N (0, 100, 200 kg N ha–1) in a full factorial design. Litterfall was significantly increased by N application (30% relative to controls) in the first 2 years after treatment and by P application in the second year. The amounts of N, P, K, Ca and Mg in litterfall were also increased significantly by both N and P fertilizer. Although fertilizer treatments did not affect the total amount of litter accumulated on the forest floor over 4–5 years after application, there were large treatment differences in the amounts of N and P stored in the forest floor. Microbial respiration in litter was significantly greater (19%) on P-treated plots relative to controls, but this increase did not translate into increased decomposition rates as measured in long-term (5-year) mesh-bag studies. The results indicate that factors other than nutrition are mainly responsible for controlling the rate of decomposition in this ecosystem. Application of P, in particular, resulted in substantial accumulation of P in forest floor litter over 5 years. This accumulation was partly a result of the deposition of P in litterfall, but was also probably a result of translocation of P from the mineral soil. During the 5-year decomposition study, there was no net release of P from leaf litter and, at the highest rate of P application, the amounts of P stored in forest floor litter were more than four-fold greater than in fresh litter. Regular fire, a common phenomenon in these ecosystems, may be an important P-mobilizing agent for enhancing plant P uptake in these forests.  相似文献   

16.
The present study was designated to evaluate the relative effects of litter depth and decomposition stage of needles on fungal colonization of needle litter in field experiments. The experiment was carried out in coniferous temperate forests in central Japan. Needle litter of Chamaecyparis obtusa and Pinus pentaphylla var. himekomatsu at two decomposition stages (recently dead and partly decomposed) were placed into the organic layer at two depths (on the surface of and beneath the litter layer). Fungal colonization of needles after 1 year was examined in terms of hyphal abundance and frequency of fungal species. Total and live hyphal length on needles were affected by the litter depth and (or) the decomposition stage of needles. Length of darkly pigmented hyphae on needles was 1.7-2.6 times greater beneath the litter layer than on the litter surface regardless of the decomposition stage of needles. Length of clamp-bearing hyphae in Pinus pentaphylla was 5.0-5.2 times greater in partly decomposed needles than in recently dead needles regardless of the litter depth. Frequencies of Pestalotiopsis spp. and Cladosporium cladosporioides were higher on recently dead needles than on partly decomposed needles and (or) were higher on the litter surface than beneath the litter layer. Frequencies of Trichoderma, Penicillium, and Umbelopsis species generally were higher on partly decomposed needles than on recently dead needles and were higher beneath the litter layer than on the surface.  相似文献   

17.
Changes in the lignin fraction of spruce and pine needle litter were followed by four different methods: Klason lignin, phloroglucinol lignin, dioxane-water-HCl-lignin and alkaline CuO oxidation. The decomposition patterns of the lignins studied were different, the largest differences between the methods being obtained for the spruce needles. Depending on the method used, between 36 and 46% of the original amount of lignin remained in the pine needles and about 30–61% in the spruce needles after 3 yr of decomposition. The decomposition rates of the various lignin pools were highly correlated with the loss in mass of the litter. The phloroglucinol lignin was decomposed significantly faster (P < 0.001) in the spruce needles than in the pine needles for as long as the decomposition process was followed. During decomposition of the litter, the residual amount of Klason lignin was correlated with the residual amounts of the other lignins. The application of the different methods to litter decomposition studies is discussed.  相似文献   

18.
 Litter bags containing sterile Scots pine (Pinus sylvestris) needles (19.8% lignin, 26.5% cellulose and 0.34% N) were inoculated with two species of fungi in the laboratory and then placed in the litter layer of a pine plantation. Marasmius androsaceus, which can degrade lignocellulose, was initially displaced by other fungal colonisers and was not detected in the litter after 2–3 months; but was re-isolated from the needles after 12 months. Trichoderma viride, which is a cellulolytic species and also antagonistic to other fungi, dominated the litter throughout the experiment. The control litter was naturally colonised by litter fungi. After 12 months, mass losses were similar at 52% for M. androsaceus and 48% for T. viride, compared with 36% for the control litter colonised by a more complex fungal community. Lignin concentrations increased with time in control litter and with T. viride because mass losses of carbohydrates were greater than those of lignin. Litter inoculated with M. androsaceus showed significant lignin decomposition throughout the experiment but cellulose concentrations showed a proportional increase in the first 6 months, suggesting that the fungus was preferentially exploiting hemicellulose and non-structural carbohydrates. Analysis of TFA-extractable sugars (mainly from hemicellulose) and CuO-derived phenylpropanoid moieties from lignin confirmed the differential patterns of resource decomposition which were not evident from total mass losses. During the initial stages of decomposition, T. viride was as effective in utilising structural polysaccharides as the complex fungal community in the control litter. Furthermore, M. androsaceus not only exhibited unexpectedly low cellulolytic activity but also facilitated lignin depolymerisation after the fungus was no longer detectable in the litter. The pre-inoculation of litter with these two fungal species therefore affected the overall dynamics of decomposition at a biochemical level. This study illustrates the importance of understanding the effects and interactions of specific fungi, rather than assumptions about the functional competence of diverse communities, on the processes of litter decomposition. Received: 5 July 2000  相似文献   

19.
The possible effects of excreta of the Great Cormorant Phalacrocorax carbo on decomposition processes and dynamics of nutrients (N, P, Ca, K, Mg) and organic chemical components (lignin, total carbohydrates) were investigated in a temperate evergreen coniferous forest near Lake Biwa in central Japan. Two-year decomposition processes of needles and twigs of Chamaecyparis obtusa were examined at two sites, control site never colonized by the cormorants (site C) and colonizing site (site 2). Mass loss was faster in needles than in twigs. Mass loss of these litter types was faster at site C than at site 2, which was ascribed to the decreased mass loss rate of acid-insoluble ‘lignin’ at site 2. Net immobilization of N, P, and Ca occurred in needles and twigs at site 2; whereas at site C, mass of these elements decreased without immobilization during decomposition. Duration of immobilization phase of these nutrients at site 2 was estimated to be 1.6 to 2.5 years in needles and 19.6 to 23.5 years in twigs. Immobilization potential (maximum amount of exogenous nutrient immobilized per gram initial material) was similar between needles and twigs for N and Ca but was about 10 times higher in twigs than in needles for P. δ13C in needles was relatively constant during the first year and then increased during the second year, whereas δ13C in twigs was variable during decomposition. Acid-insoluble fraction was depleted in 13C compared to whole needles (1.6-2.1‰) and twigs (2.0-2.5‰). δ15N of needles and twigs and their acid-insoluble fractions approached to δ15N of excreta during decomposition at site 2. This result demonstrated the immobilization of excreta-derived N into litter due to the formation of acid-insoluble lignin-like substances complexed with excreta-derived N. No immobilization occurred in K and Mg and their mass decreased during decomposition at both sites. Based on these results of nutrient immobilization during decomposition and on the data of litter fall and excreta amount at site 2, we tentatively calculated stand-level immobilization potential of litter fall and its contribution to total amount of N and P deposited as excreta. Thus, the potential maximum amount immobilized into litter fall (needles and twigs) was estimated to account for 5-7% of total excreta-derived N and P.  相似文献   

20.
Short‐term (<7 years) effects of prescribed litter‐raking on forest‐floor nutrient pools, stand nutrition, and seepage water chemistry were studied in an N‐saturated Scots pine (Pinus sylvestris L.) forest in Southern Germany subject to high atmospheric‐nitrogen deposition. The study was based on a comparison of plots with and without annual prescribed litter raking at three sites with different N‐deposition levels. Prescribed litter‐raking resulted in a considerable reduction of forest‐floor thickness and mass, as well as of forest‐floor C, N, P, K, Mg, and Ca pools. Furthermore, it induced a significant decrease of the foliar N content in current‐year needles of the pines and a more balanced nutritional status of the stand. Particularly on the site subject to the highest N deposition, but to a lesser degree also at the other sites, the mean NO concentration in the subsoil seepage water and the N export into the groundwater were substantially reduced on the litter‐raked plots. The results show that in N‐saturated Scots pine ecosystems prescribed litter‐raking on areas of limited size, which are used as sources of groundwater‐derived drinking water and/or serve as habitat for endangered plant species, is a quick and effective method to achieve a more balanced nutritional status of the trees and to reduce seepage‐water NO concentrations and N export into the groundwater. In terms of sustainable ecosystem nutrient management, the conversion of conifer monocultures into broadleaf‐rich mixed stands is the better, yet less immediately effective method to reduce the seepage‐water N export from conifer forests subject to high atmospheric‐N deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号