首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Decision support tools to help dairy farmers gain confidence in grazing management need to be able to predict performance of grazing animals with easy‐to‐obtain variables on farm. This paper, the second of a series of three, describes the GrazeIn model predicting herbage intake for grazing dairy cows. The model of voluntary intake described in the first paper is adapted to grazing situations taking account of sward characteristics and grazing management, which can potentially affect intake compared to indoor feeding. Rotational and continuously stocked grazing systems are considered separately. Specific effects of grazing management on intake were quantified from an extensive literature review, including the effect of daily herbage allowance and pre‐grazing herbage mass in rotational grazing systems, sward surface height in continuously stocked grazing systems, and daily time at pasture in both grazing systems. The model, based on iterative procedures, estimates many interactions between cows, supplements, sward characteristics and grazing management. The sensitivity of the prediction of herbage intake to sward and management characteristics, as well as the robustness of the simulations and an external validation of the GrazeIn model with an independent data set, is presented in a third paper.  相似文献   

2.
A comparative study of grazing behaviour, herbage intake and milk production of three strains of Holstein‐Friesian dairy cow was conducted using three grass‐based feeding systems over two years. The three strains of Holstein‐Friesian cows were: high production North American (HP), high durability North American (HD) and New Zealand (NZ). The three grass‐based feeding systems were: high grass allowance (MP), high concentrate (HC) and high stocking rate (HS). In each year seventy‐two pluriparous cows, divided equally between strains of Holstein‐Friesian and feeding systems were used. Strain of Holstein‐Friesian cow and feeding system had significant effects on grazing behaviour, dry matter (DM) intake and milk production. The NZ strain had the longest grazing time while the HD strain had the shortest. The grazing time of cows in the HC system was shorter than those in both the HS and MP systems. There was a significant strain of Holstein‐Friesian cow by feeding system interaction for DM intake of grass herbage and milk production. The NZ strain had the highest substitution rate with the HP strain having the lowest. Hence, response in milk production to concentrate was much greater with the HP than the NZ strain. Reduction in milk yield as a consequence of a higher stocking rate (MP vs. HS system) was, however, greater for the HP and HD strains compared with the NZ strain. The results suggest that differences in grazing behaviour are important in influencing DM intake and milk production.  相似文献   

3.
GrazeIn is a model for predicting herbage intake and milk production of grazing dairy cows. The objectives of this paper are to test its robustness according to a planned arrangement of grazing and feeding scenarios using a simulation procedure, and to investigate the precision of the predictions from an external validation procedure with independent data. Simulations show that the predicted effects of herbage allowance, herbage mass, herbage digestibility, concentrate supplementation, forage supplementation and daily time at pasture are consistent with current knowledge. The external validation of GrazeIn is investigated from a large dataset of twenty experiments representing 206 grazing herds, from five research centres within Western Europe. On average, mean actual and predicted values are 14·4 and 14·2 kg DM d?1 for herbage intake and 22·7 and 24·7 kg d?1 for milk production, respectively. The overall precision of the predictions, estimated by the mean prediction error, are 16% (i.e. 2·3 kg DM d?1) and 14% (i.e. 3·1 kg d?1) for herbage intake and milk production, respectively. It is concluded that the GrazeIn model is able to predict variations in herbage intake and milk production of grazing dairy cows in a realistic manner over a wide range of grazing management practices, rendering it suitable as a basis for decision support systems.  相似文献   

4.
The prediction of both food intake and milk production constitutes a major issue in ruminants. This article presents a model predicting voluntary dry matter intake and milk production by lactating cows fed indoors. This model, with an extension to predict herbage intake at grazing presented in a second article, is used in the Grazemore decision support system. The model is largely based on the INRA fill unit system, consisting of predicting separately the intake capacity of the cows and the fill value (ingestibility) of each feed. The intake capacity model considers potential milk production as a key component of voluntary feed intake. This potential milk production represents the energy requirement of the mammary gland, adjusted by protein supply when the protein availability is limiting. Actual milk production is predicted from the potential milk production and from the nutritional status of the cow. The law of response of milk production is a function of the difference between energy demand and actual energy intake, modulated by protein intake level. The simulation of experimental data from different feeding trials illustrates the performance of the model. This new model enables dynamic simulations of intake and milk production sensitive to feeding management during the whole lactation period.  相似文献   

5.
This study evaluated the prediction accuracy of grass dry‐matter intake (GDMI) and milk yield predicted by the model GrazeIn using a database representing 522 grazing herds. The GrazeIn input variables under consideration were fill value (FV), grass energy content [Unité Fourragère Lait (UFL)], grass protein value [true protein absorbable in the small intestine when rumen fermen energy is limiting microbial protein synthesis in the rumen (PDIE)], pre‐grazing herbage mass (PGHM), daily herbage allowance (DHA) and concentrate supplementation. GrazeIn was evaluated using the relative prediction error (RPE). The mean actual GDMI and milk yields of grazing herds in the database ranged from 9·9–22·0 kg DM per cow d?1 and 8·9–41·8 kg per cow d?1, respectively. The accuracy of predictions for the total database estimated by RPE was 12·2 and 12·8% for GDMI and milk yield, respectively. The mean bias (predicted minus actual) for GDMI was ?0·3 kg DM per cow d?1 and for milk yield was +0·9 kg per cow d?1. GrazeIn predicted GDMI with a level of error <13·4% RPE for spring, summer and autumn. GrazeIn predicted milk yield in autumn (RPE = 17·6%) with a larger error in comparison with spring (RPE = 10·4%) and summer (RPE = 11·0%). Future studies should focus on the adaptation of GrazeIn to correct and improve the prediction of milk yield in autumn.  相似文献   

6.
The objective of this study was to investigate the effects of an early (February; F) or delayed (April; A) primary spring grazing date and two stocking rates, high (H) and medium (M), on the grazing management, dry matter (DM) intake of grass herbage and milk production of spring‐calving dairy cows grazing a perennial ryegrass sward in the subsequent summer. Sixty‐four Holstein‐Friesian dairy cows (mean of 58 d in milk) were assigned to one of four grazing treatments (n = 16) which were imposed from 12 April to 3 July 2004. Cows on the early spring‐grazing treatment were grazed at 5·5 cows ha?1 (treatment FH) and 4·5 cows ha?1 (treatment FM) while cows on the late‐grazing treatment were grazed at 6·4 cows ha?1 (treatment AH) and 5·5 cows ha?1 (treatment AM). The organic matter digestibility and crude protein concentration of the grass herbage were higher on the early‐grazing treatment than on the late‐grazing treatment. The cows on the FM treatment had significantly (P < 0·001) higher milk (24·5 kg), solids‐corrected milk (22·5 kg), fat (P < 0·01, 918 g) and protein (831 g) yields than the other three treatments. Cows on the FM treatment had a higher (P < 0·001) DM intake of grass herbage by 2·3 kg DM per cow per day than cows on the AH treatment, which had a DM intake significantly lower than all other treatments (15·2 kg DM per cow per day). The results of the present study showed that grazing in early spring has a positive effect on herbage quality in subsequent grazing rotations. The study also concluded that early spring‐grazed swards stocked at a medium stocking rate (4·5 cows ha?1; FM) resulted in the highest DM intake of grass herbage and milk production.  相似文献   

7.
Low rates of herbage dry matter (DM) intake impose limits on total daily DM intake in grazing dairy cows. The objective of this study was to increase total daily DM intake and milk production by restricting daily time available for grazing (TAG) and replacing it with time available for eating a maize silage/soyabean meal (TAMS) diet indoors. The treatments (TAG + TAMS) were 20 + 0, 19 + 1, 10 + 10 and 5 + 15 h. Measurements were made of milk production, intake and feeding behaviour. The interactions of TAG + TAMS treatments with sward height (SH) and concentrate level (CL) were also examined. Two experiments, each lasting 42 days, were carried out in spring ( Experiment 1 ) and autumn ( Experiment 2 ) using forty‐eight and twenty‐four Holstein‐Friesian cows respectively. Treatments were arranged in a factorial design with TAG + TAMS treatments, SH ( Experiment 1 only) and CL as the independent variables and a TAG + TAMS of 20 h. Reducing TAG and increasing TAMS significantly reduced estimated herbage DM intake and significantly increased maize silage/soyabean meal intake in both experiments, but there were no significant main effects of TAG + TAMS treatments on milk yield (mean, 27·4 and 25·5 kg d?1 for Experiments 1 and 2 respectively), and yield of milk constituents. Increasing SH ( Experiment 1 ) and CL ( Experiments 1 and 2 ) significantly increased milk yield. In Experiment 1 , there was a significant interaction between TAG + TAMS treatments and SH with the taller sward height of 8–10 cm and the 20 + 0 treatment having the highest milk yield (29·7 kg d?1) and the 5 + 15 treatment the lowest (27·2 kg d?1), whereas at the lower sward height of 4–6 cm, milk yield was lowest on the 20 + 0 treatment (25·5 kg d?1) with the other three treatments being higher (mean, 26·9 kg d?1). Replacing TAG with TAMS significantly increased liveweight gain in Experiment 1 but not in Experiment 2 . Estimated rates of intake of herbage were lower in the autumn experiment ( Experiment 2 , 9·6 g DM min ?1) than in the spring experiment ( Experiment 1 , 29·4 g DM min ?1) but rates of intake of maize silage were higher in the autumn (112·4 g DM min?1) than in the spring (72·5 g DM min?1). In conclusion, in spring the response to replacing TAG with TAMS was dependent on sward conditions with the highest milk fat plus protein yield being on the 20 + 0 treatment at the high sward height and on the 19 + 1 treatment at the low sward height. The high liveweight gain of the 5 + 15 treatment could be an important means of restoring body condition in grazing lactating cows. In autumn, intakes of herbage were low in spite of its high estimated nutritive value with all treatments having a similar level of performance.  相似文献   

8.
The study examined whether high‐yielding cows grazing pasture respond differently from low‐yielding cows in milk production and feeding behaviour, to increasing the time made available for eating a maize silage and soyabean meal (TAMS) diet indoors and reducing the time available for grazing (TAG). Two experiments, each lasting 42 d, were carried out in spring (Experiment 1) and autumn (Experiment 2) using Holstein‐Friesian cows at two different levels of milk yield (MYL). Milk production and feeding behaviour were examined for TAG + TAMS systems of 19 h, TAG plus 1 h TAMS (19 + 1), and 5 h TAG plus 15 h TAMS (5 + 15). There were two levels of concentrate (0 and 6 kg d?1), and in the spring experiment two sward heights (4–6 and 8–10 cm) were also studied. Milk yield, persistency of milk yield, liveweight change and estimated total DM intake were significantly higher on the 5 + 15 than on the 19 + 1 grazing system in Experiment 1 but not in Experiment 2. There were no significant interactions of TAG + TAMS treatment with MYL for any production or behavioural measurements except for maize silage feeding time, where high MYL cows spent a significantly greater time eating maize silage than low MYL cows on the 5 + 15 treatment but not on the 19 + 1 treatment. It can be concluded that high‐ and low‐yielding cows respond similarly in milk production and feeding behaviour to different combinations of TAG and TAMS. In autumn, estimated daily intakes of herbage were lower on both grazing treatments relative to spring, resulting from lower rates of herbage intake with no compensatory increase in grazing time. In contrast, rates of intake of maize silage were higher in autumn especially on the 19 + 1 system. These results may imply a change of preference from herbage to maize silage between spring and autumn.  相似文献   

9.
This study evaluated the prediction accuracy of grass dry‐matter intake (GDMI) and milk yield predicted by the GrazeIn model using a large database representing 8787 per cow GDMI measurements. In this study, the animal input variables (age, parity, week of lactation, potential peak milk yield, milk fat content, milk protein content, bodyweight, body condition score (BCS), week of conception, BCS at calving and calf birth weight) were investigated. The mean actual GDMI of the database was 15·9 kg DM per cow d?1 and GrazeIn predicted a mean GDMI for the database of 15·5 kg DM per cow d?1. The mean bias was ?0·4 kg DM per cow d?1. GrazeIn predicted GDMI for the total database with an RPE of 15·5% at cow level. The mean actual daily milk yield of the database was 21·3 kg per cow d?1 and GrazeIn predicted a daily milk yield for the database of 22·2 kg per cow d?1. The mean bias was +0·9 kg per cow d?1. GrazeIn predicted milk yield for the total database with an RPE of 16·7% at cow level. From the evaluation, GrazeIn predicted milk yield of all cows in late lactation with a larger level of error than in early and mid‐lactation. This error appears to be due to the persistency of the lactation curve used by the model, which results in a higher predicted milk yield in late lactation compared with the actual milk yield.  相似文献   

10.
Two factorial design experiments were carried out in the spring of 1994 and 1995, each of 6 weeks, to quantify the effects of sward height (SH), concentrate level (CL) and initial milk yield (IMY) on milk production and grazing behaviour of continuously stocked dairy cows. In Experiment 1, forty‐five Holstein Friesian cows were in five groups with initial milk yields of 16·9, 21·1, 28·0, 31·5 and 35·5 kg d–1, grazed sward heights were 3–5, 5–7 and 7–9 cm (LSH, MSH and HSH respectively), and concentrates were fed at rates of 0, 3 and 6 kg d–1. In Experiment 2, 48 cows were in two groups with IMY of 21·3 and 35·5 kg d–1, grazed sward heights were 3–5 and 7–9 cm (LSH and HSH), and concentrates were fed at 0 and 6 kg d–1 and ad libitum. Multiple regression models were used to quantify the effects of the three variables on milk yield persistency (MYP), estimated herbage dry‐matter (DM) intake (HDMI), grazing time (GT) and rate of DM intake (RI). The partial regression coefficients showed that increased SH led to increased MYP (Experiment 1 P < 0·001, Experiment 2 P < 0·05), increased HDMI (P < 0·01, P < 0·01), increased GT (P < 0·001, P < 0·05) and increased RI (P < 0·001, P < 0·05). Increasing CL led to increased MYP (NS, P < 0·001), decreased HDMI (P < 0·001, P < 0·001), decreased GT (NS, P < 0·001) and decreased RI (P < 0·001, P < 0·001). Higher IMY level of cows decreased MYP (P < 0·001, P < 0·001), increased HDMI (P < 0·001, P < 0·001), increased GT (P < 0·001, P < 0·05) and increased RI (P < 0·05, P < 0·01). The models were highly significant (P < 0·001), and accounted for 0·48–0·87 of the total variance. The partial regression coefficients quantified the extent to which GT and RI by cows respond positively to higher IMY, and negatively to increased CL, but respond differently (GT declines in response to a higher RI) with increasing SH.  相似文献   

11.
In the UK, dairy cows are increasingly housed at night throughout the grazing season. However, there is limited information on cow performance and the impact on labour requirements when a forage supplement is offered during housing at night throughout the entire grazing season. The effects of housing at night were studied in two experiments, in which two treatments were compared. On treatment part‐grazing (PG), dairy cows were given access to grazing by day and were offered grass silage while housed at night, and, on treatment continuous grazing (CG), dairy cows were given access to grazing both by day and by night. Experiments 1 (138‐d duration) and 2 (127‐d duration) involved sixty (primiparous) and seventy‐six (primiparous and multiparous) Holstein‐Friesian dairy cows respectively. Concentrates were offered during milking at 4·0 and 3·0 kg per cow per day in Experiments 1 and 2 respectively. In Experiment 1, total milk output was significantly higher with treatment PG than treatment CG (P < 0·01) while the reverse occurred in Experiment 2 (P < 0·001). Milk protein concentration was significantly higher with treatment CG in Experiments 1 and 2 (P < 0·001). Cows on treatment CG in Experiment 2 had significantly higher body condition scores and live weights at the end of experiment than those on treatment PG (P < 0·05). Weekly labour requirements were calculated to be proportionally 0·04 lower on treatment PG than on treatment CG. When offered silage during housing at night, the response of grazing dairy cows was largely determined by the grazing conditions encountered and the quality of the forage offered.  相似文献   

12.
The objective of this study was to examine the performance of grazing Holstein–Friesian dairy cows when equal quantities of concentrates were offered using either a flat‐rate or a feed‐to‐yield allocation strategy. The study involved fifty‐six cows (twenty primiparous and thirty‐six multiparous) and continued for 122 d, with concentrate feed levels adjusted on five occasions during the study (every four weeks approximately). Total concentrate intake over the duration of the study was 463 and 525 kg cow?1 (3·8 and 4·3 kg cow?1 d?1) for multiparous and primiparous animals respectively. Concentrate allocation strategy had no effect on average daily milk yield, milk fat or protein content, milk‐fat‐plus‐protein yield or end‐of‐study live weight and body condition score (P > 0·05). In conclusion, concentrate allocation strategy had minimal impact on the overall performance of these mid/late lactation cows when concentrate feed levels were modest and grass availability was high.  相似文献   

13.
Thirty-six British Friesian heifers were divided into two groups during weeks 3-26 of lactation and received ad libitum either good (G) or average (A) quality grass silage. The in vitro digestible organic matter in the DM was 680 and 600 g kg-1 for silages G and A, respectively. In addition, the heifers in each group were offered concentrate at either a low (4.3 kg DM d-1), medium (64 kg DM d-1) or high (8.4 kg DM d-1) level. The concentrate contained 180 g (kg DM)-1 of crude protein and had a calculated metabolizable energy concentration of 12.9 MJ (kg DM)-1. Increasing concentrate level significantly increased milk yield (P < 0.01), milk protein concentration (P < 0.05), and yield of both milk protein depressed milk fat concentration (P < 0.001) and silage intake (P < 0.001). Although the overall effect of silage quality on milk yield was not significant, the milk yields for silage G at each concentrate level were higher, significantly so for low level, than the corresponding values for silage A. An improvement in silage quality did not affect milk fat concentration but significantly increased the concentration of milk protein (P < 005) and yields of both milk fat (P < 005) and protein (P < 0001). The response of silage DM intake to improved silage quality was 0 06 kg DM per 10 g rise in vitro DOMD value. Each additional kg concentrate DM depressed intake of silages G and A by 0-63 and 0-27 kg DM, respectively. Substitution rate was also significantly related to stage of lactation. With both silages, the digestibility coefficients determined in vivo for acid detergent fibre (ADF) decreased significantly (P < 0.001) when concentrate level was increased from low to high. Differences for DM, OM and total N digestibility coefficients between treatments were not established as significant at the 5% level. Estimates of mean efficiency of utilization of ME for lactation, made on a weekly basis, were 049 and 052 for the heifers given silages G and A. respectively, and 048, 052 and 052 for those given the low, medium and high levels of concentrate. Energy balances were calculated on a mean weekly basis.  相似文献   

14.
Abstract In 1993 and 1994, 40 cows in early lactation in early spring were assigned randomly to four feeding treatments. One group of cows was kept indoors with access to grass silage ad libitum, plus 6 kg of concentrate daily. The other three groups had access to grass pasture (5–6 h per day in 1993 and 11–12 h per day in 1994) plus grass silage similar to that fed to the previous group while indoors plus 6, 4 or 2 kg of concentrate daily. The average daily allocations of herbage (> 3·5 cm) were 8·5 and 14·0 kg DM cow?1 day?1 in 1993 and 1994 respectively. The treatments were applied for 8 weeks (26 February to 23 April) in 1993, and 7 weeks (11 March to 29 April) in 1994. Cows with access to pasture had lower (P < 0·001) silage dry‐matter (DM) intakes and higher (P < 0·001) total forage DM intakes in both years than those kept indoors. This resulted in significantly higher yields of milk, fat, protein and lactose. Similarly, milk protein concentration was higher (P < 0·05 in 1993; P < 0·001 in 1994). There was a significant linear increase in total DM intake in both years with increased concentrate supplementation. In 1993, there was a linear increase in milk (P < 0·01), fat (P < 0·01), protein (P < 0·001) and lactose (P < 0·01) yields with increased concentrate supplementation. In 1994, only milk protein yield (P < 0·05) was increased. Concentrate supplementation had no effect on milk composition or liveweight change. Cows with access to grazed grass had higher liveweight gains (P < 0·05) than those kept indoors in both years. In 1993, increasing the energy intake increased the processing qualities of the milk produced. The results showed that access to grass pasture resulted in higher milk production, in reduced silage requirement and in reduced level of concentrate supplementation required for a given level of milk production with spring‐calving cows in early lactation compared with those kept indoors.  相似文献   

15.
The effect of feeding either traditional concentrates containing starch or high quality fibrous concentrates on the performance of grazing dairy cows was examined in a trial in which cows were given concentrates with either 350 g starch and sugars (kg dry matter (DM))-1 (high-starch) or 100 g starch and sugars (kg DM)-1 (high-fibre). The swards used consisted predominantly of perennial ryegrass and were usually aftermaths following cutting. Each area was grazed for 3 or 4 d at each grazing and a two-machine sward-cutting technique was used for estimating herbage intake.
The effect of concentrate composition on the herbage intake of grazing cows at a high daily herbage allowance of 28 kg OM above 4 cm cutting height was investigated in 1983 and 1984. With 54 kg OM d-1 of high-starch concentrates the mean herbage intake was 11·5 kg OM d-1 per cow while cows fed 5.3 kg d-1 of high-fibre concentrates consumed on average 12–6 kg OM d-1. The mean substitution rate of herbage by concentrates was reduced from 0·45 kg herbage OM (kg concentrate OM)-1 with the high-starch concentrate to 0·21 with the high-fibre concentrates.
The effect of the treatments on milk production was studied in 1984. The cows consumed 5·5 kg OM d-1 as concentrates and grazed at a lower herbage allowance of 19 kg OM above 4 cm cutting height. With high-fibre concentrates milk production and 4% fat-corrected milk production were 13 and 1·8 kg d-1, respectively, higher than with the high-starch treatment. The daily live weight gain with the high-starch concentrates was 0·17 kg per cow more than with the high-fibre concentrates.  相似文献   

16.
The objective of this study was to examine the effects of predicted milk yields sustained by grazed grass (‘Milk‐from‐Grass’: LOW, MED or HIGH) and Parity (primiparous or multiparous) on the performance and concentrate requirements of grazed Holstein‐Friesian dairy cows offered concentrates on a ‘feed‐to‐yield’ basis during the grazing season. The mean Milk‐from‐Grass values assigned to cows in the LOW, MED and HIGH treatment groups (sixteen multiparous and eight primiparous cows per group) during the experiment (24 May to 2 October; 131 d) were 12·7, 15·4 and 18·1 kg cow?1 d?1, respectively. Concentrate allocations were adjusted every two weeks (approximately) based on individual cows’ milk yields, and concentrate was offered at a rate of 0·45 kg for each kg of milk produced above the assigned Milk‐from‐Grass value at that time. Increasing Milk‐from‐Grass from LOW to MED to HIGH decreased both the mean daily concentrate allocations (4·90, 3·17 and 1·79 kg cow?1 d?1, respectively) and milk yields (23·8, 21·8 and 19·0 kg cow?1 d?1) of the cows. Cows in the LOW treatment group had lower mean and final (i.e. at the end of the study) BCS and LW than those in the MED or HIGH groups. The effects of Milk‐from‐Grass were similar for both primiparous and multiparous cows.  相似文献   

17.
Sixty multiparous, Holstein–Friesian pregnant dry dairy cows were allocated to three forage treatments ( n  = 20; fodder beet, kale or grass silage) at two feeding allowances ( n  = 30; high and low) for 70 (s.e. of mean, 16) d before parturition. Cows offered the high feeding allowance were offered 9 kg of dry matter (DM) of kale or fodder beet grazed in situ plus 5 kg DM of baled grass silage daily or clamp grass silage ad libitum offered indoors. Cows offered the low feeding allowance were offered 6 kg DM of kale or fodder beet grazed in situ plus 3·5 kg DM baled grass silage daily, or 9·5 kg DM of clamp grass silage daily offered indoors. After calving, all cows received a daily allowance of 14 kg DM perennial ryegrass herbage at pasture plus 4 kg concentrate cow−1 for the first 35 d of lactation. Cows offered grass silage had a greater increase in body condition score pre-partum compared to those offered kale or fodder beet. Cows offered fodder beet pre-partum had a greater milk solid and solids-corrected milk yield in the first 35 d of lactation than those offered kale and grass silage pre-partum. Offering fodder beet and kale pre-partum increased plasma non-esterified fatty acid concentrations pre-partum relative to offering grass silage. Offering kale pre-partum resulted in higher insulin-like growth factor-1 concentration post-partum but lower plasma copper concentration pre-partum and at calving than kale or grass silage. Offering the higher forage allowance pre-partum resulted in a higher plasma calcium concentration at calving and higher plasma non-esterified fatty acid concentration post-partum.  相似文献   

18.
Milk fatty acids (FA) were compared in mid‐lactation dairy cows in four feeding systems combining grazing management and supplementation. The four treatments were factorial combinations of compressed herbage grazed to 3·7 or 4·6 cm post‐grazing height, with or without concentrate feeding (3·6 kg cow?1 d?1). Milk yield and composition were measured for four groups of eight Friesian × Jersey dairy cows over 3 weeks in mid‐lactation for cows that had grazed treatments for 64 d from early spring. Milk yield was higher in cows fed concentrate plus herbage (23·9 kg d?1 cow?1) than cows fed herbage only (20·3 kg d?1 cow?1). Milk fat percentage was higher in cows fed herbage only (5·5%) than that fed herbage plus concentrate (5·1%). Milk protein percentage was higher in cows fed herbage plus concentrate (4·0%) than that fed herbage only (3·7%). The concentrations of conjugated linoleic acids c9, t11, C18:0, C18:1 t11 and C18:2 t9, c12 FA were lower where concentrate was fed. The concentrations of C18:1 t10, C18:1 t5, t8 and C18:2 c9, c12 FA were higher where concentrate was fed. The concentrations of C18:1 c6, C18:1 c9, C18:1 t9 and C18:3 c6,9,15 were unaffected by concentrate feeding. Post‐grazing herbage height had no significant effect on milk yield or concentration of milk FA. Provided dairy cows are harvesting leafy material of similar nutrient and FA concentration, post‐grazing herbage height does not appear to alter milk FA and the supply of high energy concentrates is more influential on milk FA profiles.  相似文献   

19.
The effects of short grazing intervals in the early part of the grazing season on the growth and utilization of grass herbage, and the performance of grazing dairy cows, in a rotational grazing system were examined. Seventy-six cows were allocated to two grazing treatments: a normal rotation treatment (20-d rotations for the first 60 d) and a short rotation treatment (12-, 8-, 8-, 8-, 12- and 12-day rotations). Thereafter, both treatments had the same grazing interval and over the season as a whole both treatments received the same amount of nitrogen fertilizer and were stocked at the same rate. The short rotation treatment significantly reduced pre- and post-grazing sward heights and pre-grazing herbage mass in May and June. Total herbage production was significantly lower on the short than the normal rotation treatment as a result of a significant reduction in the growth rate of herbage in May and June. The short rotation treatment had a significantly lower milk output per cow. Grazing shorter swards, as a result of shorter rotations, significantly reduced herbage intake, reflecting reductions in intake per bite, grazing time and total bites per day. Treatment had no significant effect on herbage quality or pre- and post-grazing sward height in August and September, despite the increased grazing severity in May and June with the short rotations. The severity of rotation length in this instance had a detrimental impact on animal performance, whereas a more modest reduction in grazing interval may control herbage production, without reducing animal performance.  相似文献   

20.
White clover can reduce fertilizer‐N requirements, improve sward nutritive value and increase environmental sustainability of grazed grasslands. Results of previous experiments in glasshouse conditions and on mown plots have suggested that white clover may be more susceptible than perennial ryegrass to treading damage on wet soils. However, this phenomenon has not been investigated under actual grazing conditions. This experiment examined the effects of treading on clover content, herbage production and soil properties within three clover‐based grazing systems on a wet soil in Ireland for 1 year. Treading resulted in soil compaction, as evidenced by increased soil bulk density (< 0·001) and reductions in the proportion of large (air‐filled) soil pores (< 0·001). Treading reduced annual herbage production of both grass and white clover by similar amounts 0·59 and 0·45 t ha?1 respectively (< 0·001). Treading reduced the sward clover content in June (< 0·01) but had no effect on annual clover content, clover stolon mass or clover content at the end of the experiment. Therefore, there was little evidence that white clover is more susceptible to treading damage than perennial ryegrass under grazing conditions on wet soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号