共查询到18条相似文献,搜索用时 93 毫秒
1.
【目的】筛选相关性好的植被指数构建马铃薯叶片叶绿素a、叶绿素b估测模型,为科学、无损地进行马铃薯叶片叶绿素含量估算提供技术支撑。【方法】采用便携式高光谱地物波谱仪,获取不同施氮水平下不同生育时期的马铃薯植株叶片光谱反射率,提取植被指数,测定马铃薯叶片叶绿素a、叶绿素b含量,并研究叶绿素含量与植被指数的相关性。【结果】12个植被指数与叶绿素a、叶绿素b含量相关性较好,其中修正归一化差异指数(mND_(705))、修正简单比值指数(mSR_(705))、地面叶绿素指数(MTCI)、修改叶绿素吸收反射指数(MCARI)与叶绿素a、叶绿素b含量相关性最好。基于这4个植被指数建立的估测模型中,MTCI构建的乘幂模型估测叶绿素a含量的效果最佳,mND_(705)构建的指数模型估测叶绿素b含量的效果最佳。【结论】MTCI构建的乘幂模型能较为精确地估测叶绿素a含量,mND_(705)构建的指数模型能较为精确地估测叶绿素b含量;这2种模型可用于间接监测马铃薯植株的氮营养亏缺状态。 相似文献
2.
叶绿素作为绿色植物光合作用的必要组成成分,其含量的高低可反映作物的长势状况。实时监测植物叶片叶绿素含量的动态变化是监测植物长势的重要环节。以山西省闻喜县冬小麦为研究对象,基于高光谱技术和实测数据,对研究区冬小麦拔节期的叶绿素含量进行定量估算,并在此基础上利用卫星遥感数据对冬小麦的叶绿素含量进行反演,以达到仅应用卫星遥感数据估测叶绿素含量的目的。结果表明,水旱地冬小麦叶绿素含量敏感波段在可见光区域不同,在近红外区域一致;水旱地分别以DVI和NDVI为变量所构建的预测模型效果最佳,R2值均达到0.9以上,均方根误差分别为0.470 0和0.458 7;对叶绿素含量反演值与实测值对比分析,水地反演值与实测值大致吻合,而旱地反演值则偏高;采用均方根误差(RMSE)法,检验反演值和实际值的符合度,水地RMSE为0.926,旱地RMSE为1.540。 相似文献
3.
以陕西省扶风县马席村、巨良农场和杨凌区揉谷乡种植的大田玉米为试验材料,分别测定玉米抽雄期、灌浆期和乳熟期的冠层光谱反射率和叶片叶绿素含量,分析冠层各光谱植被指数与叶片叶绿素含量之间的相关关系,建立玉米叶绿素含量估测模型。结果表明,以单变量光谱植被指数估算叶绿素含量,抽雄期的最佳模型由修正叶绿素吸收反射率指数(Modified chlorophyll absorption reflectivity index,MCARI)建立,灌浆期最佳模型由垂直植被指数(Perpendicular vegetation index,PVI)建立,乳熟期最佳模型由植被衰老反射率指数(Plant senescence reflectance index,PSRI)建立。随着玉米生长期的推进,叶片衰老,用PSRI所建立的模型来监测玉米叶绿素含量的效果较好,可为高光谱遥感在玉米长势监测提供理论依据和技术支持。 相似文献
4.
不同光谱植被指数反演冬小麦叶氮含量的敏感性研究 总被引:6,自引:0,他引:6
【目的】氮素是作物生长发育过程中最重要的营养元素之一,研究叶氮含量反演的有效光谱指标设置,为应用高光谱植被指数反演作物叶氮含量,以及作物的实时监测与精确诊断提供重要依据。【方法】以冬小麦为例,选取涵盖冬小麦全生育期不同覆盖程度225组冠层光谱与叶氮含量数据,通过遥感方法建立模型,模拟了不同光谱指标,即中心波长、信噪比和波段宽度对定量模型的影响,通过模型精度评价指标决定系数(coefficient of determination,R~2)、根均方差(root mean square error,RMSE)、平均绝对误差(mean absolute error,MAE)、平均相对误差(mean relative error,MRE)和显著性检验水平(P0.01)确定最优模型及最佳指标,分析光谱指标对叶氮含量定量模型反演的敏感性和有效性。【结果】反演冬小麦叶氮含量的最佳植被指数为MTCI_B,与实测叶氮含量的相关性最好(R~2=0.7674,RMSE=0.5511%,MAE=0.4625%,MRE=11.11个百分点,且P0.01),对应的最佳指标为中心波长420 nm、508 nm和405 nm,波段宽度1 nm,信噪比大于70 DB;高覆盖状况反演的最优指数为RVIinf_r(R~2=0.6739,RMSE=0.2964%,MAE=0.2851%,MRE=6.44个百分点,且P0.01),最优中心波长为826 nm和760 nm;低覆盖状况反演的最优指数为MTCI(R~2=0.8252,RMSE=0.4032%,MAE=0.4408%,MRE=12.22个百分点,且P0.01),最优中心波长为750 nm、693 nm和680 nm;应用最适于高低覆盖的植被指数RVIinf_r和MTCI构建的联合反演模型(R~2=0.9286,RMSE=0.3416%,MAE=0.2988%,MRE=7.16个百分点,且P0.01),明显优于最佳单一指数MTCI_B;模拟Hyperion和HJ1A-HSI传感器数据,联合反演模型精度(R~2为0.92—0.93,RMSE在0.37%—0.39%,MAE为0.285%左右,MRE约为7.00个百分点)明显优于单一植被指数反演精度(R~2为0.79—0.81,RMSE为0.63%—0.66%,MAE为0.455%左右,MRE约为10.90个百分点)。【结论】利用高光谱植被指数可有效实现作物叶氮含量反演,作物叶氮含量定量反演对不同光谱指标—中心波长、信噪比和波段宽度,具有较强敏感性。应用多指数联合反演模型,可显著提高反演精度,并且联合反演模型在不同高光谱传感器下有一定普适性。 相似文献
5.
基于新型植被指数的冬小麦LAI高光谱反演 总被引:7,自引:1,他引:7
【目的】本研究旨在分析冠层叶片水分含量对作物冠层光谱的影响,构建新型光谱指数来提高作物叶面积指数高光谱反演的精度。【方法】在冬小麦水肥交叉试验的支持下,分析不同筋性品种、施氮量、灌溉量处理下的冬小麦叶面积指数冠层光谱响应特征,并分析标准化差分红边指数(NDRE)、水分敏感指数(WI)与叶面积指数的相关性,据此构建一个新型的植被指数——红边抗水植被指数(red-edge resistance water vegetable index,RRWVI)。选取常用的植被指数作为参照,分析RRWVI对于冬小麦多个关键生育期叶面积指数的诊断能力,随机选取约2/3的实测样本建立基于各种植被指数的叶面积指数高光谱响应模型,未参与建模的样本用于评价模型精度。【结果】研究结果表明,随着生育期的推进,冬小麦的叶面积指数呈先增加后降低的变化趋势,不同的水肥处理对冬小麦叶面积指数具有较大影响。开花期之后冬小麦LAI显著下降,强筋小麦(藁优2018)在整个生育期叶面积指数均高于中筋小麦(济麦22);不同氮水平下冬小麦冠层光谱反射率在近红外波段(720—1 350 nm)随着施氮量的增加而增大,与氮肥梯度完全一致,其中2倍氮肥处理的近红外反射率达到最高;不同生育期下冬小麦冠层光谱反射率变化波形大体一致;各个关键生育期的NDRE和WI均存在较高的相关性,而NDRE与LAI的相关性明显优于WI,新构建的植被指数RRWVI与LAI的相关性均优于NDRE、WI;虽然8个常用的植被指数均与LAI存在显著相关,但RRWVI与LAI相关性达到最大,其拟合曲线的决定系数R2为0.86。【结论】通过分析各种指数所构建的冬小麦叶面积指数高光谱反演模型,新构建的RRWVI取得了比NDRE、NDVI等常用植被指数更为可靠的反演效果,说明本研究新构建的红边抗水植被指数可有效提高冬小麦叶面积指数的精度。 相似文献
6.
利用Field-Spec Pro测定107杨叶片光谱特征参数,研究不同叶绿素含量的107杨叶片的光谱特性、叶绿素含量与11种植被指数之间的关系以及107杨叶片叶绿素含量的光谱反演模式。结果表明:1)光谱反射率呈现典型的植物光谱特征,蓝紫谷位于350~500nm之间,其中多集中在350nm处;绿峰位于500~600nm之间,其中大部分集中在552nm处;红谷位于600~700nm之间,多集中在672nm处。700nm后进入近红外高反射平台,以762nm居多;2)107杨叶片叶绿素含量与11种植被指数之间均具有很强的相关性,其中mND705植被指数与叶片叶绿素含量相关性最强,R2为0.69;3)基于植被指数建立叶绿素反演模型,结果显示mND705植被指数的高光谱反演模型y=0.09x1.621 7反演精度较高,拟合R2和预测R2均达到最大,分别为0.812 4、0.703 5;均方根误差最小,为0.007 0,说明可以利用测量107杨叶片光谱的方法来监测叶片叶绿素含量。 相似文献
7.
基于高光谱数据的滴灌甜菜叶绿素含量估算 总被引:1,自引:0,他引:1
为明确甜菜叶绿素含量与高光谱植被遥感的定量关系,探索建立干旱区甜菜叶绿素含量估测模型,即时监测甜菜生长状况,选取新疆滴灌甜菜(Beta356)为研究对象,利用ASD野外高光谱仪在甜菜叶丛快速生长期、块根膨大期与糖分积累期采集各处理反射光谱,并同时测定叶绿素含量,分析原始光谱反射率和一阶微分光谱反射率与叶绿素含量的相关关系,并进一步建立光谱特征参数和敏感波段植被指数叶绿素含量估算模型。结果表明:原始光谱反射率在近红外区(700~1 300 nm)随着氮素水平的增加呈先升高后降低趋势,红边(680~760 nm)也表现出相同趋势,原始光谱反射率在近红外区(700~1 300 nm)随着运筹管理的递进呈现升高趋势,红边(680~760 nm)也表现出相同趋势;原始光谱反射率和一阶微分反射率与叶绿素含量均具有较好的相关性,其最大正相关分别位于902 nm(r=0.574,P<0.01)和676 nm(r=0.843,P<0.01)附近,最大负相关分别位于611 nm(r=-0.664,P<0.01)和1 138 nm(r=-0.727,P<0.01)附近。对所建12个线性模型进行精度检验,其中差值植被指数DR676–DR446和DR676估算模型的预测值与实测值的决定系数分别达到0.774和0.781,以DR676所建立的估算模型最优。本研究为快速无损监测甜菜生长状况、制定氮素管理方案、指导甜菜氮肥管理提供支持。 相似文献
8.
叶绿素是绿色植被进行光合作用的主要色素,是影响作物产量的重要因素之一,也是评价作物健康状况的重要生化指标。快速、准确、无损地监测作物叶片叶绿素含量,是实现作物长势和健康程度精准监测的关键。为提高作物叶绿素含量反演的精度,以冬小麦试验小区为基础,测量关中地区冬小麦叶片反射率及其对应的叶绿素含量。运用分数阶微分法计算0~2阶步长为0.1的分数阶光谱,通过灰色关联分析法提取出与叶绿素含量关联度大的特征,作为模型的输入参数。最终提取出0.6阶751、760 nm, 0.7阶744、751 nm, 0.8阶738、747 nm, 0.9阶738、750 nm, 1.0阶731、750 nm共10个与叶绿素含量关联度高的波段作为模型的特征波段。为解决BP神经网络(back propagation network)收敛速度慢、易陷入局部极小值的问题,使用遗传算法(genetic algorithm, GA)优化BP神经网络的权值和阈值,利用优化后的模型进行叶绿素含量的预测。结果表明,运用遗传算法优化BP神经网络模型反演精度较高,r2为0.952,均方根误差(RMSE)为3.64... 相似文献
9.
基于高光谱植被指数的冬小麦产量监测 总被引:1,自引:2,他引:1
为了研究利用不同生育时期的植被指数监测冬小麦产量,以2 a不同肥料处理的冬小麦为研究对象,分析不同生育时期植被指数与冬小麦产量的关系,构建冬小麦产量的光谱植被指数监测模型。结果表明,植被指数能有效监测冬小麦产量,其中,孕穗期和抽穗期植被指数的监测效果较好,孕穗期的校正均方根误差(RMSEC)和决定系数(R_C~2)分别为1 131.42和0.78,抽穗期的RMSEC和R_C~2分别为1 015.59和0.77,拔节期的监测效果次之,灌浆期和成熟期的监测效果较差;但从作物生产角度考虑,拔节期监测冬小麦产量具有更重要的现实意义。研究表明,利用拔节期植被指数能够实现冬小麦产量的早期估测。 相似文献
10.
为进一步提高光谱数据反演小麦籽粒蛋白质含量的精度以及反演模型的可解释性,研究以籽粒蛋白质含量(GPC)-氮素-叶绿素之间的关系为载体,通过叶绿素筛选相关植被指数,采用偏最小二乘回归(PLS)方法建立GPC反演模型。结果表明,开花期是监测籽粒蛋白质含量的最优时期。开花期氮素与对应密度叶绿素的相关性较高。通过筛选出与叶绿素密切相关的植被指数,利用PLS建立籽粒蛋白质含量反演模型,模型决定系数R2为0.77,RMSE为0.95%,用其他年份数据进行模型验证,结果显示RMSE达到1.22%。本研究表明:基于氮素、叶绿素关系建立PLS反演模型能够实现不同年份GPC光谱遥感反演,且模型在年际间表现出较高的精度和稳定性。 相似文献
11.
Inversion of Biochemical Parameters by Selection of Proper Vegetation Index in Winter Wheat 总被引:1,自引:0,他引:1
HUANG Wen-jiang WANG Ji-hua LIU Liang-yun ZHAO Chun-jiang WANG Zhi-jie WANG Jin-di 《中国农业科学(英文版)》2004,3(3)
Recent studies have demonstrated the application of vegetation indices from canopy reflected spectrum for inversion of chlorophyll concentration.Some indices are both response to variations of vegetation and environmental factors.Canopy chlorophyll concentration,an indicator of photosynthesis activity,is related to nitrogen concentration in green vegetation and serves as an indicator of the crop response to soil nitrogen fertilizer application.The combination of normalized difference vegetation index (NDVI) and photochemical reflectance index (PRI) can reduce the effect of leaf area index (LAI) and soil background.The canopy chlorophyll inversion index (CCII) was proved to be sensitive to chlorophyll concentration and very resistant to the other variations.This paper introduced the ratio of TCARI/OSAVI to make accurate predictions of winter wheat chlorophyll concentration under different cultivars.It indicated that canopy chlorophyll concentration could be evaluated by some combined vegetation indices. 相似文献
12.
13.
基于高光谱参数的竹叶叶绿素质量分数估算模型 总被引:1,自引:0,他引:1
为研究竹叶叶绿素质量分数和高光谱参数的相关性,建立叶绿素质量分数估算模型。利用Field Spec4便携式地物光谱仪采集无病虫害的箭竹竹叶光谱,使用SPAD-502叶绿素仪测定相应竹叶的叶绿素质量分数,分析竹叶叶绿素质量分数与原始光谱、一阶导数光谱以及提取的光谱特征参数之间的相关性,采用线性和非线性分析法构建叶绿素质量分数估算模型并进行精度检验。结果表明:(1)竹叶叶绿素质量分数在原始光谱反射率762 nm处相关系数达到最大值,相关系数为0.544 3;在一阶导数光谱反射率689 nm和726 nm处分别达到了极显著相关水平,相关系数分别为-0.747 9和0.907 9。(2)基于λ_b、λ_r、S_(Dr)/S_(Db)和(S_(Dr)-S_(Db))/(S_(Dr)+S_(Db))等光谱参数都与叶绿素质量分数达到了极显著相关水平。(3)采用相关性达到极显著水平的4种光谱参数以及689、726 nm处的一阶导数光谱反射率,构建叶绿素质量分数估算模型。依据决定系数(R2)最高,筛选出的回归估算模型中,基于一阶导数光谱反射率在726 nm处的线性模型R~2最高,为0.882 8,均方根误差(R_(MSE))和相对误差(RE)最小,分别为1.7050%和4.18%。因此,一阶导数光谱反射率在726 nm处的线性模型为竹叶叶绿素质量分数的最佳估算模型。 相似文献
14.
基于分段方式选择敏感植被指数的冬小麦叶面积指数遥感反演 总被引:8,自引:0,他引:8
【目的】考虑到利用单一植被指数(VI)反演叶面积指数(LAI)时,存在着不同程度的饱和性和易受土壤背景影响的问题,提出通过分段的方式选择敏感植被指数形成最佳VI组合以提高LAI反演的精度。【方法】通过ACRM辐射传输模型模拟数据,结合地面实测光谱数据,选择常用的植被指数进行土壤敏感性分析以及饱和性分析确定LAI的分段点,并在此基础上分段选择最佳植被指数形成组合VI来实现LAI的最终反演,并利Landsat5 TM开展区域条件下冬小麦LAI反演应用。【结果】以LAI=3是较为适宜的分段点,利用植被指数最佳分段组合OSAVI(LAI≤3)+TGDVI(LAI>3)可在一定程度上有效克服土壤影响因素以及饱和性问题,联合反演的结果明确优于单一植被指数反演精度。【结论】通过分段选择最佳植被指数形成联合VI可以有效提高LAI反演精度。 相似文献
15.
苯磺隆对枣树营养生长及叶绿素含量的影响 总被引:5,自引:0,他引:5
针对枣麦间作地杂草防除 ,选用苯磺隆不同浓度进行试验 ,对枣树新梢生长量、叶面积、叶绿素含量及开花情况作了测定 ,结果表明 ,Ⅱ号处理对枣树的新梢生长量、叶面积和叶绿素含量影响很小 ;Ⅰ号处理比对照枣树新梢生长量降低 4 4 71%、叶面积减小 2 8 85 % ,叶绿素含量降低 31 5 % ;Ⅲ号处理对枣树新梢生长量 ,叶面积和叶绿素含量均受到严重影响 ,分别降低 71 37%、 96 15 %、 34 2 %。经方差分析表明 ,三种浓度对枣树开花的影响 ,Ⅱ号达显著水平 ,Ⅰ、Ⅲ号达极显著水平 相似文献
16.
为寻找一种准确、非破坏性的叶绿素含量获取方法,实时掌握作物的生理状况,研究一种基于PCAWNN的玉米叶片叶绿素含量遥感反演模型。利用SVC HR-1024I光谱仪采集盆栽玉米叶片光谱,同时用SPAD-502便携式叶绿素计测定叶绿素含量。从包络线去除、微分处理后的光谱曲线中提取7个光谱特征参数(SCPs)并与修改型土壤调节植被指数(MSAVI)、归一化差值植被指数(NDVI)、修正植被指数(MVI)、比值植被指数(RVI)、差值植被指数(DVI)5种植被指数分别结合主成分分析(PCA),并提取前4个主分量作为小波神经网络(WNN)的输入因子,以Morlet母小波基函数作为激励函数,建立隐含层节点数为3的PCAWNN模型反演玉米叶片叶绿素含量。通过精度检验,表明7个SCPs与MSAVI组合的建模精度最高,验证小波神经网络反演玉米叶绿素含量的可行性以及其预测精度比BP神经网络更好。 相似文献
17.
为探究冠层图像分析技术在冬小麦长势监测中应用,6个施氮水平的田间试验条件下,在冬小麦拔节期采集冠层图像,并同步测定冬小麦叶面积指数和叶片SPAD值.通过图像分析软件计算了冬小麦冠层覆盖度及红、绿、蓝亮度值等10种色彩指数,分析了叶面积指数及叶片SPAD值与色彩指数和冠层覆盖度的相关性,利用逐步回归方法构建了叶面积指数及叶片SPAD值的估算模型.结果表明:冬小麦拔节期叶面积指数与冠层覆盖度及几个色彩指数呈极显著相关;叶片SPAD值与红光标准化值等几个色彩指数呈极显著相关;利用叶面积指数估算模型计算的预测值与实测值的线性回归方程的决定系数为0.771,相对均方根误差为25.181%;利用叶片SPAD值估算模型计算的预测值与实测值的线性回归方程的决定系数为0.644,相对均方根误差为6.734%.相关分析和估算模型验证结果表明,基于冠层图像分析的冬小麦拔节期叶面积指数和叶片SPAD值的监测是可行的. 相似文献
18.
利用MODIS数据提取了7种不同植被指数(LST/VI)作为遥感参数,将其与地面实测含水量进行相关性分析,探索不同植被指数与土壤、植株含水量的关系,旨在为山西省冬小麦农田含水量监测提供科学依据。结果表明:与植被供水指数相比,LST/DVI和LST/RDVI在拔节期进行冬小麦干旱监测较好;而在抽穗期LST/PVI、LST/SAVI可代替LST/NDVI来监测冬小麦干旱;成熟期利用LST/PVI进行干旱监测,其效果明显好于LST/NDVI。 相似文献