共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To evaluate mRNA expression of several proinflammatory and anti-inflammatory cytokines and chemokines in equine unstimulated and interleukin-1beta (IL-1beta)-stimulated chondrocytes. STUDY DESIGN: In vitro experiment using equine chondrocyte cultures. SAMPLE POPULATION: Whole articular cartilage from metacarpophalangeal joints (n=5 horses; 10 fetlocks). METHODS: Chondrocyte monolayer cultures were established from digested adult equine articular cartilage and stimulated with 5 ng/mL of recombinant human IL-1beta. RNA was extracted from the cells 24 hours after stimulation. IL-1beta, IL-4, IL-6, IL-8, tumor necrosis factor-alpha (TNF-alpha), and ubiquitin (house keeping gene) mRNA expression were investigated by real-time RT-PCR. RESULTS: IL-1beta, IL-6, and IL-8 mRNA were expressed in unstimulated chondrocytes from macroscopically normal joints and were significantly up-regulated after stimulation (5/5 horses). IL-4 mRNA was not detected in any samples (0/5 horses). TNF-alpha mRNA, by comparison, was expressed in 2/5 unstimulated samples and in all stimulated samples but a considerable sample variation in response to IL-1beta stimulation was observed. CONCLUSIONS: Equine chondrocytes express mRNA for several proinflammatory cytokines and chemokines and IL-1beta modulates their expression. CLINICAL RELEVANCE: Chondrocytes express proinflammatory cytokines and chemokines capable of modulating a local inflammatory cascade in articular cartilage, which could potentially lead to focal degradation and osteoarthritis. 相似文献
2.
Phillips T Ferraz I Bell S Clegg PD Carter SD Mobasheri A 《Veterinary journal (London, England : 1997)》2005,169(2):216-222
Glucose serves as the major energy substrate for articular chondrocytes and as the main precursor for the synthesis of extracellular matrix glycosaminoglycans in cartilage. Chondrocytes have been shown to express several glucose transporter (GLUT) isoforms including GLUT1 and GLUT3. The aim of this investigation was to determine the effects of endocrine and cytokine factors on the capacity of equine articular chondrocytes for transporting 2-deoxy-d-[2,6-3H] glucose and on the expression levels of GLUT1 and GLUT3. Chondrocytes maintained in monolayer culture were stimulated for 24 h with TNF-alpha (100 ng mL(-1)), IL-1beta (100 ng mL(-1)), IGF-I (20 ng mL(-1)), TGF-beta (20 ng mL(-1)) and insulin (12.5 microg mL(-1)) before measuring uptake of non-metabolizable 2-deoxyglucose in the presence and absence of the glucose transport inhibitor cytochalasin B. Polyclonal antibodies to GLUT1 and GLUT were used to compare GLUT1 and GLUT3 expression in stimulated and un-stimulated alginate encapsulated chondrocytes by Western blotting. Results indicated that 2-deoxyglucose uptake was inhibited by up to 95% in the presence of cytochalasin B suggesting that glucose uptake into equine chondrocytes is GLUT-mediated. Insulin had no effect on glucose uptake, but treatment with IGF-I, TGF-beta, IL-1beta and TNF-alpha resulted in a significant increase (>65%) in 2-deoxyglucose uptake compared to control values. GLUT1 was found to be increased in chondrocytes stimulated with all the growth factors and cytokines but GLUT 3 was only upregulated by IGF-I. The data presented support a critical role for glucose in the responses of equine articular chondrocytes to pro-inflammatory cytokines and anabolic endocrine factors. 相似文献
3.
Schneider N Lejeune JP Deby C Deby-Dupont GP Serteyn D 《Veterinary journal (London, England : 1997)》2004,168(2):167-173
Ischaemia and reperfusion are suspected to alter chondrocyte metabolism. Here, we studied the effects of three oxygen (O2) tensions on the viability of equine articular chondrocytes isolated from the cartilage of the distal interphalangeal joint of horses. Chondrocytes were cultured in alginate beads under 1%, 5% or 21% gas phase O2 concentration for 14 days, cellular growth kinetics were measured (n=6), and the cells were observed by light microscopy after staining for necrotic and apoptotic cell detection. For information about the metabolic status, the intracellular adenosine triphosphate (ATP) content was measured. The number of chondrocytes remained stable for the first eight days, then decreased especially at 1% and 21% O2. At 21% O2, normal cells decreased and necrotic cells increased at the end of the 14 day-period. No significant variations were found at 5% O2 except for a decrease in necrotic cells at day 14. Most apoptotic cells were found at 1% O2 from days 5 to 11, and normal cells decreased during the same period. But an unexpected increase in normal cells and decrease in apoptotic cells were observed at day 14. The intracellular ATP content remained stable. It was concluded that, in a three-dimensional culture model of equine articular chondrocytes, O2 tension affected the viability of the cells after an 11-day period, with the most important effects observed at 21% and 1% O2 conditions. 相似文献
4.
Effects of interleukin-1beta and tumor necrosis factor-alpha on expression of matrix-related genes by cultured equine articular chondrocytes 总被引:1,自引:0,他引:1
OBJECTIVE: To determine the effects of interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) on expression and regulation of several matrix-related genes by equine articular chondrocytes. SAMPLE POPULATION: Articular cartilage harvested from grossly normal joints of 8 foals, 6 yearling horses, and 8 adult horses. PROCEDURE: Chondrocytes maintained in suspension cultures were treated with various doses of human recombinant IL-1beta or TNF-alpha. Northern blots of total RNA from untreated and treated chondrocytes were probed with equine complementary DNA (cDNA) probes for cartilage matrix-related genes. Incorporation of 35S-sulfate, fluorography of 14C-proline labeled medium, zymography, and western blotting were used to confirm effects on protein synthesis. RESULTS: IL-1beta and TNF-alpha increased steady-state amounts of mRNA of matrix metalloproteinases 1, 3, and 13 by up to 100-fold. Amount of mRNA of tissue inhibitor of metalloproteinase-1 also increased but to a lesser extent (1.5- to 2-fold). Amounts of mRNA of type-II collagen and link protein were consistently decreased in a dose-dependent manner. Amount of aggrecan mRNA was decreased slightly; amounts of biglycan and decorin mRNA were minimally affected. CONCLUSIONS AND CLINICAL RELEVANCE: Treatment of cultured equine chondrocytes with IL-1beta or TNF-alpha resulted in marked alterations in expression of various matrix and matrix-related genes consistent with the implicated involvement of these genes in arthritis. Expression of matrix metalloproteinases was increased far more than expression of their putative endogenous inhibitor. Results support the suggestion that IL-1beta and TNF-alpha play a role in the degradation of articular cartilage in arthritis. 相似文献
5.
OBJECTIVE: To assess the effects of supraphysiologic concentrations of insulin-like growth factor-1 (IGF-1) on morphologic and phenotypic responses of chondrocytes. SAMPLE POPULATION: Articular cartilage obtained from 2 young horses. PROCEDURE: Chondrocytes were suspended in fibrin cultures and supplemented with 25, 12.5, or 0 mg of IGF-1/ml of fibrin. Chondrocyte morphology and phenotypic expression were assessed histologically, using H&E and Alcian blue stains, immunoreaction to collagen type I and II, and in situ hybridization. Proteoglycan content, synthesis, and monomer size were analyzed. The DNA content was determined by bisbenzimide-fluorometric assay, and elution of IGF-1 into medium was determined by IGF-1 radioimmunoassay. RESULTS: Both 12.5 and 25 kg of IGF-1/ml enhanced phenotypic expression of chondrocytes without inducing detrimental cellular or metabolic effects. Highest concentration of IGF-1 (25 microg/ml) significantly increased total DNA content, glycosaminoglycan (GAG) content, GAG synthesis, and size of proteoglycan monomers produced, compared with cultures supplemented with 12.5 microg of IGF-1/ml or untreated cultures. Histologic examination confirmed these biochemical effects. Matrix metachromasia, type-II collagen in situ hybridization and immunoreaction were increased in cultures treated with 25 microg of IGF-1/ml, compared with cultures supplemented with 12.5 microg of IGF-1/ml or untreated cultures. CONCLUSIONS AND CLINICAL RELEVANCE: Chondrocytes exposed to high concentrations of IGF-1 maintained differentiated chondrocyte morphology and had enhanced synthesis of matrix molecules without inducing apparent detrimental effects on chondrocyte metabolism. These results suggest that application of such composites for in vivo use during cartilage grafting procedures should provide an anabolic effect on the grafted cells. 相似文献
6.
Byron CR Benson BM Stewart AA Stewart MC 《American journal of veterinary research》2005,66(10):1757-1763
OBJECTIVE: To investigate in vitro effects of radial shock waves on membrane permeability, viability, and structure of chondrocytes and articular cartilage. SAMPLE POPULATION: Cartilage explants obtained from the third metacarpal and metatarsal bones of 6 horses. PROCEDURE: Equine cartilage was subjected to radial shock waves and then maintained as explants in culture for 48 hours. Treatment groups consisted of a negative control group; application of 500, 2,000, and 4,000 impulses by use of a convex handpiece (group A); and application of 500, 2,000, and 4,000 impulses by use of a concave handpiece (group B). Effects on explant structure were evaluated by use of environmental scanning electron microscopy (ESEM). Membrane permeability was determined by release of lactate dehydrogenase (LDH). Chondrocyte viability was assessed by use of vital cell staining. Comparisons of LDH activity and nonviable cell percentages were performed by ANOVA. RESULTS: Cell membrane permeability increased significantly after application of 2,000 and 4,000 impulses in groups A and B. A significant decrease in cell viability was observed for application of 4,000 impulses in explants of group A. There was no detectable damage to integrity of cartilage explants observed in any treatment group by use of ESEM. CONCLUSIONS AND CLINICAL RELEVANCE: Radial shock waves do not appear to structurally damage articular cartilage but do impact chondrocyte viability and membrane permeability. Caution should be exercised when extremely high periarticular pulse doses are used until additional studies can determine the long-term outcome of these effects and appropriate periarticular treatment regimens can be validated. 相似文献
7.
Ahmed YA Tatarczuch L Pagel CN Davies HM Mirams M Mackie EJ 《Equine veterinary journal》2007,39(6):546-552
REASON FOR PERFORMING STUDY: Equine osteochondrosis results from a failure of endochondral ossification during skeletal growth. Endochondral ossification involves chondrocyte proliferation, hypertrophy and death. Until recently no culture system was available to study these processes in equine chondrocytes. OBJECTIVE: To optimise an in vitro model in which equine chondrocytes can be induced to undergo hypertrophy and physiological death as seen in vivo. METHODS: Chondrocytes isolated from fetal or older (neonatal, growing and mature) horses were cultured as pellets in 10% fetal calf serum (FCS) or 10% horse serum (HS). The pellets were examined by light and electron microscopy. Total RNA was extracted from the pellets, and quantitative PCR carried out to investigate changes in expression of a number of genes regulating endochondral ossification. RESULTS: Chondrocytes from fetal foals, grown as pellets, underwent hypertrophy and died by a process morphologically similar to that seen in vivo. Chondrocytes from horses age >5 months did not undergo hypertrophy in pellet culture. They formed intramembranous inclusion bodies and the cultures included cells of osteoblastic appearance. Pellets from neonatal foals cultured in FCS resembled pellets from older horses, however pellets grown in HS underwent hypertrophy but contained inclusion bodies. Chondrocytes from fetal foals formed a typical cartilage-like tissue grossly and histologically, and expressed the cartilage markers collagen type II and aggrecan mRNA. Expression of Sox9, collagen type II, Runx2, matrix metalloproteinase-13 and connective tissue growth factor mRNA increased at different times in culture. Expression of fibroblast growth factor receptor-3 and vascular endothelial growth factor mRNA decreased with time in culture. CONCLUSIONS: Freshly isolated cells from fetal growth cartilage cultured as pellets provide optimal conditions for studying hypertrophy and death of equine chondrocytes. POTENTIAL RELEVANCE: This culture system should greatly assist laboratory studies aimed at elucidating the pathogenesis of osteochondrosis. 相似文献
8.
Tesch AM MacDonald MH Kollias-Baker C Benton HP 《American journal of veterinary research》2002,63(11):1512-1519
OBJECTIVE: To investigate accumulation of extracellular adenosine (ADO) by equine articular chondrocytes and to compare effects of adenosine kinase inhibition and adenosine deaminase inhibition on the amount of nitric oxide (NO) produced by lipopolysaccharide (LPS)-stimulated chondrocytes. SAMPLE POPULATION: Articular cartilage from metacarpophalangeal and metatarsophalangeal joints of 14 horses. PROCEDURE: Chondrocytes were cultured as monolayers, and cells were incubated with LPS, the adenosine kinase inhibitor 5'-iodotubercidin (ITU), or the adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl)adenine hydrochloride (EHNA). Concentrations of ADO in cell supernatants were measured by use of reverse-phase high-performance liquid chromatography. Effect of inhibition of enzymatic metabolism of ADO on induced NO production was evaluated by exposing cells to a combination of LPS and ITU or LPS and EHNA. RESULTS: Articular chondrocytes accumulated extracellular ADO when exposed to LPS or ITU. Chondrocytes exposed to ITU accumulated ADO in a time-dependent manner. Unstimulated chondrocytes did not accumulate ADO. Similarly, EHNA alone did not produce detectable ADO concentrations; however, addition of EHNA and ITU resulted in a synergistic effect on accumulation of ADO. Lipopolysaccharide-induced NO production was more effectively suppressed by exposure to ITU than to EHNA CONCLUSIONS AND CLINICAL RELEVANCE: Equine articular chondrocytes release ADO in response to the proinflammatory stimulus of bacterial LPS. Inhibition of the metabolism of ADO increases accumulation of extracellular ADO. Autocrine release of ADO from chondrocytes may play a role in the cellular response to tissue damage in arthritic conditions, and pharmacologic modulation of these pathways in joints of arthritic horses could be a potential method of therapy. 相似文献
9.
OBJECTIVES: To evaluate the effects of equine recombinant interleukin-1alpha (rEqIL-1alpha) and recombinant interleukin-1beta (rEqIL-1beta) on proteoglycan metabolism and prostaglandin E2 (PGE2) synthesis by equine articular chondrocytes in explant culture. SAMPLE POPULATION: Near full-thickness articular cartilage explants (approx 50 mg) harvested from stifle joints of a 3-year-old and a 5-year-old horse. PROCEDURE: Expression constructs containing cDNA sequences encoding EqIL-1alpha and EqIL-1beta were generated, prokaryotically expressed, and the recombinant protein purified. Near full-thickness articular cartilage explants (approx 50 mg) harvested from stifle joints of a 3-year-old and a 5-year-old horse were separately randomized to receive rEqIL-1alpha or rEqIL-1beta treatments 10 to 500 ng/ml). Proteoglycan release was evaluated by 1,9-dimethylmethylene blue spectrophotometric analysis of explant media glycosaminoglycan (GAG) concentration and release of 35S-sulfate-labeled GAG to explant media. Proteoglycan synthesis was assessed by quantification of 35S-sulfate incorporation into proteoglycan. Explant media PGE2 concentrations were evaluated using a PGE2-specific enzyme-linked immunoassay. Data were collected at 48-hour intervals and normalized by DNA content. RESULTS: Proteoglycan release was induced by rEqIL-1alpha and rEqIL-1beta at concentrations > or =0.1 ng/ml, with 38 to 76% and 88 to 98% of total GAG released by 4 and 6 days, respectively. Inhibition of proteoglycan synthesis (42 to 64%) was observed at IL-1 concentrations > or = 0.1 ng/ml at 2 and 4 days. Increased PGE2 concentrations were observed at IL-1 concentrations > or = 0.1 ng/ml at 2 and 4 days. CONCLUSIONS AND CLINICAL RELEVANCE: The rEqIL-1 induced potent concentration-dependent derangement of equine chondrocyte metabolism in vitro. These findings suggest this model may be suitable for the in vitro study of the pathogenesis and treatment of joint disease in horses. 相似文献
10.
K DYNON A VARRASSO N FICORILLI SA HOLLOWAY GH REUBEL F LI CA HARTLEY MJ STUDDERT HE DRUMMER 《Australian veterinary journal》2001,79(10):695-702
OBJECTIVE: To develop rapid (< 8 hour) tests using polymerase chain reaction (PCR) for the diagnosis of equine herpesvirus 3 (EHV3; equine coital exanthema virus), equine gammaherpesviruses 2 (EHV2) and EHV5, equine adenovirus 1 (EAdV1), EAdV2, equine arteritis virus (EAV), equine rhinitis A virus (ERAV; formerly equine rhinovirus 1) DESIGN: Either single round or second round (seminested) PCRs were developed and validated. METHODS: Oligonucleotide primers were designed that were specific for each virus, PCR conditions were defined and the specificity and sensitivity of the assays were determined. The application of the tests was validated using a number of independent virus isolates for most of the viruses studied. The PCRs were applied directly to clinical samples where samples were available. RESULTS: We developed a single round PCR for the diagnosis of EHV3, a seminested PCR for EHV2 and single round PCRs for EHV5, EAdV1, EAdV2 and RT-PCRs for EAV and ERAV. The PCR primer sets for each virus were designed and shown to be highly specific (did not amplify any recognised non-target template) and sensitive (detection of minimal amounts of virus) and, where multiple virus isolates were available all isolates were detected. CONCLUSION: The development and validation of a comprehensive panel of PCR diagnostic tests, predominantly for viruses causing equine respiratory disease, that can be completed within 8 hours from receipt of clinical samples, provides a major advance in the rapid diagnosis or exclusion diagnosis of these endemic equine virus diseases in Australia. 相似文献
11.
Holmes MA Townsend HG Kohler AK Hussey S Breathnach C Barnett C Holland R Lunn DP 《Veterinary immunology and immunopathology》2006,111(1-2):67-80
Horses are commonly vaccinated to protect against pathogens which are responsible for diseases which are endemic within the general horse population, such as equine influenza virus (EIV) and equine herpesvirus-1 (EHV-1), and against a variety of diseases which are less common but which lead to greater morbidity and mortality, such as eastern equine encephalomyelitis virus (EEE) and tetanus. This study consisted of two trials which investigated the antigenicity of commercially available vaccines licensed in the USA to protect against EIV, EHV-1 respiratory disease, EHV-1 abortion, EEE and tetanus in horses. Trial I was conducted to compare serological responses to vaccines produced by three manufacturers against EIV, EHV-1 (respiratory disease), EEE, and tetanus given as multivalent preparations or as multiple vaccine courses. Trial II compared vaccines from two manufacturers licensed to protect against EHV-1 abortion, and measured EHV-1-specific interferon-gamma (IFN-gamma) mRNA production in addition to serological evidence of antigenicity. In Trial I significant differences were found between the antigenicity of different commercial vaccines that should be considered in product selection. It was difficult to identify vaccines that generate significant immune responses to respiratory viruses. The most dramatic differences in vaccine performance occurred in the case of the tetanus antigen. In Trial II both vaccines generated significant antibody responses and showed evidence of EHV-1-specific IFN-gamma mRNA responses. Overall there were wide variations in vaccine response, and the vaccines with the best responses were not produced by a single manufacturer. Differences in vaccine performance may have resulted from differences in antigen load and adjuvant formulation. 相似文献
12.
Dechant JE Baxter GM Frisbie DD Trotter GW McIlwraith CW 《Equine veterinary journal》2005,37(3):227-231
REASONS FOR PERFORMING STUDY: Clinical trials in human and veterinary literature have documented the benefits of oral nutraceutical joint supplements containing glucosamine (GU) and chondroitin sulphate (CS) to treat mild to moderate osteoarthritis, but the effects of these components have not yet been conclusively determined. OBJECTIVES: To assess varying dosages of GU and CS on normal and interleukin-1alpha (IL-1) conditioned equine cartilage explants and rationalise the use of these products. HYPOTHESIS: Treatment would not be detrimental to cartilage metabolism and higher dosages and the combination of GU and CS would be more beneficial than lower dosages and. GU or CS alone. METHODS: Articular cartilage explants collected from the femoral trochlea and condyles were cultured in normal and IL-1 conditioned media. Treatment groups included 0, 12.5, 25,125 and 250 microg/ml concentrations of GU alone, CS alone, or GU+CS in combination. Glycosaminoglycan (GAG) synthesis and total GAG content in the explants and media were analysed. RESULTS: There were no detrimental effects of GU, CS or GU+CS on cartilage metabolism. High dosages of GU+CS reduced total GAG release into the media (degradation). CONCLUSIONS: Our results suggests that GU+CS may prevent cartilage GAG degradation. POTENTIAL RELEVANCE: The combination of GU and CS may be more effective in preventing or treating osteoarthritis in horses than either product alone. 相似文献
13.
Effects of enrofloxacin and ciprofloxacin hydrochloride on canine and equine chondrocytes in culture 总被引:5,自引:0,他引:5
OBJECTIVE: To study chondrotoxic effects of enrofloxacin (ENR) and ciprofloxacin hydrochloride (CFX) on canine and equine articular chondrocytes in culture and to compare the effects with that of cultivation in Mg2+-free medium. SAMPLE POPULATION: Chondrocytes from articular cartilage of 4- and 6 -month old dogs and 2- to 4- year-old horses. PROCEDURE: Chondrocytes were cultivated with 10, 40, 80, and 160 microg of CFX/ml, 10, 50, 100, and 150 microg of ENR/ml, or in Mg2+-free medium. A live-to-dead test was performed to test cytotoxic effects. Morphologic changes were evaluated by electron microscopy. An attachment assay was used to test the ability of chondrocytes to adhere to collagen type-II coated-chamber slides in the presence of CFX and with Mg2+-free medium. RESULTS: Chondrocytes cultivated in quinolone-supplemented medium or Mg2+-free medium had a decreased ability to adhere to culture dishes. Cell shape and the actin and vimentin cytoskeleton changed in a concentration-dependent manner. These effects were not species-specific and developed with both quinolones. On day 1 of culture, adhesion of chondrocytes to collagen type II was reduced to 70 and 45% of control values in the CFX treatment and Mg2+-free treatment groups, respectively. On day 5 of culture, adhesion of chondrocytes was reduced to 45 and 40% of control values in the CFX treatment and Mg2+-free treatment groups, respectively. CONCLUSION AND CLINICAL RELEVANCE: In vitro, chondrotoxic effects of quinolones appear to be the result of irregular integrin signaling and subsequent cellular changes. Drug concentrations leading to morphologic changes in vitro may be achieved in articular cartilage in vivo. 相似文献
14.
Byron CR Orth MW Venta PJ Lloyd JW Caron JP 《American journal of veterinary research》2003,64(6):666-671
OBJECTIVE: To characterize potential mechanisms of action of glucosamine inhibition of matrix metalloproteinase (MMP) expression and activity in lipopolysaccharide (LPS)-stimulated equine chondrocytes. SAMPLE POPULATION: Chondrocytes cultured from samples of metacarpophalangeal articular cartilage collected from cadaveric limbs of horses. PROCEDURE: The effect of glucosamine on MMP activity in conditioned medium from LPS-stimulated cartilage explants was determined by a colorimetric assay with azocoll substrate. Treatments consisted of negative and positive controls, glucose (50 mM), and glucosamine (50, 25, 6.25, 3, and 1.5 mM). The influence of glucosamine on MMP synthesis was determined in chondrocytes in pellet culture incubated with LPS (20 microg/mL). Concentration of MMP-13 was quantified in spent medium via ELISA; nonspecific MMP activity was determined via azocoll digestion in organomercurial-activated medium. Effects of glucosamine on MMP mRNA concentration in similarly treated chondrocytes were determined by northern blot hybridization with MMP-1, -3, and -13 probes. Statistical analyses were performed with 2-way ANOVA. RESULTS: Glucosamine had no effect on activated MMP activity but inhibited MMP protein expression, as determined by azocoll digestion (glucosamine, 3 to 50 mM) and MMP-13 ELISA (glucosamine, 1.5 to 50 mM). Resting mRNA concentrations for MMP-1, -3, and -13 mRNA were significantly lower in cultures exposed to glucosamine at concentrations of 50 and 25 mM than those of positive controls. CONCLUSIONS AND CLINICAL RELEVANCE: Glucosamine appears capable of pretranslational, and possibly also translational, regulation of MMP expression; data suggest a potential mechanism of action for chondroprotective effects of this aminomonosaccharide. 相似文献
15.
Brommer H Laasanen MS Brama PA van Weeren PR Barneveld A Helminen HJ Jurvelin JS 《American journal of veterinary research》2005,66(7):1175-1180
OBJECTIVE: To determine the speed of sound (SOS) in equine articular cartilage and investigate the influence of age, site in the joint, and cartilage degeneration on the SOS. SAMPLE POPULATION: Cartilage samples from 38 metacarpophalangeal joints of 38 horses (age range, 5 months to 22 years). PROCEDURE: Osteochondral plugs were collected from 2 articular sites of the proximal phalanx after the degenerative state was characterized by use of the cartilage degeneration index (CDI) technique. The SOS was calculated (ratio of needle-probe cartilage thickness to time of flight of the ultrasound pulse), and relationships between SOS value and age, site, and cartilage degeneration were evaluated. An analytical model of cartilage indentation was used to evaluate the effect of variation in true SOS on the determination of cartilage thickness and dynamic modulus with the ultrasound indentation technique. RESULTS: The mean SOS for all samples was 1,696 +/- 126 m/s. Age, site, and cartilage degeneration had no significant influence on the SOS in cartilage. The analytical model revealed that use of the mean SOS of 1,696 m/s was associated with maximum errors of 17.5% on cartilage thickness and 70% on dynamic modulus in an SOS range that covered 95% of the individual measurements. CONCLUSIONS AND CLINICAL RELEVANCE: In equine articular cartilage, use of mean SOS of 1,696 m/s in ultrasound indentation measurements introduces some inaccuracy on cartilage thickness determinations, but the dynamic modulus of cartilage can be estimated with acceptable accuracy in horses regardless of age, site in the joint, or stage of cartilage degeneration. 相似文献
16.
Effects of polysulfated glycosaminoglycan on chemical and physical defects in equine articular cartilage 总被引:1,自引:0,他引:1
J V Yovich G W Trotter C W McIlwraith R W Norrdin 《American journal of veterinary research》1987,48(9):1407-1414
The effect of intra-articular polysulfated glycosaminoglycan (PSG) on repair of chemical and physical articular cartilage injuries was evaluated in 8 horses. In each horse, a partial- and a full-thickness articular cartilage defect was made on the distal articular surface of the radial carpal bone. In the contralateral middle carpal joint, a chemical articular cartilage injury was induced by injecting 50 mg of Na monoiodoacetate (MIA). Four of the 8 horses were not treated (controls), and 4 horses were treated by intra-articular injection of 250 mg of PSG into both middle carpal joints once a week for 5 treatments starting 1 week after cartilage injury. Horses were maintained for 8 weeks. There was less joint circumference enlargement in PSG-treated horses in MIA-injected and physical defect carpi, compared with that in controls. In MIA-injected joints, there was less articular cartilage fibrillation and erosion, less chondrocyte death, and greater safranin-O staining for glycosaminoglycans in PSG-treated horses. Evaluation of joints in which physical defects were made revealed no differences between control and PSG-injected joints. None of the partial-thickness defects had healed. Full-thickness defects were repaired with fibrous tissue (which was more vascular and cellular in PSG-injected joints) and occasionally small amounts of fibrocartilage. Seemingly, PSG had chondroprotective properties in a model of chemically induced articular cartilage damage, whereas PSG had no obvious effect in a physical articular cartilage-defect model. 相似文献
17.
Byron CR Benson BM Stewart AA Pondenis HC 《American journal of veterinary research》2008,69(9):1123-1128
OBJECTIVE: To evaluate the effects of methylprednisolone acetate (MPA) on proteoglycan production by equine chondrocytes and to investigate whether glucosamine hydrochloride modulates these effects at clinically relevant concentrations. SAMPLE POPULATION: Articular cartilage with normal gross appearance from metacarpophalangeal and metatarsophalangeal joints of 8 horses (1 to 10 years of age). PROCEDURES: In vitro chondrocyte pellets were pretreated with glucosamine (0, 1, 10, and 100 microg/mL) for 48 hours and exposed to MPA (0, 0.05, and 0.5 mg/mL) for 24 hours. Pellets and media were assayed for proteoglycan production (Alcian blue precipitation) and proteoglycan content (dimethylmethylene blue assay), and pellets were assayed for DNA content. RESULTS: Methylprednisolone decreased production of proteoglycan by equine chondrocytes at both concentrations studied. Glucosamine protected proteoglycan production at all 3 concentrations studied. CONCLUSIONS AND CLINICAL RELEVANCE: Methylprednisolone, under noninflammatory conditions present in this study, decreased production of proteoglycan by equine chondrocytes. Glucosamine had a protective effect against inhibition of proteoglycan production at all 3 concentrations studied. This suggested that glucosamine may be useful as an adjunct treatment when an intra-articular injection of a corticosteroid is indicated and that it may be efficacious at concentrations relevant to clinical use. 相似文献
18.
Tung JT Arnold CE Alexander LH Yuzbasiyan-Gurkan V Venta PJ Richardson DW Caron JP 《American journal of veterinary research》2002,63(7):987-993
OBJECTIVE: To determine the effects of prostaglandin E2 (PGE2) on recombinant equine interleukin (IL)-1beta-stimulated expression of matrix metalloproteinases (MMP 1, MMP 3, MMP 13) and tissue inhibitor of matrix metalloproteinase 1 (TIMP 1) in vitro. SAMPLE POPULATION: Cultured equine chondrocytes. PROCEDURE: Stationary monolayers of first-passage chondrocytes were exposed to graduated concentrations of PGE2 with or without a subsaturating dose (50 pg/ml) of recombinant equine IL-1beta (reIL-1beta) to induce expression of MMP 1, MMP 3, MMP 13, and TIMP 1, followed by RNA isolation and northern blotting. In subsequent experiments, gene expression was similarly quantified from mRNA isolated from cultures pretreated with phenylbutazone to quench endogenous PGE2 synthesis, followed by exposure to reIL-1beta and exogenous PGE2 (5 mg/ml) with appropriate controls. RESULTS: Exogenous PGE2 (10 mg/ml) significantly reduced reIL-1beta-induced expression of MMP 1, MMP 3, MMP 13, and TIMP 1. Abrogation of cytokine induction with this dose of PGE2 was comparable to that for dexamethasone (10(-5) M) control. Similarly, pretreatment with phenylbutazone, followed by exposure to relL-1beta and PGE2 (5 mg/ml), was associated with a reduced expression of the genes of interest, an effect that was significant for MMP 1, MMP 13, and TIMP 1. CONCLUSIONS AND CLINICAL RELEVANCE: The MMP and TIMP 1 are important mediators in the pathophysiologic events in osteoarthritis. The potential for physiologically relevant regulation of expression of these genes by PGE2 is a consideration in the use of drugs that inhibit prostanoid synthesis in the treatment of equine arthropathies. 相似文献
19.
Doyle AJ Stewart AA Constable PD Eurell JA Freeman DE Griffon DJ 《American journal of veterinary research》2005,66(1):48-53
OBJECTIVE: To determine effects of sodium hyaluronate (HA) on corticosteroid-induced cartilage matrix catabolism in equine articular cartilage explants. SAMPLE POPULATION: 30 articular cartilage explants from fetlock joints of 5 adult horses without joint disease. PROCEDURE: Articular cartilage explants were treated with control medium or medium containing methylprednisolone acetate (MPA; 0.05, 0.5, or 5.0 mg/mL), HA (0.1, 1.0, or 1.5 mg/mL), or both. Proteoglycan (PG) synthesis was measured by incorporation of sulfur 35-labeled sodium sulphate into PGs, and PG degradation was measured by release of radiolabeled PGs into the medium. Total glycosaminoglycan (GAG) content in media and explants and total explant DNA were determined. RESULTS: Methylprednisolone acetate caused a decrease in PG synthesis, whereas HA had no effect. Only the combination of MPA at a concentration of 0.05 mg/mL and HA at a concentration of 1.0 mg/mL increased PG synthesis, compared with control explants. Methylprednisolone acetate increased degradation of newly synthesized PGs into the medium, compared with control explants, and HA alone had no effect. Hyaluronate had no effect on MPA-induced PG degradation and release into media. Neither MPA alone nor HA alone had an effect on total cartilage GAG content. Methylprednisolone acetate caused an increase in release of GAG into the medium at 48 and 72 hours after treatment. In combination, HA had no protective effect on MPA-induced GAG release into the medium. Total cartilage DNA content was not affected by treatments. CONCLUSIONS AND CLINICAL RELEVANCE: Our results indicate that HA addition has little effect on corticosteroid-induced cartilage matrix PG catabolism in articular cartilage explants. 相似文献
20.
Effects of intramuscular polysulfated glycosaminoglycan on chemical and physical defects in equine articular cartilage.
下载免费PDF全文

G W Trotter J V Yovich C W McIlwraith R W Norrdin 《Canadian journal of veterinary research》1989,53(2):224-230
The effect of intramuscular polysulfated glycosaminoglycan (PSG) on repair of cartilage injury was evaluated in eight horses. In each horse, one middle carpal joint had both a partial-thickness and a full-thickness articular cartilage defect created. In the contralateral middle carpal joint, chemical articular cartilage injury was created by intra-articular injection of 50 mg sodium monoiodoacetate (MIA). Horses were divided into two groups for treatment. Group 1 horses (control) received an intramuscular injection of normal saline every four days for a total of seven injections starting seven days after cartilage injury. Group 2 horses received 500 mg of PSG intramuscularly every four days for seven treatments starting seven days after cartilage injury. Horses were maintained for 12 weeks. Horses were evaluated clinically, and their middle carpal joints were evaluated radiographically and arthroscopically at the end of the study. Joint tissues were also collected and examined microscopically. The only significant difference between groups was slightly greater matrix staining intensity for glycosaminoglycans in the radiate articular cartilage layer in MIA injected and PSG treated joints. Partial-thickness defects had not healed and the predominant repair tissue in full-thickness defects was fibrous tissue. It was concluded that using this joint injury model, 500 mg PSG administered intramuscularly had no effect on the healing of articular cartilage lesions, and minimal chondroprotective effect from chemically induced articular cartilage degeneration. 相似文献