首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
以番茄耐低温材料抗寒0号和不耐低温番青的F2为材料,利用正交试验设计对SRAP-PCR反应体系中的5因素(模板DNA、引物浓度、Mg2+浓度、dNTPs浓度、Taq DNA聚合酶)在4个水平上进行正交优化试验。结果表明:各因素水平变化对反应体系影响的大小依次为:引物>Taq DNA聚合酶>dNTPs>模板DNA>Mg2+。建立番茄耐低温SRAP-PCR的20 μL最佳反应体系为:模板DNA为15 ng、引物浓度0.75 μmol?L-1、Mg2+浓度2.0 mmol?L-1、dNTPs浓度0.125 mmol?L-1、Taq DNA聚合酶1.0 U。  相似文献   

2.
以番茄耐低温材料抗寒0号和不耐低温番青的F2为材料,利用正交试验设计对SRAP-PCR反应体系中的5因素(模板DNA、引物浓度、Mg2+浓度、dNTPs浓度、Taq DNA聚合酶)在4个水平上进行正交优化试验.结果表明:各因素水平变化对反应体系影响的大小依次为:引物>Taq DNA聚合酶>dNTPs>模板DNA>Mg2+.建立番茄耐低温SRAP-PCR的20 μL最佳反应体系为:模板DNA为15 ng、引物浓度0.75 μmol·L-1、Mg2+浓度2.0 mmol·L-1、dNTPs浓度0.125 mmol·L-1、Taq DNA聚合酶1.0 U.  相似文献   

3.
利用正交实验设计L16(45)对番茄SRAP-PCR反应体系的5个因素(Mg2+、dNTPs、引物、Taq DNA聚合酶和模板DNA)在4个水平上进行优化试验研究。结果表明:各因素水平变化对反应体系影响的大小依次为:Mg2+dNTPs引物Taq DNA聚合酶模板DNA;建立的番茄SRAP-PCR最佳体系(25μL)为:Mg2+2.5mmol/L、Taq DNA聚合酶0.5U、dNTPs0.25mmol/L、引物0.4μmol/L、模板DNA 80ng。  相似文献   

4.
枇杷属植物ISSR反应体系的建立和优化   总被引:7,自引:1,他引:6  
首次通过正交实验,对影响枇杷属植物ISSR反应较大的Mg2+、Taq酶、dNTPs、引物、模板DNA浓度进行筛选,并对扩增反应程序进行优化。优化后的反应体系为:25μL反应体系中,含10×buffer2.5μL,Mg2+浓度2.0mmol·L-1,Taq酶1.5U,引物0.3μmol·L-1,模板DNA60ng,dNTPs0.15mmol·L-1。反应程序为94℃预变性5mim;94℃变性1mim,退火温度70s,72℃延伸1.5mim,40次循环;72℃延伸7mim,4℃保存。  相似文献   

5.
以偃麦草叶片DNA为模板,利用单因子和L16(45)正交实验设计对影响偃麦草SRAP-PCR反应效果的Mg2+、引物、dNTPs、DNA、Taq DNA聚合酶5种因素进行优化,并比较了不同退火温度对扩增反应的影响,通过综合比较分析建立偃麦草SRAP-PCR的优化反应体系。结果表明:优化的偃麦草SRAP-PCR总体系20μL中,Mg2+1.75 mmol/L,引物0.15μmol/L,dNTPs 0.20mmol/L,DNA 50ng,Taq DNA聚合酶0.75U,2μL 10×PCR buffer;Mg2+和引物浓度对扩增效果影响最大,DNA浓度影响最小;采用该体系对32份偃麦草进行验证,扩增结果清晰稳定,此体系的建立为利用SRAP分子标记进行偃麦草遗传多样性、抗性标记等研究奠定了技术基础。  相似文献   

6.
苹果SRAP-PCR反应体系的建立   总被引:6,自引:1,他引:5  
以苹果(Malus domestica Borkh.)品种Telamon及Telamon×Fuji的F1代为试材,采用改良的CTAB法提取苹果叶片的DNA,利用正交设计L16(45)和直观分析以及方差分析相结合,探讨了Mg2+、dNTPs、Primer、Taq聚合酶、模板DNA用量对苹果SRAP-PCR反应的影响。建立了总体积为10μL的苹果SRAP-PCR反应体系,Mg2+浓度为2.0mmol.L-1,dNTPs浓度为0.8 mmol.L-1,Primer浓度为0.2μmol.L-1,Taq DNA聚合酶含量为0.6 U,DNA含量为60 ng,并含1μL 10×buffer(Mg2+free)。应用该反应体系,用不同的引物组合对48份苹果样品DNA进行SRAP-PCR扩增,结果显示反应体系具有较高的稳定性。  相似文献   

7.
木菠萝ISSR反应体系的建立和优化   总被引:1,自引:0,他引:1  
以木菠萝为材料,研究了模板DNA、Taq DNA聚合酶、引物、Mg2+ 及dNTPs浓度对ISSR-PCR扩增结果的影响,得出木菠萝ISSR的较佳反应体系为:在20μI反应体系中DNA模板1.6 ng·μI-1,Taq DNA聚合酶1.25 U·(20μl)-1,引物0.24 μmol·L-1,dNTPs 0.2 mmol-1 ,Mg2+ 2 mmol· L-1,10×PCR缓冲液2.0μl.  相似文献   

8.
均匀设计优化澳洲坚果SRAP反应体系   总被引:3,自引:0,他引:3  
以澳洲坚果部分种质为试材,采用U25(55)均匀设计表,对SRAP-PCR反应体系中Taq DNA聚合酶、模板DNA、dNTPs、Mg2+、引物5个组分的浓度进行优化。结果表明澳洲坚果25μL的SRAP反应体系的最佳组分包括2.5μL10×PCR buffer、1 UTaq DNA聚合酶、40 ng模板DNA、0.2 mmol/LdNTPs、0.2μmol/L引物和3.0 mmol/LMg2+。利用所确立的体系对部分澳洲坚果种质进行扩增的结果清晰可靠,多态性好。  相似文献   

9.
用单因素设计法对影响杨桃SCoT-PCR反应体系的主要因素Mg2+、dNTPs、引物、Taq DNA聚合酶及DNA模板浓度进行优化。结果表明,20μL反应体系中,含Mg2+2.5 mmol/L,dNTPs 0.3mmol/L,模板DNA 30mg/L,引物1.00μmol/L和Taq DNA聚合酶0.4U为最佳反应体系。用不同引物及杨桃DNA对该体系进行验证,扩增条带清晰,结果稳定可靠,证明该反应体系适用于杨桃SCoT-PCR扩增。  相似文献   

10.
以小干松针叶基因组DNA为模板,采用L16(45)正交实验设计,对SRAP-PCR反应体系中的Taq酶、Mg2+、dNTPs、模板DNA和引物5个因素在4个水平上进行优化.结果表明:小干松SRAP-PCR 20 μL反应体系最佳组合为:Taq酶0.5U,Mg2+浓度2.5mmol/L,dNTPs浓度0.15 mmol/L,模板DNA含量60 ng,引物0.2μmol/L.使用12对SRAP引物,采用优化后的体系进行SRAP-PCR反应,表明优化的体系很好地满足了小干松基因组DNA进行SRAP的扩增要求.  相似文献   

11.
正交设计优化果梅ISSR反应体系   总被引:16,自引:0,他引:16  
以果梅(PrunusmumeSieb.etZucc.)品种鸳鸯梅为试材,采用改良的CTAB法提取果梅嫩叶DNA,利用正交设计L16(45)探讨Mg2+、dNTPs、引物、TaqDNA聚合酶及模板DNA用量对果梅ISSR-PCR反应的影响,正交试验的结果采用直观分析和方差分析相结合。建立了果梅的ISSR-PCR优化反应体系,在20μL反应体系中含2μL10×Buffer,2.5mmol·L-1Mg2+,0.2mmol·L-1dNTPs,0.32μmol·L-1引物,20~80ng模板DNA,0.75UTaqDNA聚合酶。在此基础上探讨了引物UBC840的最适退火温度、最佳循环次数及延伸时间,引物UBC840的最适退火温度为50.6℃。应用该优化反应体系,用2个不同引物对19份果梅资源DNA进行ISSR-PCR扩增,结果显示优化的反应体系具有较高的稳定性。  相似文献   

12.
樱桃SRAP-PCR体系优化及其遗传多样性分析   总被引:5,自引:1,他引:4  
选取亲缘关系较远的3个不同基因型樱桃资源为试材,对影响SRAP标记PCR反应的模板、Mg2+、dNTPs、Taq酶及引物浓度进行了优化,建立了适合于樱桃SRAP标记的扩增体系。反应体系具体为:模板DNA75ng,dNTPs0.2mmol·L-1,Mg2+2.5mmol·L-1,引物0.3μmol·L-1,Taq酶1.0U,反应总体积20μL。采用优化的扩增体系,对45个樱桃种质材料进行了遗传多样性分析,筛选8对扩增清晰且多态性高的引物组合,检测位点共227个,其中多态性位点192个,占84.6%。应用NTSYS-pc软件进行聚类分析(UPGMA),结果表明45个樱桃品种可分为欧洲甜樱桃和中国樱桃2大类,品种间遗传相似系数在0.52~0.98;其中中国樱桃与甜樱桃种间的相似系数最小,表明2类种质具有不同的遗传背景;而组群内的不同品种资源表现了较高的遗传相似性。SRAP分子标记的聚类分析揭示了樱桃品种间亲缘关系与地理分布以及来源相关。  相似文献   

13.
【目的】建立和优化枇杷AS-PCR反应体系,为开展枇杷S基因快速鉴定奠定基础。【方法】以‘大五星’、‘早钟6号’和‘龙泉5号’为试材,通过正交实验设计对影响枇杷AS-PCR反应较大的Mg2+等5个因素的浓度进行筛选,并对扩增反应程序进行优化,运用正交设计直观分析法和DPS 7.05统计软件对扩增结果进行方差分析。【结果】优化后的枇杷AS-PCR反应分析体系为:25μL反应体系中,含10×buffer2.5μL,Mg2+浓度2.0 mmol·L-1,Taq酶1.5 U,引物0.5μmol·L-1,模板DNA80ng,dNTPs0.4 mmol·L-1。反应程序为94℃预变性1 min;94℃变性30 s,退火温度30 s,72℃延伸1 min,35次循环;72℃延伸5 min,4℃保存。【结论】建立了基于S基因保守序列设计引物的枇杷AS-PCR反应体系,利用该体系成功确定了‘大五星’的S基因型为S2-S41,其中S41为新分离鉴定的枇杷S-RNase基因,它们在GenBank上的登录号分别为JQ228451和JX217035。  相似文献   

14.
利用正交设计L16(45)对甘蔗SRAP-PCR反应体系的五大因素(Mg2+、dNTPs、引物、模板DNA、Taq酶)在4个水平上进行优化,得到如下结论:各因素水平变化对PCR反应的影响从大到小依次是:Mg^2+、dNTPs、引物、Taq酶和模板DNA;通过对各因素进行筛选,建立甘蔗SRAP-PCR反应的最佳体系(20μL)为:dNTPs 0.25 mmol/L、引物0.1μmol/L、Mg^2+2.5 mmol/L、Taq酶0.25U和模板DNA 60 ng。  相似文献   

15.
部分柿属植物SRAP-PCR反应体系的优化   总被引:42,自引:1,他引:42  
郭大龙  罗正荣 《果树学报》2006,23(1):138-141
SRAP技术是一种多态性和信息量丰富的新的分子标记技术,其技术简便、快速,不需预知序列信息,近年来在植物遗传多样性分析、种质鉴定、遗传连锁图的构建以及比较基因组学研究等方面得到广泛应用。为了建立柿属植物SRAP技术体系,对影响SRAP-PCR的Mg2+、dNTPs、Taq聚合酶、引物浓度等因素进行了优化。确定优化的反应体系为:模板DNA30ng,Buffer1×,Mg2+2.5mmol/mL,dNTPs0.2mmol/L,Taq酶1u,引物0.3μmol/L,反应总体积25μL。该体系在柿属植物6种1类型共29个基因型中获得较好的扩增结果,可望在柿属植物起源和进化研究中应用。  相似文献   

16.
西藏光核桃SRAP-PCR反应体系的优化和引物筛选   总被引:1,自引:0,他引:1  
以西藏12份光核桃种质为试材,采用正交设计,从dNTPs、Mg2+、引物、模板DNA和Taq DNA聚合酶5种因素5个水平来优化SRAP-PCR反应体系,并对引物进行了筛选。结果表明:光核桃25μL的SRAP反应体系的最佳组分包括2.5μL 10×buffer,0.35 mmol/L dNTPs,1.5 mmol/L Mg2+,0.4μmol/L引物,20 ng模板DNA和2.5 U Taq DNA聚合酶。各因素对扩增反应结果均有不同影响,其中以dNTPs浓度影响最大,模板DNA的影响最小。应用该体系从40个引物组合中共筛选出扩增条带清晰、多态性丰富的SRAP引物组合23个。这一体系的建立及多态性引物组合的筛选为利用SRAP标记技术进行光核桃遗传多样性研究提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号