首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
磷酸活化棉秆制备活性炭的研究   总被引:1,自引:0,他引:1  
[目的]磷酸活化棉秆制备活性炭.[方法]以棉秆为原料,磷酸为活化剂,采用一步法制备活性炭,考察了浸渍比、活化温度、活化时间对活性炭吸附性能和活化得率的影响.[结果]棉秆制备活性炭的最佳工艺条件:浸渍比为1.5,活化温度450℃,活化时间60 min.此时,活性炭的碘吸附值为1 376 mg/g,亚甲基蓝吸附值为163.5 mg/g,活化得率为35.67%.制得的活性炭比表面积为1 462 m2/g,总孔体积为1.178 cm3/g,中孔体积为0.792 cm3/g,平均孔径为4.4nm,最可几孔径为3.9nm.[结论]该研究对于扩大制备活性炭的原料,带动产棉区的农业经济发展具有重要的意义.  相似文献   

2.
高锰酸钾活化法制备红麻秆芯活性炭及其表征   总被引:1,自引:0,他引:1  
以低浸渍比的KMnO4为活化剂高效活化红麻秆芯,制备了大比表面积和微孔结构发达的活性炭.探讨了活化温度、活化剂与原料的浸渍比、活化时间对活性炭的碘和亚甲基蓝吸附性能的影响.结果表明,低成本和高性能红麻秆芯活性炭的较佳制备条件为:浸渍比2%、活化温度800℃和活化时间120 min;该条件下活性炭的BET比表面积、总孔容、平均孔径分别为985.36 m2.g-1、0.54 cm3.g-1和1.09 nm.通过氮气吸附—脱附等温线、FT-IR、FE-SEM、EDX等手段对红麻秆芯活性炭的孔结构特征、表面官能团、显微形貌和元素组成进行了表征.结果显示,KMnO4活化法有望成为一种低成本、高效和环境友好的活性炭制备方法.  相似文献   

3.
以稻壳为原料,通过低温碱处理、磷酸活化法制备活性炭,研究磷酸溶液浓度、浸渍比、活化温度和活化时间等因素对活性炭吸附性能的影响,确定了活性炭制备工艺和参数.结果表明:稻壳经过预处理、低温NaOH处理、磷酸活化处理的工艺参数为:磷酸活化剂浓度55%、浸渍比2.0、活化温度475℃、活化时间60 min,制备的活性炭产品的碘吸附值、亚甲基蓝吸附值分别达到940、128 mg/g,符合GB/T 13803.2-1999《木质净水用活性炭》二级品的质量指标.  相似文献   

4.
[目的]研究无患子活性炭制备的最佳工艺及其对苯酚的吸附。[方法]以H3PO4为活化剂制备无患子残渣活性炭,通过正交试验对制备工艺进行优化,探讨浸渍比、活化温度、活化时间对活性炭亚甲基蓝和碘吸附值的影响。利用N2吸脱附试验、SEM,对活性炭的结构与性能进行表征。选取了投炭量、苯酚溶液pH、苯酚初始浓度、吸附温度为单因素,探讨其对苯酚吸附的影响。[结果]浸渍比为1∶1、活化温度为500℃、活化时间为60 min时,制备的活性炭对亚基蓝的吸附值为82 mg/g、碘吸附值为773 mg/g、BET比表面为738m2/g、总孔容达0.669 2 cm3/g、平均孔径为3.625 7 nm。活性炭在中性条件下对苯酚吸附效果最佳;低温有利于吸附,但温度的影响不大。[结论]所制备的活性炭具有良好的苯酚吸附效果。  相似文献   

5.
利用废弃物互花米草厌氧发酵渣为原料,以H3PO4为活化剂,于N2保护下,在不同的活化温度(400~700℃)和剂料质量比(0.5~3.0)条件下制备活性炭,以低温液氮(N2/77.4K)吸附测定活性炭的比表面积、孔容及孔径分布,以FTIR、pHFZC 测定分析活性炭表面化学性质;以亚甲基蓝为特征污染物,考察所制备的活性炭成品的吸附能力.结果表明,随着剂料质量比的增大,活性炭孔径分布变宽,中孔所占比例增大;在所考察的活化温度范围内,活性炭N2吸附容量大小与BET比表面积呈现相同的趋势.活化温度为500℃、剂料质量比为2.0条件下所制备的活性炭对亚甲基蓝的吸附性能良好,最大吸附容量可达243.90 mg·g-1,符合Langmuir吸附等温模型.亚甲基蓝Langmuir最大吸附容量与活性炭BET比表面积存在一定的线性关系.该活性炭制备方法为互花米草厌氧发酵渣的综合利用找到了新的途径.  相似文献   

6.
以核桃壳为原料,采用微波辐照磷酸法制备活性炭.探讨了磷酸浓度、微波功率、辐照时间及对产品活性炭的亚甲基蓝脱色力、碘吸附值及得率的影响.确定了微波辐照磷酸法制备活性炭的工艺条件:微波功率460 W,活化时间10 m in,磷酸质量分数50%.在此条件下制得的活性炭碘吸附值为809.06 mg/g,亚甲基蓝脱色率108 mL/g,得率52.96%.活化时间是传统工艺水蒸汽活化核桃壳制活性炭的1/9,得率是传统工艺的2.6倍.  相似文献   

7.
目的与普通活性炭比较,介孔活性炭具有疏水性好、孔体积大、导电性能好等优势,然而传统制备方法繁杂,原料成本较高。因此,探究新型介孔活性炭制备工艺尤为重要。方法以木糖渣为原料,采用NaOH预处理、低温硫酸辅助炭化与磷酸活化相结合的方法制备了高介孔率活性炭。通过单因素实验,分析NaOH预处理时间、浸渍比以及活化温度对活性炭的亚甲基蓝(MB)吸附性能的影响。结果研究表明:NaOH预处理脱除木质素促使原料形成孔隙通道,同时使木糖渣纤维发生润胀,有利于活化剂与原料接触,从而获得高介孔率、高比表面积活性炭。当NaOH预处理时间为4h,磷酸与原料浸渍比4:1,活化温度500℃,活化时间为1h所制备的活性炭具有较高的MB吸附值436mg/g。扫描电镜分析结果表明:样品表面含有丰富的大孔及中孔结构,整体活化充分均匀。氮气物理吸附-脱附分析结果表明:活性炭具有发达的孔隙结构,其比表面积和总孔体积分别高达2038m2/g和2.13cm3/g,其中介孔孔容1.56cm3/g,介孔率达到73.2%,平均孔径为4.18nm。结论采用适当的NaOH预处理有利于制备孔隙结构优越的活性炭,在重金属离子吸附、有机大分子废水处理以及电子元器件等领域有广泛的应用前景。本研究将为高比表面积介孔活性炭的制备奠定理论基础,并为工业木糖渣的高值化利用提供了一条新途径。   相似文献   

8.
[目的]制备油茶壳活性炭,并对其吸附性能进行研究。[方法]以油茶壳为原料,通过磷酸活化法制备油茶壳活性炭,考察磷酸浓度、浸渍比、活化温度、活化时间对活性炭的得率和吸附性能的影响;并对制得的活性炭结构进行表征。[结果]当磷酸浓度为70%,浸渍比为1∶3,活化温度为600℃,活化时间为90 min时,活性炭得率可达34%以上;碘吸附值、亚甲基蓝吸附值分别大于1 000、150mg/g;所得活性炭结构以微孔为主,且富含一定比例的中孔,孔径分布相对集中在1.4~5.0 nm。[结论]该研究为油茶壳的综合利用提供了新的途径。  相似文献   

9.
以沙柳纤维为原材料,采用正交试验KOH活化法制备纤维活性炭,利用N_2吸附表征沙柳活性炭纤维的孔结构。并将其用做钙离子的吸附材料,研究吸附剂投加量、时间、Ph、初始钙浓度等因素对钙离子去除效果的影响。结果表明,在KOH浓度为30%,浸渍比3:1,活化温度700℃,活化时间40min条件下制得活性炭纤维得率为45.6%,亚甲基蓝吸附值为9.5ml/0.1g,BET比表面积为672m_2/g,平均孔径为2.08nm;在ACF投加量15mg/L、PH为7.4、吸附时间10min、钙离子初始浓度300mg/L的条件下,活性炭纤维对钙离子的吸附量为12.3mg/g,去除率为36.9%。  相似文献   

10.
以废弃核桃壳为碳源,以酸洗回收液制得的磷酸钠盐为活化剂,用微波辐射法制备大孔型活性炭,采用扫描电子显微镜(scanning electron microscope,SEM)、X射线光电子能谱(X-ray photoelectron spectroscopy,XPS)、BrunauerEmmettTeller(BET)技术对活性炭进行表征,并考察大孔活性炭对Pb(Ⅱ)和亚甲基蓝阳离子的共吸附平衡和再生。结果表明:最佳制备条件为浸渍时间24 h、辐射时间15 min、微波功率720 W、活化剂浓度2 mol/L,该条件下活性炭的产率为29.6%,碘吸附值为1 095.3 mg/g,比表面积为1 824.9 m2/g,N2吸附/脱附等温线符合国际纯粹与应用化学联合会(international union of pure and applied chemistry,IUPAC)推荐的Ⅱ型等温线,具有大孔型吸附剂特征,电子能谱显示该活性炭表面具有磷酸根、羧基、羟基等功能基团,从而促使活性炭络合吸附Pb(Ⅱ)和亚甲基蓝。吸附研究结果表明:核桃壳基活性炭对Pb(Ⅱ)和亚甲基蓝的吸附更适用Freundlich模型,且Langmuir平衡吸附量分别为43.66、85.40 mg/g,其中对Pb(Ⅱ)的吸附受亚甲基蓝浓度的影响较大。活性炭经过4次再生回用后,对Pb(Ⅱ)、亚甲基蓝的解吸率分别达90.6%、82.7%,再次吸附量分别保持在首次吸附量的79.5%、70.8%,说明该活性炭再生能力较好,可降低污染物的处理成本。  相似文献   

11.
巴旦杏核壳活性炭表征分析   总被引:1,自引:0,他引:1  
以南疆地区盛产的巴旦杏核壳为原料,采用微波辐照磷酸法制备了巴旦杏核壳活性炭,使用物理吸附仪、扫描电镜(SEM)、傅里叶红外光谱(FTIR)、X射线衍射(XRD)等测试方法研究了其性能。结果表明:巴旦杏核壳活性炭经热解、活化后,残留有机官能基团,活性炭晶型均以非晶态为主。巴旦杏核壳活性炭表面分布着大量孔洞,且孔洞以为微孔为主,BET比表面积达418.2 m2/g,总孔容达0.366 cm3/g,亚甲基蓝吸附值达231.5 mg/g。  相似文献   

12.
介绍了以甘蔗渣为原料,微波辐射制备活性炭的基本方法,通过单因素试验确定最佳制备条件,并在最优条件下对活性炭分别进行碘吸附、亚甲基蓝吸附、电镜分析、比表面等分析检测.试验最终产率达到32.1%以上,碘吸附值为1 133.59 mg/g,亚甲基蓝吸附值为322.5 mg/g,比表面积1 311.7m2/g,孔体积0.85 cm3/g,孔径3.26nm.并且用微波对活性炭进行再生,仍能保持较高的吸附性能.  相似文献   

13.
氢氧化钾活化法制备杨木刨花板活性炭的研究   总被引:1,自引:0,他引:1  
为探索废弃刨花板的再利用方式,以杨木刨花板为原料,采用氢氧化钾活化法制备活性炭。以活化温度、活 化时间、浸渍比和施胶量为参数研究活化工艺对所得活性炭吸附性能和活化得率的影响,并对试验范围内较优试 验条件下制备的活性炭的微观结构和表面吸附性能进行元素分析、扫描电镜分析和N2 吸附测试。结果表明:浸渍 比是氢氧化钾活化法制备木质活性炭最重要的影响因素;在活化温度1 000 益、活化时间40 min、浸渍比1颐3、施胶 量6%的条件下,活性炭样品的BET 比表面积为2 459.708 m2 / g、碘吸附值为2.047 g/ g、活化得率为58.30%。   相似文献   

14.
以白桦(Betula platyphylla)树皮桦木醇提取剩余物为原料,分别采用氯化锌、氢氧化钾、磷酸为活化剂制备活性炭,通过正交设计法对工艺条件进行了优化.结果表明:氯化锌活化法产品的得率高、吸附性能好,优于氢氧化钾和磷酸法,更具有应用价值.氯化锌活化法最佳工艺条件:氯化锌溶液质量分数20%、浸渍时间24 h、活化时间90 min、活化温度600℃,利用此条件制备的活性炭产品碘吸附值1059.3 mg/g、亚甲基蓝吸附值126 mL/g,产品得率为54.6%.利用白桦树皮桦木醇提取剩余物制备活性炭,可做到白桦树皮生物质资源的完全利用.  相似文献   

15.
以花生壳和竹子为原料,氯化锌为活化剂,微波辐射制备活性炭,通过单因素试验确定最佳制备条件,并在最优条件下对活性炭分别进行碘吸附、亚甲基蓝吸附、电镜分析和比表面等分析检测。结果表明,竹子活性炭的吸附性能优于花生壳活性炭,其吸附碘值为984.9 mg/g,亚甲基蓝吸附值为150 mg/g,比表面积1 047.0 m2/g,孔体积0.208 cm3/g,孔径2.78 nm。  相似文献   

16.
以菌糠为原料,在机械力化学技术前处理条件下,采用磷酸化学一步炭活化法制备高吸附性能的粉末活性炭.通过单因素试验探讨了不同制备条件对活性炭得率及其吸附性能的影响,并选取浸渍比、球磨时间、活化温度和活化时间4种因素,采用L_9(3~4)正交设计试验,初步筛选较优性能的活性炭制备工艺.采用比表面及孔径分析仪、扫描电镜表征活性炭的孔结构和形貌特征.结果表明:当预处理球磨时间为30 min,浸渍比为2.0,活化温度为450℃,活化时间为60 min时,得到的活性炭的碘吸附值为962.94 mg·g~(-1),亚甲基蓝吸附值为150.0 mg·g~(-1),焦糖脱色率为144.63%,得率为36.20%.  相似文献   

17.
落叶松木屑快速热解炭制备活性炭工艺及结构表征   总被引:2,自引:0,他引:2  
以落叶松木屑快速热解炭为原料,采用水蒸气活化法制备了活性炭,其最佳活化工艺为:温度800℃,时间20 min.该条件下活化得率为51%,活性炭亚甲基蓝吸附值为232 mg/g,碘吸附值为968 mg/g,脱色性能优异.微观结构分析表明,快速热解炭主要由微孔组成,外表面包裹沉积吸附层,活化过程中活化剂能够有效去除沉积吸附...  相似文献   

18.
以龙眼(Dimocarpus longan Lour.)核为原料制备活性炭,通过正交试验优化制备工艺。结果表明,氢氧化钾为最适活性剂,龙眼核活性炭的最佳工艺条件为活化时间40 min、活化温度500℃、碳化温度400℃和碱碳比2∶1(质量比),在此工艺条件下制备的龙眼核活性炭的碘吸附值和亚甲基蓝吸附值分别为942.36 mg/g和12.83 m L/0.1 g,采用扫描电镜对产品的表面形态进行分析,发现其具有丰富的不规则孔隙结构。  相似文献   

19.
曹伟  王晓雪  贾斌  陈龙  钟成华 《安徽农业科学》2014,(27):9495-9498,9634
[目的]探讨鸭粪作为活性炭制备原料的资源化利用可行性.[方法]以鸭粪为原料,采用氢氧化钾为活化剂制备活性炭,以碘吸附值和亚甲基蓝吸附值为评价指标,研究鸭粪活性炭制备过程中固液比、活化剂浓度、活化时间、活化温度等因素对活性炭产率和吸附性能的影响.[结果]鸭粪活性炭最佳制备工艺条件:固液比为1∶2.5、KOH浓度为40%、活化时间为45 min、活化温度为800℃,其活性炭产率、碘吸附值和亚甲基蓝吸附值分别为32.3%、388 mg/g和53 ml/g.在最佳制备工艺条件下添加25%的锯木屑,能明显提高活性炭的吸附性能.[结论]该研究结果为鸭粪的资源化利用提供了一种新型环保的技术.  相似文献   

20.
以杨木锯末为生物质原料,氯化锌为活化剂,采用氯化锌与生物质直接混合的一步法工艺制备生物质基活性炭。以亚甲基蓝吸附值为指标,采用单因素实验法研究活化剂与原料质量比、活化温度、升温速率以及活化时间对活性炭吸附性能的影响。确定较优的一步法制备活性炭工艺条件为:活化剂与原料质量比2.5∶1,活化温度500℃,升温速率15℃·min-1,停留时间40 min,亚甲基蓝吸附值为212 mg·g-1。对活性炭进行红外光谱、比表面积和扫描电镜,结果表明,该条件下制得的活性炭含有羟基和羧基等利于吸附的官能团,并具有丰富的孔隙结构,BET比表面积达2 866 m2·g-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号