首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
【目的】分析单、双铲深松作业效果及评价方法,为提高耕作质量和减少能源消耗的深松作业提供决策依据。【方法】以箭形深松铲为对象,在模拟大田土壤环境的基础上,利用室内土槽研究了单、双铲深松作业效果及评价方法,提出了土壤硬度变化系数、土壤体积膨松系数、单位松土带宽度耕作阻力系数和土壤相互扰动系数等4个评价指标。【结果】(1)单、双铲深松作业后的平均土垄高度差分别为7.342cm和6.492cm,双铲比单铲的平均土垄高度差减少11.58%,说明双铲深松后的地表平整性优于单铲,且深松铲间距是影响土壤体积膨松程度的主要因素,其对深松后土壤形成的垄形与坑形有重要影响;(2)在土壤扰动区域内,当深松深度为3~17cm时,双铲作业的土壤硬度变化程度较单铲显著,当深度为17~30cm时,单铲作业的土壤硬度变化程度大于双铲;(3)深松单位松土带宽度时,双铲的平均耕作阻力为单铲的0.668倍,较单铲减少69.31N,双铲的能耗较单铲减少33.2%;(4)双铲的土壤相互扰动系数为1.170,深松铲布局方式对土壤扰动有重要影响。【结论】本研究结果有利于深入理解单、双铲的深松作业效果,促进符合节能减阻要求的深松机具的研发及田间作业机器系统的优化选用。  相似文献   

2.
为探究自激式振动深松作业新的仿真研究方法,通过动力学仿真软件RecurDyn和离散元仿真软件EDEM对自激式振动深松过程进行联合仿真分析。以耕作阻力为评价指标,耕作深度、牵引速度和弹簧刚度为变量,设计3因素3水平响应面分析和优化试验。结果表明,牵引速度为3 km·h-1、耕作深度为350 mm和弹簧刚度为300 N·mm-1时,深松铲最大入土角为26.39°,弹簧振动频率为3.84~6.25 Hz,弹簧对耕作阻力有明显缓冲作用;自激式深松铲参数耕作深度为301 mm、速度为2.6 km·h-1、弹簧刚度115 N·mm-1时,以最小耕作阻力为评价指标的作业效果最优。EDEM-RecurDyn联合仿真为自激式振动深松铲的优化设计提供新方法。  相似文献   

3.
4U-1400FD型马铃薯联合收获机挖掘铲的参数优化   总被引:6,自引:3,他引:3  
对4U-1400FD型马铃薯联合收获机的挖掘铲建立牵引阻力的数学模型,在此模型下分析挖掘铲的铲面倾角、作业速度、挖掘深度、铲体长度等因素对挖掘铲牵引阻力的影响.结果表明:挖掘铲参数的最佳组合为铲面倾角20°,铲体长度470 mm,铲宽1 400mm.通过田间试验,该挖掘铲的性能符合规定的指标.  相似文献   

4.
针对冬油菜机械化播种时种床带土壤板结严重导致油菜产量下降的问题,开展油菜联合直播机种床松旋装置的设计与试验。研制一种实现种床带浅松作业的类深松铲,通过分析类深松铲触土刃口力学特性,确定其主要结构参数。基于提高种床带作业质量目的,以工作幅宽为2 000 mm的2BYM-6/8型油麦兼用精量联合直播机为试验平台,确定种床带为IT245旋耕刀片、非种床带为IT225旋耕刀片,以类深松铲为主要工作部件,类深松铲的布局以"前四后二"的排布方式开展田间试验。田间试验结果显示:浅松旋耕联合作业后,种床带浅松深度为229.4~239.4 mm,旋耕深度为124.8~139.2 mm,耕深稳定性达90%以上,厢面平整度为25.71~27.14 mm。田间试验作业效果达到设计要求,满足油菜播种农艺要求。  相似文献   

5.
为降低耕作阻力,揭示深松铲与土壤之间的关系特性,根据深松铲切削土壤的工作特点,利用LS-DYNA模拟分析深松铲切削土壤的过程,获得切削土壤的应力变化规律。结果表明,当深松铲以0.49 m/s的初速度切削、深松深度为250 mm时,单个深松铲的最大切削阻力为2 230 N,土壤在1.75 s发生崩裂,达到深松效果。通过试验测试,单个深松铲受力约为2 332.5 N,与仿真误差为4.5%,验证了仿真的合理性,仿真数据结果可以为实际深松过程提供参考。  相似文献   

6.
针对玉米宽窄行种植模式的农艺要求及特点,设计一种配套的多功能深松施肥机。根据季节特点、施肥位置要求和拖拉机作业形式等条件,设计了深松施肥机,提高肥料利用率,减少机器进地次数和对土壤的压实;该机不仅可以在伏雨到来前在宽行进行深松施肥作业,也可以去除施肥部件,在秋季进行标准深松作业,从而实现一机多用。田间试验结果表明:采用苗带侧200~250 mm处定向施肥,施肥深度50~100 mm,与宽行苗带中间施肥相比,在施肥一个月后,植株高度显著提高10%~13%;在秋季拆分成独立的深松机可实现250~300 mm的深松作业,深松深度的平均变异系数为1.03%,说明该机的工作稳定性好;夏季深松机深松后的土壤平均膨胀度为16.12%,对土壤扰动范围较小,地表没有出现明显的大块与粘条。  相似文献   

7.
针对深松作业阻力大、功耗高的问题,基于滑切理论设计了1种具有凸圆弧形滑切刃的深松铲尖,建立了深松作业过程中,铲尖上表面滑切刃与土壤的切削模型,分析了刀片受力情况,并依据滑切产生因素,推导出刀片刃口曲线表达式。田间试验表明:拖拉机前进速度为4.1 km/h,深松铲耕作深度为250 mm时,凸圆弧形滑切刃深松铲牵引阻力较国标深松铲的牵引阻力平均下降12.08%,达到了降低深松作业阻力的目的。  相似文献   

8.
为研究深松铲类耕作部件作用下天然草地扰动失效过程,采用草地耕作试验台搭载不同类型和具有不同结构参数的深松铲,在不同作业深度下,进行草地扰动失效试验,对草地土层失效过程、扰动情况、翻垡率、扰动系数、蓬松度,以及耕作部件的作业阻力和沟形面积比阻进行对比分析。试验结果表明:利用深松铲可以打破天然草地形成的“地表干草+植物根茎+土壤”的“夹层式”复合土层结构,对草地土层造成扰动,但其作业效果受作业深度、结构参数以及“夹层式”复合土层结构的影响。深松铲作业后产生的地表翻垡率为5.67%~12.25%,扰动系数为63%~74%,蓬松度为38%~49%。综合所有的扰动失效特性参数,在所试验的深松铲耕作部件中,双翼倾角为150°的双翼形深松铲在草地深松作业时对草地地表扰动和土壤翻垡情况影响较小,对土壤的扰动系数较高,作业效果最佳。  相似文献   

9.
<正>1.深翻施肥。在进行深翻作业的同时将底化肥翻置到耕层底部,施肥深度可达20cm左右。2.深松施肥。在深松作业时,随机进行深施肥,底肥由于深松作业深度较大,一般30~40cm,应控制施肥深度不超过30cm。3.打垄施肥。在打垄作业时,利用起垄犁上的施肥装置,将底肥施入垄底,一般可达15~20cm。4.播种施肥。利用播种机上的施肥装置,随播种随施底肥和口肥。一般肥应施在种床下5~15cm,种侧3~5cm  相似文献   

10.
利用离散元建立了双翼深松铲的深松仿真模型,分析了深松参数对双翼深松铲耕作阻力的影响。结果表明,双翼深松铲对土壤的作用主要表现在前进过程中对土壤的切削和抬升2个方面;双翼深松铲主要阻力来源于土壤对其前进的阻碍作用,竖直方向上土壤对深松铲抬升作用的阻碍作用也是深松阻力的重要来源之一,双翼深松铲侧方向上的受力非常小;在深松速度0.4~1.2 m/s与深松深度220~300 mm时,深松速度和深松深度对双翼深松铲前进方向的受力均有较大的影响,随着深松深度和速度的不断增加,前进方向的阻力不断增大;深松深度对双翼深松铲竖直方向的受力有较大影响,竖直方向的受力随着深松深度的增加而变大,而深松速度对双翼深松铲竖直方向的受力基本没有影响。  相似文献   

11.
20210301带翼深松铲深松土壤扰动行为仿真与试验//DOI:10.25165/j.ijabe.20211401.5447揭示带翼深松铲深松土壤扰动行为有助于深入理解带翼深松铲与土壤的相互作用规律,进而为带翼深松铲的设计和优化提供基础。该研究综合利用离散元法和室内土槽试验,研究了带翼深松铲对土壤宏观和微观扰动过程的影响。结果表明:翼铲主要对其上方土壤的扰动范围和破碎程度产生影响;带翼深松铲的铲尖段、犁底层圆弧段、耕作层圆弧段、直柄段受到的牵引阻力分别占69.53%、25.22%、4.73%、0.52%;带翼深松铲对不同深度土壤的侧向扰动范围和破碎程度的影响由大到小依次为:耕作层、圆弧段犁底层、铲尖段犁底层;增加翼铲使圆弧段犁底层、耕作层、铲尖段犁底层土壤扰动面积分别增加47.52%、7.74%和4.59%,同时使总牵引阻力增加36%。与不带翼深松铲相比,带翼深松铲耕作后的土壤蓬松度、土壤扰动系数、地表沟槽宽度和犁耕比均不同程度的增加。离散元仿真与土槽试验结果基本一致,表明离散元仿真能够较为准确地模拟带翼深松铲的耕作过程。  相似文献   

12.
基于EDEM的油菜移栽成穴装置作业性能仿真与试验研究   总被引:1,自引:0,他引:1  
为提高油菜移栽成穴装置作业性能,成型更优参数的栽植穴,采用模拟仿真和土槽试验相结合的方法研究成穴作业性能,优化成穴装置作业参数。运用EDEM软件仿真生成土壤与成穴装置,以栽植穴开口纵长和有效深度为响应值,结合响应面法Box-Behnken试验设计,模拟研究不同作业参数下的成穴效果,完成参数寻优。得出作业参数最优组合:穴刺直径35 mm、锥尖倒角64°、入土深度68 mm。土槽试验和仿真试验对比结果表明,开口纵长和有效深度平均相对误差分别为4.0%和5.68%,最优参数下土槽试验中栽植穴的有效深度47.2 mm、开口纵长84.4 mm。该研究优化了成穴装置作业参数,提高成穴作业效果,为今后的成穴机构与土壤相互作用关系的研究提供技术支持。  相似文献   

13.
<正>1SZL-230W型深松整地联合作业机采用可调行距的框架结构,深松铲采用特种弧面倒梯形设计,作业时不打乱土层、不翻土,可实现对土壤全方位深松。该机适应性强,作业质量高,适用于对不同质地及有大量秸秆覆盖的土壤作业。产品参数配套动力:110千瓦尺寸(长×宽×高):250厘米×250厘米×140厘米作业幅宽:230厘米重量:1880公斤工作铲数:4个铲间距:58厘米深松(小铲)深度:25~40厘米  相似文献   

14.
研究灭茬深松前置式联合整地机在单一作业时的机组性能。以机组作业速度和耕深为自变量,油耗和牵引力为响应值,利用Box-Behnken试验设计原理,采用2因素5水平响应面分析方法,并利用Design-Expert软件建立数学模型,对各因素及交互作用进行分析,并对单一作业参数进行优化。结合农艺因素,优化结果为:单一深松作业,机组作业速度为3.39km/h,深松深度340mm时,油耗为2.72L/km,牵引力27.65kN;单一旋耕作业,机组作业速度为3.92km/h,旋耕深度152mm时,油耗为3.24L/km,牵引力8.25kN;单一灭茬作业,机组作业速度为3.37km/h,灭茬深度33.41mm时,油耗为1.35L/km,牵引力7.8kN;此时机组达到最佳工作状态。研究结果对于合理使用灭茬深松前置式联合整地机具有一定参考价值。  相似文献   

15.
基于EDEM的双翼式深松铲设计与仿真试验   总被引:3,自引:0,他引:3  
设计了一种由铲柄、铲翼及铲尖组成的双翼式深松铲,建立了基于EDEM离散元仿真模型,分析确定了双翼式深松铲主要工作参数及结构参数并进行仿真试验.结果表明,在试验范围内,双翼式深松铲耕作阻力F随铲翼翻土角γ及起土角α增大而增小,随耕作速度v先减小后增大.当双翼式深松铲铲翼翻土角γ取30°、起土角α取30°、耕作速度v取0.75 m/s时,双翼式深松铲耕作阻力F最小.土槽试验结果表明,双翼式深松铲作业时,土壤沿铲翼后部自动向内及后方迁移,土壤原地翻转,不堆积在侧边地表且两侧扰动小.  相似文献   

16.
本文分析了双翼形深松铲的主要结构参数:翼张角2γ、铲宽 B、起土角α以及使用参数:作业速度 V、耕深 H 等因素对耕作阻力的影响。并在此基础上得到了各因素的合理取值范围,即2γ=80°~85°、α=18°~23°、V=2km/hH<180mm,从而可供在双翼深松铲设计和使用时参考选用。  相似文献   

17.
马铃薯二阶凸面挖掘铲的设计与研究   总被引:1,自引:0,他引:1  
挖掘铲作为马铃薯收获机的核心部件,其参数与铲体机构设计不合理会直接导致马铃薯在收获时产生壅土和伤薯问题,针对该问题设计出一种二阶凸面挖掘铲。通过对挖掘铲建立阻力模型,分析确定挖掘铲主要参数:宽度为100 mm、铲刃倾角为50°、铲面倾角为20°、铲的总体长度为350 mm、挖掘深度为186 mm。对设计的挖掘铲与三角平面挖掘铲进行有限元分析对比与试验验证,结果可知,该设计能够有效解决壅土和伤薯问题。  相似文献   

18.
分层深松采用前后铲分层作业方式,深松后土壤更松碎,土层不发生改变。文章利用深松铲阻力测试装置,研究分层深松铲型配置参数对牵引阻力影响。结果表明,后铲25 cm深松深度,铲型组合为箭型-凿型时,分层高度差为11.5 cm、铲距为34.5 cm时牵引阻力最小;通过凿型、箭型、双翼型不同铲型组合及单层深松牵引阻力对比分析表明,深松深度相同时,分层深松前后铲型面积和越大阻力越大,分层深松阻力一般大于单层深松;分层深松交换前后铲型试验得出,深度相同时,凿型-双翼型、箭型-双翼型组合阻力分别小于双翼型-凿型、双翼型-箭型组合,而箭型-凿型组合阻力却与凿型-箭型组合十分接近。  相似文献   

19.
针对外槽轮排肥装置施肥作业均匀性不高的问题,设计一种风送式集中排肥装置及同步施肥控制系统。通过台架试验比较直槽、交错槽和螺旋槽3种排肥轮结构的排肥性能,并建立排肥轮转速与排肥速率的线性回归方程;基于北斗+GPS系统和限幅平均滤波算法提高行驶速度的监测精度,并据此开发施肥控制系统。结果表明:1)排肥轮转速为10~60 r/min时,螺旋槽结构排肥轮具有较好的排肥性能,排肥量稳定性变异系数和各行排肥量一致性变异系数分别为0.15%和1.57%,排肥量均匀性变异系数<4%。2)排肥轮转速<60 r/min时,施肥控制系统的施肥调整响应时间<0.85 s;当理论施肥量和平均作业速度分别为300~600 kg/hm2和5.22 km/h时,施肥准确率>95%。该风送式集中排肥装置及施肥控制系统可以实现同步、精量和均匀施肥作业。  相似文献   

20.
目深松铲的设计制造是一个复杂的过程,本研究基于离散元法对深松铲与土壤的相互作用过程进行了研究。基于传统离散元理论,考虑到土壤颗粒间液桥力作用,建立了土壤颗粒以及深松铲模型。将深松铲在耕速为1 m/s,耕深为180 mm,220 mm和260 mm的条件下进行了离散元法仿真,并获取了耕作阻力曲线。仿真得到的耕作阻力与田间试验结果能较好的吻合,在三个耕作深度下的相对误差分别为2.96%,14.95%以及7.15%。结果证明离散元法能较好的分析深松铲的工作过程,并且对今后进一步优化深松铲的结构有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号