共查询到20条相似文献,搜索用时 15 毫秒
1.
Dextromethorphan is an N-methyl-D-aspartate (NMDA) noncompetitive antagonist which has been used as an antitussive, analgesic adjunct, probe drug, experimentally to attenuate acute opiate and ethanol withdrawal, and as an anticonvulsant. A metabolite of dextromethorphan, dextrorphan, has been shown to behave pharmacodynamically in a similar manner to dextromethorphan. The pharmacokinetics of dextromethorphan were examined in six healthy dogs following intravenous (2.2 mg/kg) and oral (5 mg/kg) administration in a randomized crossover design. Dextromethorphan behaved in a similar manner to other NMDA antagonists upon injection causing muscle rigidity, ataxia to recumbency, sedation, urination, and ptyalism which resolved within 90 min. One dog repeatedly vomited upon oral administration and was excluded from oral analysis. Mean +/- SD values for half-life, apparent volume of distribution, and clearance after i.v. administration were 2.0 +/-0.6 h, 5.1 +/- 2.6 L/kg, and 33.8 +/- 16.5 mL/min/kg. Oral bioavailability was 11% as calculated from naive pooled data. Free dextrorphan was not detected in any plasma sample, however enzymatic treatment of plasma with glucuronidase released both dextromethorphan and dextrorphan indicating that conjugation is a metabolic route. The short half-life, rapid clearance, and poor bioavailability of dextromethorphan limit its potential use as a chronic orally administered therapeutic. 相似文献
2.
Heather K. Knych Daniel Weiner Stacy Steinmetz Katherine Flynn Daniel S. McKemie 《Journal of veterinary pharmacology and therapeutics》2019,42(6):617-623
Hydroxyzine is a first‐generation antihistamine and cetirizine, a second‐generation antihistamine and active metabolite of hydroxyzine. Hydroxyzine is commonly used in performance horses and as such its use in closely regulated; however, there are no published studies suitable for establishing appropriate regulatory recommendations. In the current study, 12 exercised Thoroughbred research horses received a single oral administration of 500 mg of hydroxyzine. Blood and urine samples were collected prior to and up to 96 hr postdrug administration and concentrations of hydroxyzine and cetirizine determined using liquid chromatography‐tandem mass spectrometry. A joint parent/metabolite population 2‐compartment pharmacokinetic model with first‐order absorption and elimination was utilized to describe the pharmacokinetics of both compounds. Serum hydroxyzine and cetirizine concentrations were above the limit of quantitation (0.1 ng/ml) of the assay at 96 hr (the last time point sampled). The terminal half‐life was 7.41 and 7.13 hr for hydroxyzine and cetirizine, respectively. Findings from this study suggest that a prolonged withdrawal time should be observed if this compound is used in performance administered to performance horses and is classified as prohibited substance by the applicable regulatory body. 相似文献
3.
4.
The pharmacokinetics of pimobendan enantiomers after oral and intravenous administration of racemate pimobendan formulations in healthy dogs 下载免费PDF全文
E. T. Bell J. L. Devi S. Chiu P. Zahra T. Whittem 《Journal of veterinary pharmacology and therapeutics》2016,39(1):54-61
Pimobendan is a benzimidazole‐pyridazinone derivative, marketed as a racemic mixture for the management of canine heart failure. Pharmacokinetics of the enantiomers of pimobendan and its oral bioavailability have not been described in dogs. The aim of this study was to describe pharmacokinetics of three formulations of pimobendan in healthy dogs: the licensed capsule product, and novel liquid and intravenous formulations. A three‐period, nested randomized two‐treatment crossover design was used. Pimobendan was administered p.o. at 0.25 and i.v. at 0.125 mg/kg. Blood and plasma samples were analysed by liquid chromatography–mass spectrometry. Noncompartmental modelling was used to describe the pharmacokinetics. Parameters were compared between formulations using a general linear model. Bioequivalence of the oral formulations was tested using CI90 for AUC(0–∞) and Cmax. Bioavailability of pimobendan after oral dosing was 70%. Liquid and capsule formulations were bioequivalent only for AUC. The positive enantiomer of pimobendan (PE) had a larger volume of distribution than the negative enantiomer (NE) (281 ± 48 vs. 215 ± 68 mL/kg; P = 0.003) and a shorter half‐life (21.7 vs. 29.9 min; P = 0.004). The NE was distributed more quickly than the PE into blood cells. Enantiomers of pimobendan have differing absorption, distribution and elimination. The pharmacokinetics of pimobendan in healthy dogs was described. 相似文献
5.
LeVine DN Papich MG Gookin JL Davidson GS Davis JL Hayes RB 《Journal of Feline Medicine and Surgery》2011,13(4):244-250
Ronidazole (RDZ) is an effective treatment for feline Tritrichomonas foetus infection, but has produced neurotoxicity in some cats. An understanding of the disposition of RDZ in cats is needed in order to make precise dosing recommendations. Single-dose pharmacokinetics of intravenous (IV) RDZ and immediate-release RDZ capsules were evaluated. A single dose of IV RDZ (mean 9.2mg/kg) and a 95mg immediate-release RDZ capsule (mean 28.2mg/kg) were administered to six healthy cats in a randomized crossover design. Plasma samples were collected for 48 h and assayed for RDZ using high pressure liquid chromatography (HPLC). Systemic absorption of oral RDZ was rapid and complete, with detection in the plasma of all cats by 10 min after dosing and a bioavailability of 99.64 (±16.54)%. The clearance of RDZ following IV administration was 0.82 (±0.07) ml/kg/min. The terminal half-life was 9.80 (±0.35) and 10.50 (±0.82) h after IV and oral administration, respectively, with drug detectable in all cats 48h after both administrations. The high oral bioavailability of RDZ and slow elimination may predispose cats to neurotoxicity with twice-daily administration. Less frequent administration should be considered for further study of effective treatment of T foetus-infected cats. 相似文献
6.
7.
Arsenault WG Boothe DM Gordon SG Miller MW Chalkley JR Petrikovics I 《American journal of veterinary research》2005,66(12):2172-2176
OBJECTIVE: To determine the pharmacokinetics of carvedilol administered IV and orally and determine the dose of carvedilol required to maintain plasma concentrations associated with anticipated therapeutic efficacy when administered orally to dogs. ANIMALS: 8 healthy dogs. PROCEDURES: Blood samples were collected for 24 hours after single doses of carvedilol were administered IV (175 microg/kg) or PO (1.5 mg/kg) by use of a crossover nonrandomized design. Carvedilol concentrations were detected in plasma by use of high-performance liquid chromatography. Plasma drug concentration versus time curves were subjected to noncompartmental pharmacokinetic analysis. RESULTS: The median peak concentration (extrapolated) of carvedilol after IV administration was 476 ng/mL (range, 203 to 1,920 ng/mL), elimination half-life (t(1/2)) was 282 minutes (range, 19 to 1,021 minutes), and mean residence time (MRT) was 360 minutes (range, 19 to 819 minutes). Volume of distribution at steady state was 2.0 L/kg (range, 0.7 to 4.3 L/kg). After oral administration of carvedilol, the median peak concentration was 24 microg/mL (range, 9 to 173 microg/mL), time to maximum concentration was 90 minutes (range, 60 to 180 minutes), t(1/2) was 82 minutes (range, 64 to 138 minutes), and MRT was 182 minutes (range, 112 to 254 minutes). Median bioavailability after oral administration of carvedilol was 2.1% (range, 0.4% to 54%). CONCLUSIONS AND CLINICAL RELEVANCE: Although results suggested a 3-hour dosing interval on the basis of MRT, pharmacodynamic studies investigating the duration of beta-adrenoreceptor blockade provide a more accurate basis for determining the dosing interval of carvedilol. 相似文献
8.
The pharmacokinetics and pharmacodynamics of procainamide in horses after intravenous administration
E. J. ELLIS W. R. RAVIS M. MALLOY S. H. DURAN B. G. SMYTH 《Journal of veterinary pharmacology and therapeutics》1994,17(4):265-270
Six horses were administered either 15 or 20 mg/kg body weight (b.w.) procainamide (PA) as an intravenous (i.v.) dose over 10 min. The plasma concentrations of PA and N-acetylprocainamide (NAPA) as well as the pharmacodynamic effect (prolongation of the QT interval) were monitored. The PA plasma concentrations could be described by a one-compartment model with a t ½ of 3.49 ± 0.61 h. The total body clearance of PA was 0.395 ± 0.090 1/hr/kg and the volume of distribution was 1.93 ± 0.27 l/kg. As observed after PA administration, NAPA (an active metabolite) had a t ½ longer than PA of 6.31 ± 1.49 h. Peak NAPA concentrations (1.91 ± 0.51 μg/ml) occurred at 5.2 h after the PA i.v. dose. The ratio of area under the curves for NAPA to PA was 0.46 ± 0.15 which is similar to that expected in humans classified as slow acetylators. Percentage change in the QT interval was examined with respect to PA and PA + NAPA plasma concentrations. For PA, %ΔQT = 41.2 log (PA) - 13.26 and correlations ( r ) ranged from 0.77 to 0.91 among the horses. In the case of PA + NAPA,%ΔQT= 57.3 log(PA+NAPA)-31.83 andrangedfrom0.77to0.90. No evidence of toxicity was noted with respect to changes in the PR interval. 相似文献
9.
Pharmacokinetics of ibafloxacin following intravenous and oral administration to healthy Beagle dogs 总被引:1,自引:0,他引:1
Coulet M Van Borssum Waalkes M Leeuwenkamp OR Cox P Lohuis J 《Journal of veterinary pharmacology and therapeutics》2002,25(2):89-97
The pharmacokinetics of ibafloxacin, a new veterinary fluoroquinolone antimicrobial agent, was studied following intravenous (i.v.) and oral administration to healthy dogs. The mean absolute bioavailability of ibafloxacin after oral doses of 7.5, 15 and 30 mg/kg ranged from 69 to 81%, indicating that ibafloxacin was well absorbed by dogs. Ibafloxacin was also absorbed rapidly [time of maximum concentration (t(max)) 1.5 h], reaching a mean maximum concentration (C(max)) of 6 microg/mL at 15 mg/kg, well distributed in the body [large volume of distribution at steady state (V(ss)) and V(area) of 1.1 L/kg and 4 L/kg, respectively], and exhibited an elimination half-life of 5.2 h and a low total body clearance (8.7 mL/min/kg). Both C(max) and area under the concentration-time curve (AUC) showed dose proportionality over the dose range tested (7.5-30 mg/kg). The pharmacokinetics of ibafloxacin was similar following single and repeated dosage regimens, implying no significant accumulation in plasma. Food promoted the absorption of ibafloxacin by increasing C(max) and AUC, but did not change t(max). High amounts of the metabolites, mainly 8-hydroxy- and, 7-hydroxy-ibafloxacin were excreted in urine and faeces, either unchanged or as glucuronide conjugates. Following oral administration of 15 mg ibafloxacin/kg, the total recovery of ibafloxacin, its metabolites and conjugates in urine and faeces was 61.9-99.9% of the dose within 48 h. 相似文献
10.
M. Schwartz K. R. Muñana J. A. Nettifee‐Osborne K. M. Messenger M. G. Papich 《Journal of veterinary pharmacology and therapeutics》2013,36(5):471-477
Intravenous benzodiazepines are utilized as first‐line drugs to treat prolonged epileptic seizures in dogs and alternative routes of administration are required when venous access is limited. This study compared the pharmacokinetics of midazolam after intravenous (IV), intramuscular (IM), and rectal (PR) administration. Six healthy dogs were administered 0.2 mg/kg midazolam IV, IM, or PR in a randomized, 3‐way crossover design with a 3‐day washout between study periods. Blood samples were collected at baseline and at predetermined intervals until 480 min after administration. Plasma midazolam concentrations were measured by high‐pressure liquid chromatography with UV detection. Rectal administration resulted in erratic systemic availability with undetectable to low plasma concentrations. Arithmetic mean values ± SD for midazolam peak plasma concentrations were 0.86 ± 0.36 μg/mL (C0) and 0.20 ± 0.06 μg/mL (Cmax), following IV and IM administration, respectively. Time to peak concentration (Tmax) after IM administration was 7.8 ± 2.4 min with a bioavailability of 50 ± 16%. Findings suggest that IM midazolam might be useful in treating seizures in dogs when venous access is unavailable, but higher doses may be needed to account for intermediate bioavailability. Rectal administration is likely of limited efficacy for treating seizures in dogs. 相似文献
11.
In this study, we investigated the effect of multiple oral dosing of ketoconazole (KTZ) on pharmacokinetics of quinidine (QN), a CYP3A substrate with low hepatic clearance, after i.v. and oral administration in beagle dogs. Four dogs were given p.o. KTZ for 20 days (200 mg, b.i.d.). QN was administered either i.v. (1 mg/kg) or p.o. (100 mg) 10 and 20 days before the KTZ treatment and 10 and 20 days after start of KTZ treatment. Multiple oral dosing of KTZ decreased significantly alpha and beta, whereas increased t(1/2beta), V(1), and k(a). The KTZ treatment also decreased significantly both total body clearance (Cl(tot)) and oral clearance (Cl(oral)). No significant change in bioavailability was observed in the presence of KTZ. Co-administration of KTZ increased C(max) of QN to about 1.5-fold. Mean resident time after i.v. administration (MRT(i.v.)), and after oral administration (MRT(p.o.)) of QN were prolonged to about twofold, whereas mean absorption time (MAT) was decreased to 50%. Volume of distribution at steady state (V(d(ss))) of QN was unchanged in the presence of KTZ. These alterations may be because of a decrease in metabolism of QN by inhibition of KTZ on hepatic CYP3A activity. In conclusion, multiple oral dosing of KTZ affected largely pharmacokinetics of QN after i.v. and oral administration in beagle dogs. Therefore, KTZ at a clinical dosing regimen may markedly change the pharmacokinetics of drugs primarily metabolized by CYP3A with low hepatic clearance in dogs. In clinical use, much attention should be paid to concomitant administration of KTZ with the drug when given either p.o. or i.v. 相似文献
12.
Pharmacokinetics of cyclophosphamide after oral and intravenous administration to dogs with lymphoma
Warry E Hansen RJ Gustafson DL Lana SE 《Journal of veterinary internal medicine / American College of Veterinary Internal Medicine》2011,25(4):903-908
Background: Cyclophosphamide is an alkylating chemotherapeutic drug administered IV or PO. It is currently assumed that exposure to the active metabolite, 4‐hydroxycyclophosphamide (4‐OHCP), is the same with either route of administration.
Objectives:
To characterize the pharmacokinetics of cyclophosphamide and 4‐OHCP in dogs with lymphoma when administered PO or IV. Animals: Sixteen client‐owned dogs with substage A lymphoma were enrolled in the study. Eight dogs received cyclophosphamide IV and 8 received it PO. Methods: Prospective randomized clinical trial was performed. Blood was collected from each dog at specific time points after administration of cyclophosphamide. The serum was evaluated for the concentration of cyclophosphamide and 4‐OHCP with mass spectrometry and liquid chromatography. Results: Drug exposure to cyclophosphamide measured by area under the curve (AUC)0–inf is significantly higher after intravenous administration (7.14 ± 3.77 μg/h/mL) compared with exposure after oral administration (P‐value < .05). No difference in drug exposure to 4‐OHCP was detected after IV (1.66 ± 0.36 μg/h/mL) or PO (1.42 ± 0.64 μg/h/mL) administered cyclophosphamide. Conclusions and Clinical Importance: Drug exposure to the active metabolite 4‐OHCP is equivalent after administration of cyclophosphamide either PO or IV. 相似文献13.
14.
Marsella R Nicklin CF Munson JW Roberts SM 《American journal of veterinary research》2000,61(6):631-637
OBJECTIVE: To evaluate the pharmacokinetics of pentoxifylline (PTX) and its 5-hydroxyhexyl-metabolite, metabolite 1 (M1), in dogs after IV administration of a single dose and oral administration of multiple doses. ANIMALS: 7 sexually intact, female, mixed-breed dogs. PROCEDURE: A crossover study design was used so that each of the dogs received all treatments in random order. A drug-free period of 5 days was allowed between treatments. Treatments included IV administration of a single dose of PTX (15 mg/kg of body weight), oral administration of PTX with food at a dosage of 15 mg/kg (q 8 h) for 5 days, and oral administration of PTX without food at a dosage of 15 mg/kg (q 8 h) for 5 days. Blood samples were taken at 0.25, 0.5, 1, 1.5, 2, 2.5, and 3 hours after the first and last dose of PTX was administered PO, and at 5, 10, 20, 40, 80, and 160 minutes after PTX was administered IV. RESULTS: PTX was rapidly absorbed and eliminated after oral administration. Mean bioavailability after oral administration ranged from 15 to 32% among treatment groups and was not affected by the presence of food. Higher plasma PTX concentrations and apparent bioavailability were observed after oral administration of the first dose, compared with the last dose during the 5-day treatment regimens. CONCLUSIONS AND CLINICAL RELEVANCE: In dogs, oral administration of 15 mg of PTX/kg results in plasma concentrations similar to those produced by therapeutic doses in humans, and a three-times-a-day dosing regimen is the most appropriate. 相似文献
15.
M. Qiu Z. Hao R. Zhang L. Cui C. Wang S. Qu S. Yuan Y. Bai 《Journal of veterinary pharmacology and therapeutics》2018,41(1):142-147
Quinocetone (QCT), an antimicrobial growth promoter, is widely used in food‐producing animals. However, information about pharmacokinetics (PK) of QCT in ducks still remains unavailable up to now. In this study, QCT and its major metabolites (1‐desoxyquinocetone, di‐desoxyquinocetone and 3‐methyl‐quinoxaline‐2‐carboxylic) in ducks were studied using a simple and sensitive UHPLC‐MS/MS assay. Twenty ducks were divided into two groups. (n = 10/group). One group received QCT by oral administration at dose of 40 mg/kg while another group received QCT intravenously at 10 mg/kg. Plasma samples were collected at various time points from 0 to 96 hr. QCT and its major metabolites in duck plasma samples were extracted by 1 ml acetonitrile and detected by UHPLC‐MS/MS, with the gradient mobile phase that consisted of 0.1% formic acid in water (A) and acetonitrile (B). A noncompartment analysis was used to calculate the PK parameters. The results showed that following oral dosing, the peak plasma concentration (Cmax) of QCT was 32.14 ng/ml and the area under the curve (AUCINF_obs) was 233.63 (h ng)/ ml. Following intravenous dosing, the Cmax, AUCINF_obs and Vss_obs were 96.70 ng/ml, 152.34 (h ng)/ ml and 807.00 L/kg, respectively. These data indicated that the QCT was less absorbed in vivo following oral administration, with low bioavailability (38.43%). QCT and its major metabolites such as 1‐desoxyquinocetone and 3‐methyl‐quinoxaline‐2‐carboxylic were detected at individual time points in individual ducks, while the di‐desoxyquinocetone was not detected in all time points in all ducks. This study enriches basic scientific data about pharmacokinetics of QCT in ducks after oral and intravenous administration and will be beneficial for clinical application in ducks. 相似文献
16.
The pharmacokinetics of DPH after the administration of a single intravenous or intramuscular dose in healthy dogs 下载免费PDF全文
A. Sanchez A. Valverde M. Sinclair C. Mosley A. Singh A. J. Mutsaers B. Hanna Y. Gu R. Johnson 《Journal of veterinary pharmacology and therapeutics》2016,39(5):452-459
The objective of this study was to determine the pharmacokinetics of diphenhydramine (DPH) in healthy dogs following a single i.v. or i.m. dose. Dogs were randomly allocated in two treatment groups and received DPH at 1 mg/kg, i.v., or 2 mg/kg, i.m. Blood samples were collected serially over 24 h. Plasma concentrations of DPH were determined by high‐performance liquid chromatography, and noncompartmental pharmacokinetic analysis was performed with the commercially available software. Cardio‐respiratory parameters, rectal temperature and effects on behaviour, such as sedation or excitement, were recorded. Diphenhydramine Clarea, Vdarea and T1/2 were 20.7 ± 2.9 mL/kg/min, 7.6 ± 0.7 L/kg and 4.2 ± 0.5 h for the i.v. route, respectively, and Clarea/F, Vdarea/F and T1/2 20.8 ± 2.7 mL/kg/min, 12.3 ± 1.2 L/kg and 6.8 ± 0.7 h for the i.m. route, respectively. Bioavailability was 88% after i.m. administration. No significant differences were found in physiological parameters between groups or within dogs of the same group, and values remained within normal limits. No adverse effects or changes in mental status were observed after the administration of DPH. Both routes of administration resulted in DPH plasma concentrations which exceeded levels considered therapeutic in humans. 相似文献
17.
Maria Fabiana Landoni Gabriela Alejandra Albarellos 《Journal of veterinary pharmacology and therapeutics》2019,42(2):171-178
The pharmacokinetic properties of the fluoroquinolone levofloxacin (LFX) were investigated in six dogs after single intravenous, oral and subcutaneous administration at a dose of 2.5, 5 and 5 mg/kg, respectively. After intravenous administration, distribution was rapid (T½dist 0.127 ± 0.055 hr) and wide as reflected by the volume of distribution of 1.20 ± 0.13 L/kg. Drug elimination was relatively slow with a total body clearance of 0.11 ± 0.03 L kg?1 hr?1 and a T½ for this process of 7.85 ± 2.30 hr. After oral and subcutaneous administration, absorption half‐life and Tmax were 0.35 and 0.80 hr and 1.82 and 2.82 hr, respectively. The bioavailability was significantly higher (p ? 0.05) after subcutaneous than oral administration (79.90 vs. 60.94%). No statistically significant differences were observed between other pharmacokinetic parameters. Considering the AUC24 hr/MIC and Cmax/MIC ratios obtained, it can be concluded that LFX administered intravenously (2.5 mg/kg), subcutaneously (5 mg/kg) or orally (5 mg/kg) is efficacious against Gram‐negative bacteria with MIC values of 0.1 μg/ml. For Gram‐positive bacteria with MIC values of 0.5 μg/kg, only SC and PO administration at a dosage of 5 mg/kg showed to be efficacious. MIC‐based PK/PD analysis by Monte Carlo simulation indicates that the proposed dose regimens of LFX, 5 and 7.5 mg/kg/24 hr by SC route and 10 mg/kg/24 hr by oral route, in dogs may be adequate to recommend as an empirical therapy against S. aureus strains with MIC ≤ 0.5 μg/ml and E. coli strains with MIC values ≤0.125 μg/ml. 相似文献
18.
19.
Miller DM Swan GE Lobetti RG Jacobson LS 《Journal of the South African Veterinary Association》2005,76(3):146-150
The pharmacokinetics of diminazene aceturate following intramuscular (i.m.) administration at 4.2 mg/kg was evaluated in 8 healthy German Shepherd dogs. Blood samples were collected at 19 intervals over a period of 21 days. Diminazene plasma concentrations were measured using a validated HPLC method with UV detection and a sensitivity of 25 ng/ml. The in vitro and in vivo binding of diminazene to blood elements was additionally determined. Diminazene pharmacokinetics showed a large inter-individual variation after i.m. administration. It had a short absorption half-life (K01-HL of 0.11 +/- 0.18 h), resulting in a C(max) of 1849 +/- 268.7 ng/ml at T(max) of 0.37 h and a mean overall elimination half-life (T1/2beta) of 5.31 +/- 3.89 h. A terminal half-life of 27.5 +/- 25.0 h was measured. At 1 h after i.m. injection, 75% of the diminazene in whole blood was in the plasma fraction. The results of this study indicate that diminazene is rapidly distributed and sequestered into the liver, followed by a slower terminal phase during which diminazene is both redistributed to the peripheral tissues and/or renally excreted. It is recommended that diminazene administered i.m. at 4.2 mg/kg should not be repeated within a 21-day period. 相似文献
20.
Dennis J. Woerde Luke A. Wittenburg Jonathan D. Dear 《Journal of veterinary internal medicine / American College of Veterinary Internal Medicine》2022,36(4):1422
BackgroundIsavuconazole is a triazole antifungal drug that has shown good efficacy in human patients. Absorption and pharmacokinetics have not been evaluated in cats.ObjectivesTo determine the pharmacokinetics of isavuconazole in cats given a single IV or PO dose.AnimalsEight healthy, adult research cats.MethodsFour cats received 100 mg capsules of isavuconazole PO. Four cats received 5 mg/kg isavuconazole solution IV. Serum was collected at predetermined intervals for analysis using ultra‐high performance liquid chromatography‐tandem mass spectrometry. Data were analyzed using a 2‐compartment uniform weighting pharmacokinetic analysis with lag time for PO administration and a 2 compartment, 1/y2 weighting for IV administration. Predicted 24 and 48‐hour dosing intervals of 100 mg isavuconazole administered PO were modeled and in vitro plasma protein binding was assessed.ResultsBoth PO and IV drug administration resulted in high serum concentrations. Intravenous and PO formulations of isavuconazole appear to be able to be used interchangeably. Peak serum isavuconazole concentrations occurred 5 ± 3.8 hours after PO administration with an elimination rate half‐life of 66.2 ± 55.3 hours. Intersubject variability was apparent in both the PO and IV groups. Two cats vomited 6 to 8 hours after PO administration. No adverse effects were observed in the IV group. Oral bioavailability was estimated to be approximately 88%. Serum protein binding was calculated to be approximately 99.0% ± 0.03%.Conclusions and Clinical ImportanceIsavuconazole might prove to be useful in cats with fungal disease given its favorable pharmacokinetics. Additional studies on safety, efficacy, and tolerability of long‐term isavuconazole use are needed. 相似文献