首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bauer GA  Berntson GM 《Tree physiology》2001,21(2-3):137-144
We examined changes in root system architecture and physiology and whole-plant patterns of nitrate reductase (NR) activity in response to atmospheric CO2 enrichment and N source to determine how changes in the form of N supplied to plants interact with rising CO2 concentration ([CO2]). Seedlings of Betula alleghaniensis Britt. and Pinus strobus L., which differ in growth rate, root architecture, and the partitioning of NR activity between leaves (Betula) and roots (Pinus), were grown in ambient (400 microl l(-1)) and elevated (800 microl l(-1)) [CO2] and supplied with either nitrate (NO3-) or ammonium (NH4+) as their sole N source. After 15 weeks of growth, plants were harvested and root system architecture, N uptake kinetics, and NR activity measured. Betula alleghaniensis responded to elevated [CO2] with significant increases in growth, regardless of the source of N. Pinus strobus showed no significant response in biomass production or allocation to elevated [CO2]. Both species exhibited significantly greater growth with NH4+ than with NO3-, along with lower root:shoot biomass ratios. Betula showed significant increases in total root length in response to elevated [CO2]. However, root N uptake rates in Betula (for both NO3- and NH4+) were either reduced or unchanged by elevated [CO2]. Pinus showed the opposite response to elevated [CO2], with no change in root architecture, but an increase in maximal uptake rates in response to elevated [CO2]. Nitrate reductase activity (on a mass basis) was reduced in leaves of Betula in elevated [CO2], but did not change in other tissues. Nitrate reductase activity was unaffected by elevated [CO2] in Pinus. Scaling this response to the whole-plant, NR activity was reduced in elevated [CO2] in Betula but not in Pinus. However, because Betula plants were larger in elevated [CO2], total whole-plant NR activity was unaffected.  相似文献   

2.
We evaluated the response of Japanese larch (Larix kaempferi Sieb. & Zucc.) to elevated atmospheric CO(2) concentration ([CO(2)]) (689 +/- 75 ppm in 2002 and 697 +/- 90 ppm in 2003) over 2 years in a field experiment with open-top chambers. Root activity was assessed as nitrogen, phosphorus and potassium uptake rates estimated from successive measurements of absorbed amounts. Dry matter production of whole plants was unaffected by elevated [CO(2)] in the first year of treatment, but increased significantly in response to elevated [CO(2)] in the second year. In contrast, elevated [CO(2)] increased the root to shoot ratio and fine root dry mass in the first year, but not in the second year. Elevated [CO(2)] had no effect on tissue N, P and K concentrations. Uptake rates of N, P and K correlated with whole-plant relative growth rates, but were unaffected by growth [CO(2)], as was ectomycorrhizal colonization, a factor assumed to be important for nutrient uptake in trees. We conclude that improved growth of Larix kaempferi in response to elevated [CO(2)] is accompanied by increased root biomass, but not by increased root activity.  相似文献   

3.
Effects of elevated concentrations of carbon dioxide ([CO2]) and ozone ([O3]) on photosynthesis and related biochemistry of two European silver birch (Betula pendula Roth) clones were studied under field conditions during 1999-2001. Seven-year-old trees of Clones 4 and 80 were exposed for 3 years to the following treatments in an open-top chamber experiment: outside control (OC), chamber control (CC), 2x ambient [CO2] (EC), 2x ambient [O3] (EO) and 2x ambient [CO2] + 2x ambient [O3] (EC+EO). During the experiment, gas exchange, chlorophyll fluorescence, amount and activity of Rubisco, concentrations of chlorophyll, soluble protein, soluble sugars, starch, nitrogen (N) and carbon:nitrogen (C:N) ratio were determined in short- and long-shoot leaves. Elevated [CO2] increased photosynthetic rate by around 30% when measurements were made at the growth [CO2]. When measured at ambient [CO2], photosynthesis was around 15% lower in EC trees than in CC trees. This was related to a approximately 10% decrease in total leaf N, to 26 and 20% decreases in the amount and activity of Rubisco, respectively, and to a 49% increase in starch concentration in elevated [CO2]. Elevated [O3] had no significant effect on gas exchange parameters and its effect on biochemistry was small in both clones. However, elevated [O3] decreased the proportion of Rubisco in total soluble proteins and the apparent quantum yield of photosystem II (PSII) photochemistry in light and increased non-photochemical quenching in 2000. The interactive effect of CO2 and O3 was variable. Elevated [O3] decreased chlorophyll concentration only in EO trees, and the EC+EO treatment decreased the total activity of Rubisco and increased the C:N ratio more than the EO treatment alone. The small effect of elevated [O3] on photosynthesis indicates that these young silver birches were fairly tolerant to annual [O3] exposures that were 2-3 times higher than the AOT40 value of 10 ppm.h. set as a critical dose for forest trees.  相似文献   

4.
Pseudotsuga menziesii (Mirb.) Franco (Douglas-fir) seedlings were grown in a 2 x 2 factorial design in enclosed mesocosms at ambient temperature or 3.5 degrees C above ambient, and at ambient CO2 concentration ([CO2]) or 179 ppm above ambient. Two additional mesocosms were maintained as open controls. We measured the extent of mycorrhizal infection, foliar nitrogen (N) concentrations on both a weight basis (%N) and area basis (Narea), and foliar delta15N signatures (15N/14N ratios) from summer 1993 through summer 1997. Mycorrhizal fungi had colonized nearly all root tips across all treatments by spring 1994. Elevated [CO2] lowered foliar %N but did not affect N(area), whereas elevated temperature increased both foliar %N and Narea. Foliar delta15N was initially -1 per thousand and dropped by the final harvest to between -4 and -5 per thousand in the enclosed mesocosms, probably because of transfer of isotopically depleted N from mycorrhizal fungi. Based on the similarity in foliar delta15N among treatments, we conclude that mycorrhizal fungi had similar N allocation patterns across CO2 and temperature treatments. We combined isotopic and Narea data for 1993-94 to calculate fluxes of N for second- and third-year needles. Yearly N influxes were higher in second-year needles than in third-year needles (about 160 and 50% of initial leaf N, respectively), indicating greater sink strength in the younger needles. Influxes of N in second-year needles increased in response to elevated temperature, suggesting increased N supply from soil relative to plant N demands. In the elevated temperature treatments, N effluxes from third-year needles were higher in seedlings in elevated [CO2] than in ambient [CO2], probably because of increased N allocation below ground. We conclude that N allocation patterns shifted in response to the elevated temperature and [CO2] treatments in the seedlings but not in their fungal symbionts.  相似文献   

5.
Effects of elevated CO2 concentration ([CO2]) on carbon assimilation and needle biochemistry of fertilized and unfertilized 25-30-year-old Scots pine (Pinus sylvestris L.) trees were studied in a branch bag experiment set up in a naturally regenerated stand. In each tree, one branch was enclosed in a bag supplied with ambient [CO2] (360 micromol mol(-1)), a second branch was enclosed in a bag supplied with elevated [CO2] (680 micromol(-1)) and a control branch was left unbagged. The CO2 treatments were applied from April 15 to September 15, starting in 1993 for unfertilized trees and in 1994 for fertilized trees, which were treated with N in June 1994. Net photosynthesis, amount and activity of Rubisco, N, starch, C:N ratio and SLA of needles were measured during the growing season of 1995. Light-saturated net photosynthetic rates of 1-year-old and current-year shoots measured at ambient [CO2] were not affected by growth [CO2] or N fertilization. Elevated [CO2] reduced the amount and activity of Rubisco, and the relative proportion of Rubisco to soluble proteins and N in needles of unfertilized trees. Elevated [CO2] also reduced the chlorophyll concentration (fresh weight basis) of needles of unfertilized trees. Soluble protein concentration of needles was not affected by growth [CO2]. Elevated [CO2] decreased the Rubisco:chlorophyll ratio in unfertilized and fertilized trees. Starch concentration was significantly increased at elevated [CO2] only in 1-year-old needles of fertilized trees. Elevated [CO2] reduced needle N concentration on a dry weight or structural basis (dry weight minus starch) in unfertilized trees, resulting in an increase in needle C:N ratio. Fertilization had no effect on soluble protein, chlorophyll, Rubisco or N concentration of needles. The decrease in the relative proportions of Rubisco and N concentration in needles of unfertilized trees at elevated [CO2] indicates reallocation of N resources away from Rubisco to nonphotosynthetic processes in other plant parts. Acclimation occurred in a single branch exposed to high [CO2], despite the large sink of the tree. The responses of 1-year-old and current-year needles to elevation of growth [CO2] were similar.  相似文献   

6.
Pedunculate oak (Quercus robur L.) seedlings were grown for 3 or 4 months (second- and third-flush stages) in greenhouses at two atmospheric CO2 concentrations ([CO2]) (350 or 700 micromol mol(-1)) and two nitrogen fertilization regimes (6.1 or 0.61 mmol N l(-1) nutrient solution). Combined effects of [CO2] and nitrogen fertilization on partitioning of newly acquired carbon (C) and nitrogen (N) were assessed by dual 13C and 15N short-term labeling of seedlings at the second- or third-flush stage of development. In the low-N treatment, root growth, but not shoot growth, was stimulated by elevated [CO2], with the result that shoot/root biomass ratio declined. At the second-flush stage, overall seedling biomass growth was increased (13%) by elevated [CO2] regardless of N fertilization. At the third-flush stage, elevated [CO2] increased growth sharply (139%) in the high-N but not the low-N treatment. Root/shoot biomass ratios were threefold higher in the low-N treatment relative to the high-N treatment. At the second-flush stage, leaf area was 45-51% greater in the high-N treatment than in the low-N treatment. At the-third flush stage, there was a positive interaction between the effects of N fertilization and [CO2] on leaf area, which was 93% greater in the high-N/elevated [CO2] treatment than in the low-N/ambient [CO2] treatment. Specific leaf area was reduced (17-25%) by elevated [CO2], whereas C and N concentrations of seedlings increased significantly in response to either elevated [CO2] or high-N fertilization. At the third-flush stage, acquisition of C and N per unit dry mass of leaf and fine root was 51 and 77% greater, respectively, in the elevated [CO2]/high-N fertilization treatment than in the ambient [CO2]/low-N fertilization treatment. However, there was dilution of leaf N in response to elevated [CO2]. Partitioning of newly acquired C and N between shoot and roots was altered by N fertilization but not [CO2]. More newly acquired C and N were partitioned to roots in the low-N treatment than in the high-N treatment.  相似文献   

7.
An understanding of root system capacity to acquire nitrogen (N) is critical in assessing the long-term growth impact of rising atmospheric CO2 concentration ([CO2]) on trees and forest ecosystems. We examined the effects of mycorrhizal inoculation and elevated [CO2] on root ammonium (NH4+) and nitrate (NO3-) uptake capacity in sweetgum (Liquidambar styraciflua L.) and loblolly pine (Pinus taeda L.). Mycorrhizal treatments included inoculation of seedlings with the arbuscular mycorrhizal (AM) fungus Glomus intraradices Schenck & Smith in sweetgum and the ectomycorrhizal (EM) fungus Laccaria bicolor (Maire) Orton in loblolly pine. These plants were then equally divided between ambient and elevated [CO2] treatments. After 6 months of treatment, root systems of both species exhibited a greater uptake capacity for NH4+ than for NO3-. In both species, mycorrhizal inoculation significantly increased uptake capacity for NO3-, but not for NH4+. In sweetgum, the mycorrhizal effect on NO3- and NH4+ uptake capacity depended on growth [C02]. Similarly, in loblolly pine, the mycorrhizal effect on NO3- uptake capacity depended on growth [CO2], but the effect on NH4+ uptake capacity did not. Mycorrhizal inoculation significantly enhanced root nitrate reductase activity (NRA) in both species, but elevated [CO2] increased root NRA only in sweetgum. Leaf NRA in sweetgum did not change significantly with mycorrhizal inoculation, but increased in response to [CO2]. Leaf NRA in loblolly pine was unaffected by either treatment. The results indicate that the mycorrhizal effect on specific root N uptake in these species depends on both the form of inorganic N and the mycorrhizal type. However, our data show that in addressing N status of plants under high [CO2], reliable prediction is possible only when information about other root system adjustments (e.g., biomass allocation to fine roots) is simultaneously considered.  相似文献   

8.
We evaluated the effects of elevated carbon dioxide concentration ([CO2]) and two nutrient regimes on stem growth rate, annual ring structure and temporal variations in photosynthetic characteristics of seedlings of Japanese larch (Larix kaempferi (Lamb.) Carr.). Seedlings were grown in phytotron chambers in an ambient (360 ppm) or an elevated (720 ppm) [CO2] in two nutrient regimes for one growing season. Elevated [CO2] reduced stem height and increased stem basal diameter compared with ambient [CO2]. The effect of elevated [CO2] on growth tended to be greater at high-nutrient supply than at low-nutrient supply. Elevated [CO2] had no significant effect on ring width or the number of tracheids per radial file. There was no obvious difference in cell wall thickness or the relative area of the cell wall between seedlings grown in ambient or elevated [CO2]. Although growth in elevated [CO2] resulted in a slight increase in cell diameter, the increase had a relatively minor effect on the relative area of the cell wall. Net assimilation rate increased in response to elevated [CO2]; however, the increase in whole-crown photosynthetic rate (Total Agrowth) in seedlings in the elevated [CO2] treatment was minimal because of the smaller specific needle area and acclimation of the photosynthetic characteristics of the needles to the growth [CO2]. In conclusion, we observed no obvious enhancement in the capacity for carbon fixation in Japanese larch seedlings grown in the presence of elevated [CO2] that might be attributable to changes in stem growth. However, elevated [CO2] caused changes in the temporal pattern of stem growth and in some anatomical features of the tracheids.  相似文献   

9.
This paper investigates the possible contribution of Short Rotation Cultures (SRC) to carbon sequestration in both current and elevated atmospheric CO2 concentrations ([CO2]). A dense poplar plantation (1 x 1 m) was exposed to a [CO2] of 550 ppm in Central Italy using the free-air CO2 enrichment (FACE) technique. Three species of Populus were examined, namely P. alba L., P. nigra L. and P. x euramericana Dode (Guinier). Aboveground woody biomass of trees exposed to elevated [CO2] for three growing seasons increased by 15 to 27%, depending on species. As a result, light-use efficiency increased. Aboveground biomass allocation was unaffected, and belowground biomass also increased under elevated [CO2] conditions, by 22 to 38%. Populus nigra, with total biomass equal to 62.02 and 72.03 Mg ha-1 in ambient and elevated [CO2], respectively, was the most productive species, although its productivity was stimulated least by atmospheric CO2 enrichment. There was greater depletion of inorganic nitrogen from the soil after three growing seasons in elevated [CO2], but no effect of [CO2] on stem wood density, which differed significantly only among species.  相似文献   

10.
Cao B  Dang QL  Zhang S 《Tree physiology》2007,27(6):891-899
To study the effects of elevated CO2 concentration ([CO2]) on relationships between nitrogen (N) nutrition and foliar gas exchange parameters, white birch (Betula papyrifera Marsh.) seedlings were exposed to one of five N-supply regimes (10, 80, 150, 220, 290 mg N l(-1)) in either ambient [CO2] (360 micromol mol(-1)) or elevated [CO2] (720 micromol mol(-1)) in environment-controlled greenhouses. Foliar gas exchange and chlorophyll fluorescence were measured after 60 and 80 days of treatment. Photosynthesis showed a substantial down-regulation (up to 57%) in response to elevated [CO2] and the magnitude of the down-regulation generally decreased exponentially with increasing leaf N concentration. When measured at the growth [CO2], elevated [CO2] increased the overall rate of photosynthesis (P(n)) and instantaneous water-use efficiency (IWUE) by up to 69 and 236%, respectively, but decreased transpiration (E) and stomatal conductance (g(s)) in all N treatments. However, the degree of stimulation of photosynthesis by elevated [CO2] decreased as photosynthetic down-regulation increased from 60 days to 80 days of treatment. Elevated [CO2] significantly increased total photosynthetic electron transport in all N treatments at 60 days of treatment, but the effect was insignificant after 80 days of treatment. Both P(n) and IWUE generally increased with increasing leaf N concentration except at very high leaf N concentrations, where both P(n) and IWUE declined. The relationships of P(n) and IWUE with leaf N concentration were modeled with both a linear regression and a second-order polynomial function. Elevated [CO2] significantly and substantially increased the slope of the linear regression for IWUE, but had no significant effect on the slope for P(n). The optimal leaf N concentration for P(n) and IWUE derived from the polynomial function did not differ between the CO2 treatments when leaf N was expressed on a leaf area basis. However, the mass-based optimal leaf N concentration for P(n) was much lower in seedlings in elevated [CO2] than in ambient [CO2] (31.88 versus 37.00 mg g(-1)). Elevated [CO2] generally decreased mass-based leaf N concentration but had no significant effect on area-based leaf N concentration; however, maximum N concentration per unit leaf area was greater in elevated [CO2] than in ambient [CO2] (1.913 versus 1.547 g N m(-2)).  相似文献   

11.
Liu L  King JS  Giardina CP 《Tree physiology》2005,25(12):1511-1522
Human activities are increasing the concentrations of atmospheric carbon dioxide ([CO2]) and tropospheric ozone ([O3]), potentially leading to changes in the quantity and chemical quality of leaf litter inputs to forest soils. Because the quality and quantity of labile and recalcitrant carbon (C) compounds influence forest productivity through changes in soil organic matter content, characterizing changes in leaf litter in response to environmental change is critical to understanding the effects of global change on forests. We assessed the independent and combined effects of elevated [CO2] and elevated [O3] on foliar litter production and chemistry in aspen (Populus tremuloides Michx.) and birch-(Betula papyrifera Marsh.) aspen communities at the Aspen free-air CO2 enrichment (FACE) experiment in Rhinelander, WI. Litter was analyzed for concentrations of C, nitrogen (N), soluble sugars, lipids, lignin, cellulose, hemicellulose and C-based defensive compounds (soluble phenolics and condensed tannins). Concentrations of these chemical compounds in naturally senesced litter were similar in aspen and birch-aspen communities among treatments, except for N, the C:N ratio and lipids. Elevated [CO2] significantly increased C:N (+8.7%), lowered mean litter N concentration (-10.7%) but had no effect on the concentrations of soluble sugars, soluble phenolics and condensed tannins. Elevated [CO2] significantly increased litter biomass production (+33.3%), resulting in significant increases in fluxes of N, soluble sugars, soluble phenolics and condensed tannins to the soil. Elevated [O3] significantly increased litter concentrations of soluble sugars (+78.1%), soluble phenolics (+53.1%) and condensed tannins (+77.2%). There were no significant effects of elevated [CO2] or elevated [O3] on the concentrations of individual C structural carbohydrates (cellulose, hemicellulose and lignin). Elevated [CO2] significantly increased cellulose (+37.4%) input to soil, whereas elevated [O3] significantly reduced hemicellulose and lignin inputs to soil (-22.3 and -31.5%, respectively). The small changes in litter chemistry in response to elevated [CO2] and tropospheric [O3] that we observed, combined with changes in litter biomass production, could significantly alter the inputs of N, soluble sugars, condensed tannins, soluble phenolics, cellulose and lignin to forest soils in the future.  相似文献   

12.
We examined the interactive effects of elevated CO2 concentration ([CO2]) and water stress on growth and physiology of 1-year-old peach (Prunus persica L.) seedlings grown in 10-dm3 pots in open-top chambers with ambient (350 micromol mol-1) or elevated (700 micromol mol-1) [CO2]. Seedlings were supplied weekly with a non-limiting nutrient solution. Water was withheld from half of the plants in each treatment for a 4-week drying cycle, to simulate a sudden and severe water stress during the phase of rapid plant growth. Throughout the growing season, seedlings in elevated [CO2] had higher assimilation rates, measured at the growth [CO2], than seedlings in ambient [CO2], and this caused an increase in total dry mass of about 33%. Stomatal conductance, total water uptake, leaf area and leaf number were unaffected by elevated [CO2]. Because seedlings in the two CO2 treatments had similar transpiration despite large differences in total dry mass, water-use efficiency (WUE) of well-watered and water-stressed seedlings grown in elevated [CO2] was an average of 51 and 63% higher, respectively, than WUE of comparable seedlings grown in ambient [CO2]. Elevated [CO2] enhanced total biomass of water-stressed seedlings by 31%, and thus ameliorated the effects of water limitation. However, the percentage increases in total dry mass between well-watered and water-stressed seedlings were similar in ambient (53%) and elevated (58%) [CO2], demonstrating that there was no interaction between elevated [CO2] and water stress. This finding should be considered when predicting responses of trees to global climate change in hot and dry environments, where predicted temperature increases will raise evaporative demands and exacerbate the effects of drought on tree growth.  相似文献   

13.
We studied the short-term (i.e., a few days) effect of a sudden increase in CO2 uptake by shoots on nutrient (NO3-, P ion, K+, Ca2+ and Mg2+) uptake by roots during vegetative growth of young walnut (Juglans nigra x J. major L.) trees. The increase in CO2 uptake was induced by a sudden increase in atmospheric CO2 concentration ([CO2]). Twelve 2-year-old trees were transplanted and grown in perlite-filled pots in a greenhouse. Rates of CO2 uptake and water loss by individual trees were determined by a branch bag method from 3 days before until 6 days after [CO2] was increased. Nutrient uptake rates were measured concurrently by a hydroponic recirculating nutrient solution system that provided non-limiting supplies of water and nutrients. Six control trees were kept in ambient [CO2] (360 ppm), and [CO2] was increased to 550 ppm for one set of three trees and to 800 ppm for another set of three trees. Before imposing the elevated [CO2] treatments, all trees exhibited similar daily water loss, CO2 uptake and nutrient uptake rates when expressed per unit leaf area to account for the tree size effect. Daily water loss rates were only slightly affected by elevated [CO2]. Carbon dioxide uptake rates greatly increased with increasing atmospheric [CO2], and nutrient uptake rates were proportional to CO2 uptake rates during the study period, except for P ion. Our results show that, despite the important carbon and nitrogen storage capacities previously observed in young walnut trees, nutrient uptake by roots is strongly coupled to carbon uptake by shoots over periods of a few days.  相似文献   

14.
We studied the effects of elevated concentrations of carbon dioxide ([CO2]) and ozone ([O3]) on growth, biomass allocation and leaf area of field-grown O3-tolerant (Clone 4) and O3-sensitive clones (Clone 80) of European silver birch (Betula pendula Roth) trees during 1999-2001. Seven-year-old trees of Clones 4 and 80 growing outside in open-top chambers were exposed for 3 years to the following treatments: outside control (OC); chamber control (CC); 2 x ambient [CO2] (EC); 2 x ambient [O3] (EO); and 2 x ambient [CO2] + 2 x ambient [O3] (EC+EO). When the results for the two clones were analyzed together, elevated [CO2] increased tree growth and biomass, but had no effect on biomass allocation. Total leaf area increased and leaf abscission was delayed in response to elevated [CO2]. Elevated [O3] decreased dry mass of roots and branches and mean leaf size and induced earlier leaf abscission in the autumn; otherwise, the effects of elevated [O3] were small across the clones. However, there were significant interactions between elevated [CO2] and elevated [O3]. When results for the clones were analyzed separately, stem diameter, volume growth and total biomass of Clone 80 were increased by elevated [CO2] and the stimulatory effects of elevated [CO2] on stem volume growth and total leaf area increased during the 3-year study. Clone 80 was unaffected by elevated [O3]. In Clone 4, elevated [O3] decreased root and branch biomass by 38 and 29%, respectively, whereas this clone showed few responses to elevated [CO2]. Elevated [CO2] significantly increased total leaf area in Clone 80 only, which may partly explain the smaller growth responses to elevated [CO2] of Clone 4 compared with Clone 80. Although we observed responses to elevated [O3], the responses to the EC+EO and EC treatments were similar, indicating that the trees only responded to elevated [O3] under ambient [CO2] conditions, perhaps reflecting a greater quantity of carbohydrates available for detoxification and repair in elevated [CO2].  相似文献   

15.
Zhang S  Dang QL 《Tree physiology》2005,25(5):523-531
One-year-old jack pine (Pinus banksiana Lamb.) and current-year white birch (Betula papyrifera Marsh.) seedlings were grown in ambient (360 ppm) or twice ambient (720 ppm) atmospheric CO2 concentration ([CO2]) and at three soil temperatures (Tsoil = 7, 17 and 27 degrees C initially, increased to 10, 20 and 30 degrees C two months later, respectively) in a greenhouse for 4 months. In situ foliar gas exchange, in vivo carboxylation characteristics and chlorophyll fluorescence were measured after 2.5 and 4 months of treatment. Low Tsoil suppressed net photosynthetic rate (Pn), stomatal conductance (g(s)) and transpiration rate (E) in jack pine in both CO2 treatments and g(s) and E in white birch in ambient [CO2], but enhanced instantaneous water-use efficiency (IWUE) in both species after 2.5 months of treatment. Treatment effects on g(s) and E remained significant throughout the 4-month study. Low Tsoil reduced maximal carboxylation rate (Vcmax) and PAR-saturated electron transport rate (Jmax) in jack pine in elevated [CO2] after 2.5 months of treatment, but not after 4 months of treatment. Low Tsoil increased actual photochemical efficiency of photosystem II (PSII) in the light (DeltaF/Fm') in jack pine, but decreased DeltaF/Fm' in white birch after 4 months of treatment. In response to low Tsoil, photosynthetic linear electron transport to carboxylation (Jc) decreased in jack pine after 2.5 months and in white birch after 4 months of treatment. Low Tsoil increased the ratio of the photosynthetic linear electron transport to oxygenation (Jo) to the total photosynthetic linear electron transport rate through PSII (Jo/J(T)) in both species after 2.5 months of treatment, but the effects became statistically insignificant in white birch after 4 months of treatment. High Tsoil decreased foliar N concentration in white birch. Elevated [CO2] increased Pn, IWUE and Jc but decreased Jo/J(T) in both species at both measurement times except Jc in white birch after 2.5 months of treatment. Elevated [CO2] also decreased g(s) and E in white birch at high Tsoil, Vcmax in both species and triose phosphate utilization in white birch at low Tsoil after 4 months of treatment, and DeltaF/Fm' in white birch after 2.5 months of treatment. Elevated [CO2] also increased foliar N concentration in both species. Low Tsoil caused no permanent damage to PSII in either species, but jack pine responded and acclimated to low Tsoil more quickly than white birch. Photosynthetic down-regulation and a decrease in photosynthetic electron transport to photorespiration occurred in both species in response to elevated [CO2].  相似文献   

16.
We used whole-tree, open-top chambers to expose 13-year-old loblolly pine (Pinus taeda L.) trees, growing in soil with high or low nutrient availability, to either ambient or elevated (ambient + 200 micromol mol-1) carbon dioxide concentration ([CO2]) for 28 months. Branch growth and morphology, foliar chemistry and gas exchange characteristics were measured periodically in the upper, middle and lower crown during the 2 years of exposure. Fertilization and elevated [CO2] increased branch leaf area by 38 and 13%, respectively, and the combined effects were additive. Fertilization and elevated [CO2] differentially altered needle lengths, number of fascicles and flush length such that flush density (leaf area/flush length) increased with improved nutrition but decreased in response to elevated [CO2]. These results suggest that changes in nitrogen availability and atmospheric [CO2] may alter canopy structure, resulting in greater foliage retention and deeper crowns in loblolly pine forests. Fertilization increased foliar nitrogen concentration (N(M)), but had no consistent effect on foliar leaf mass (W(A)) or light-saturated net photosynthesis (A(sat)). However, the correlation between A(sat) and leaf nitrogen per unit area (N(A) = W(A)N(M)) ranged from strong to weak depending on the time of year, possibly reflecting seasonal shifts in the form and pools of leaf nitrogen. Elevated [CO2] had no effect on W(A), N(M) or N(A), but increased A(sat) on average by 82%. Elevated [CO2] also increased photosynthetic quantum efficiency and lowered the light compensation point, but had no effect on the photosynthetic response to intercellular [CO2], hence there was no acclimation to elevated [CO2]. Daily photosynthetic photon flux density at the upper, middle and lower canopy position was 60, 54 and 33%, respectively, of full sun incident to the top of the canopy. Despite the relatively high light penetration, W(A), N(A), A(sat) and R(d) decreased with crown depth. Although growth enhancement in response to elevated [CO2] was dependent on fertilization, [CO2] by fertilization interactions and treatment by canopy position interactions generally had little effect on the physiological parameters measured.  相似文献   

17.
We examined the effects of elevated carbon dioxide concentration ([CO2]) on the relationship between light-saturated net photosynthesis (A(sat)) and area-based foliar nitrogen (N) concentration (N(a)) in the canopy of the Duke Forest FACE experiment. Measurements of A(sat) and N(a) were made on two tree species growing in the forest overstory and four tree species growing in the forest understory, in ambient and elevated [CO2] FACE rings, during early and late summer of 1999, 2001 and 2002, corresponding to years three, five and six of CO2 treatment. When measured at the growth [CO2], net photosynthetic rates of each species examined in the forest overstory and understory were stimulated by elevated [CO2] at each measurement date. We found no effect of elevated [CO2] on N(a) in any of the species. The slope of the A(sat)-N relationship was 81% greater in elevated [CO2] than in ambient [CO2] when averaged across all sample dates, reflecting a differential CO2 effect on photosynthesis at the top and bottom of the canopy. We compared A(sat)-N relationships in trees grown in ambient and elevated [CO2] at two common CO2 concentrations, during late summer 2001 and both early and late 2002, to determine if the stimulatory effect of elevated [CO2] on photosynthesis diminishes over time. At all three sample times, neither the slopes nor the y-intercepts of the A(sat)-N relationships of trees grown in ambient or elevated [CO2] differed when measured at common CO2 concentrations, indicating that the responses of photosynthesis to long-term elevated [CO2] did not differ from the responses to a short-term increase in [CO2]. This finding, together with the observation that N(a) was unaffected by growth in elevated [CO2], indicates that these overstory and understory trees growing at the Duke Forest FACE experiment continue to show a strong stimulation of photosynthesis by elevated [CO2].  相似文献   

18.
Elevated concentrations of atmospheric carbon dioxide ([CO2]) and tropospheric ozone ([O3]) have the potential to affect tree physiology and structure and hence forest water use, which has implications for climate feedbacks. We investigated how a 40% increase above ambient values in [CO2] and [O3], alone and in combination, affect tree water use of pure aspen and mixed aspen-birch forests in the free air CO2-O3 enrichment experiment near Rhinelander, Wisconsin (Aspen FACE). Measurements of sap flux and canopy leaf area index (L) were made during two growing seasons, when steady-state L had been reached after more than 6 years of exposure to elevated [CO2] and [O3]. Maximum stand-level sap flux was not significantly affected by elevated [O3], but was increased by 18% by elevated [CO2] averaged across years, communities and O(3) regimes. Treatment effects were similar in pure aspen and mixed aspen-birch communities. Increased tree water use in response to elevated [CO2] was related to positive CO2 treatment effects on tree size and L (+40%). Tree water use was not reduced by elevated [O3] despite strong negative O3 treatment effects on tree size and L (-22%). Elevated [O3] predisposed pure aspen stands to drought-induced sap flux reductions, whereas increased tree water use in response to elevated [CO2] did not result in lower soil water content in the upper soil or decreasing sap flux relative to control values during dry periods. Maintenance of soil water content in the upper soil in the elevated [CO2] treatment was at least partly a function of enhanced soil water-holding capacity, probably a result of increased organic matter content from increased litter inputs. Our findings that larger trees growing in elevated [CO2] used more water and that tree size, but not maximal water use, was negatively affected by elevated [O3] suggest that the long-term cumulative effects on stand structure may be more important than the expected primary stomatal closure responses to elevated [CO2] and [O3] in determining stand-level water use under possible future atmospheric conditions.  相似文献   

19.
Four clones of Sitka spruce (Picea sitchensis (Bong.) Carr.) from two provenances, at 53.2 degrees N (Skidegate a and Skidegate b) and at 41.3 degrees N (North Bend a and North Bend b), were grown for three growing seasons in ambient (~350 micromol per mol) and elevated (~700 micromol per mol) CO2 concentrations. The clones were grown in stress-free conditions (adequate nutrition and water) to assess the effect of elevated [CO2] on tree physiology. Growth in elevated [CO2] significantly increased instantaneous photosynthetic rates of the clonal Sitka spruce saplings by about 62%. Downward acclimation of photosynthesis (A) was found in all four clones grown in elevated [CO2]. Rubisco activity and total chlorophyll concentration were also significantly reduced in elevated [CO2]. Provenance did not influence photosynthetic capacity. Best-fit estimates of Jmax (maximum rate of electron transport), Vcmax (RuBP-saturated rate of Rubisco) and Amax (maximum rate of assimilation) were derived from responses of A to intercellular [CO2] by using the model of Farquhar et al. (1980). At any leaf N concentration, the photosynthetic parameters were reduced by growth in elevated [CO2]. However, the ratio between Jmax and Vcmax was unaffected by CO2 growth concentration, indicating a tight coordination in the allocation of N between thylakoid and soluble proteins. In elevated [CO2], the more southerly clones had a higher initial N use efficiency (more carbon assimilated per unit of leaf N) than the more northerly clones, so that they had more N available for those processes or organs that were most limiting to growth at a particular time. This may explain the initial higher growth stimulation by elevated [CO2] in the North Bend clones than in the Skidegate clones.  相似文献   

20.
Soil nitrogen can alter storage and remobilization of carbon and nitrogen in forest trees and affect growth responses to elevated carbon dioxide concentration ([CO(2)]). We investigated these effects in oak saplings (Quercus robur L.) exposed for two years to ambient or twice ambient [CO(2)] in combination with low- (LN, 0.6 mmol N l(-1)) or high-nitrogen (HN, 6.1 mmol N l(-1)) fertilization. Autumn N retranslocation efficiency from senescing leaves was less in HN saplings than in LN saplings, but about 15% of sapling N was lost to the litter. During the dormant season, nonstructural carbohydrates made up 20 to 30% of the dry mass of perennial organs. Starch was stored mainly in large roots where it represented 35-46% of dry mass. Accumulation of starch increased in large roots in response to LN but was unaffected by elevated [CO(2)]. The HN treatment resulted in high concentrations of N-soluble compounds, and this effect was reduced by elevated [CO(2)], which decreased soluble protein N (-17%) and amino acid N (-37%) concentrations in the HN saplings. Carbon and N reserves were labeled with (13)C and (15)N, respectively, at the end of the first year. In the second year, about 20% of labeled C and 50% of labeled N was remobilized for spring growth in all treatments. At the end of leaf expansion, 50-60% of C in HN saplings originated from assimilation versus only 10-20% in LN saplings. In HN saplings only, N uptake occurred, and some newly assimilated N was allocated to new shoots. Through effects on the C and N content of perennial organs, elevated [CO(2)] and HN increased remobilization capacity, thereby supporting multiple shoot flushes, which increased leaf area and subsequent C acquisition in a positive feedback loop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号