首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of seed water content (WC) (2–3, 5–6 and 22–25%, on a fresh weight basis), storage temperature (+4, −20, −80 and −196°C) and storage duration (6, 12, 24, 48 and 60 months) on the germination of white spruce (Picea glauca (Moench) Voss), black spruce (Picea mariana (Mill.) B.S.P.) and lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) seed was investigated. Germination of white spruce control (untreated) seeds and seeds adjusted to 2–3% and 5–6% WC declined after 48 months of storage at −80 and −196°C, with a further decline at 60 months at −20, −80, −196°C. Germination remained high when control white spruce seeds and seeds with 2–3, 5–6% WC were stored at +4°C, over all storage durations. Generally, black spruce and lodgepole pine exhibited high germination at all storage temperatures at 2–3% and 5–6% WC as well as the control (untreated) seed, for up to 60 months in storage. Germination declined for all three species when seed was conditioned to 22–25% WC. This loss in germination was partially recovered in white spruce seed stored at +4, −20 and −80°C after storage durations of 24, 12 and 48 months, respectively, and in black spruce seeds stored at −20 and −196°C after storage durations of 24 months. Mean germination time (MGT) was relatively constant for all species, under all conditions, except for seed conditioned to 22–25% WC, where MGT increased for white spruce seed stored 48 months at −80 and −196°C, and for black spruce seed stored 24 months at +4 and −80°C and 60 months at −196°C. These results show that the optimal storage temperatures are 4°C for white spruce, and 4, −20, −80, and −196°C for black spruce and lodgepole pine, and 2–6% water content is optimal for all 3 species at these temperatures.  相似文献   

2.
In this study we integrated digital terrain models, forest inventory maps, optical remote sensing and field data to analyze the spatial structure of a 4850 km2 boreal mixedwood forest landscape in northeastern British Columbia. We built independent maps of forest cover and landform using a Bayesian classification algorithm and quantitative surface analysis. These data were used to test the strength of the association between topographic position and forest cover using a modified electivity index. We then used logistic regression to test whether the probability of a site being occupied by either mixedwood or hardwood is correlated to its distance from white spruce (Picea glauca) seed sources. The relationship between forest cover and topography showed significant departures from randomness, with white spruce preferentially associated with channels and concave slopes, and hardwoods preferentially associated with ridges and convex slopes. The analysis of mixedwood and hardwood stand distribution showed a positive correlation between hardwood occurrence and distance from spruce stands, suggesting that the dispersal limitations of white spruce is a significant influence on landscape vegetation dynamics. Overall, the results support the hypothesis that mixedwood dynamics are the product of ecological processes at multiple scales. Furthermore, these dynamics are only revealed by taking a varied approach to both data gathering and analyses.  相似文献   

3.
To meet the needs for improved spruce seeds in the province of Quebec, Canada, 17 first-generation white spruce seed orchards (SO) were established. These SOs are located in different bioclimatic domains and contain seed trees originating from geographically and genetically distinct sources. To evaluate the influence of SO on seedling growth and morphology, seedlings produced with seeds originating from the ten most commonly used first-generation white spruce SO in Quebec were raised under similar nursery conditions. Tissue nutrient concentrations of seedlings evolved similarly among seed orchards during the second growing season. At the end of the growing season, only shoot phosphorus concentrations were significantly different. When modeled with a logistic function, there was a significant difference between height and diameter growth curve parameters of seedlings from distinct SO during the second growing season. These differences led to significant differences in the height and shoot dry mass of the seedlings at the end of their second growing season, but not in their diameter or root dry mass. The ten SOs were clustered in two groups according to the above-ground characteristics of their progeny. This limited amount of morphological diversity suggests that expanding the size of the present seed zones may be an appropriate course of action for white spruce seed production in Quebec.  相似文献   

4.
Increasing irrigation efficiency and reducing groundwater contamination from agricultural and nursery runoff are important components in environmentally compatible plant production practices. The objectives of this study were to quantify mineral leaching from containerized (2+0) white spruce seedlings grown under three different irrigation regimes (30, 40 and 55% V/V) and to determine the effect of irrigation regime on growth, nutritional status, and gas exchange. To negate the effect of environmental variables, a completely randomized block experiment was installed in a normal production run of air-slit containerized white spruce seedlings grown under an unheated polyethylene tunnel. Whereas substrate water content was monitored daily, biweekly measurements of tissue and substrate fertility and seedling morphophysiological variables were made over the course of the growing season. Leaching of mineral nutrients was continuously monitored throughout the experimental period. Reducing volumetric substrate water content from 55 to 30% did not have a significant effect on seedling growth, carbon allocation, tissue nitrogen content, or end-of-season morphology. This irrigation strategy also resulted in a 20% reduction in water usage and, more importantly, reduced the total leachate volume by 65% and the quantity of N leached by 52%. Maintaining rhizosphere water content of (2+0) white spruce seedlings at 40% V/V compromises neither plant growth nor physiological processes. This strategy limits leaching of water and mineral nutrients, and reduces the risk of groundwater contamination, thus enabling growers to meet both quality and environmental standards for seedlings grown in northern forest nurseries.  相似文献   

5.
Forest plantations in the northeastern United States comprise a small proportion of the total forest area. Most plantations are typically softwood dominated and managed for sawlog and pulpwood production, while high-yield hardwood plantations for bioenergy feedstocks have not been as widely investigated. The objective of this study was to compare the biomass production of planted white spruce (Picea glauca (Moench) Voss) and hybrid poplar (Populus spp.) plantations (four clones) in monoculture, and in mixture of the two on a typical reforestation site in Maine. Three years following planting, hybrid poplar height and ground line diameter growth rates began to diverge among clones, and by 6?years, the Populus nigra?×?Populus maximowiczii (NM6) clone clearly outperformed three Populus deltoides?×?Populus nigra clones (D51, DN10 and DN70) both in pure stands and in mixtures with white spruce. In mixture, we found the yield of white spruce to decline as the yield of hybrid poplar increased. Overall, yields of white spruce monocultures were comparable to those reported in eastern Canada, while the hybrid poplar biomass yields were substantially lower than those reported from studies on abandoned agricultural lands, likely due to the harsher soil conditions at our site. The dominance of rocky and poorly drained sites (like the one tested in this study) across Maine will likely limit the feasibility of widespread hybrid poplar plantations, and thus constrains their potential use as a bioenergy feedstock.  相似文献   

6.
The acquired thermotolerance of first-year seedlings of jack pine (Pinus banksiana Lamb.) hardened at 36, 38, 40 or 42 degrees C for 90, 180 or 360 minutes and of black spruce (Picea mariana (Mill.) B.S.P.) hardened at 34, 36, 38 or 40 degrees C for 30, 90, 180 or 360 minutes was determined by comparison of needle damage to that of non-hardened seedlings (25 degrees C) following exposure to temperatures of 49 and 47.5 degrees C, respectively. Compared to seedlings kept at 25 degrees C, heat injury sustained from exposure to high temperatures was markedly reduced following hardening for 180 minutes at 36 and 38 degrees C in jack pine and black spruce, respectively. Increasing the exposure time at 36 degrees C in jack pine, and at 36 to 40 degrees C in black spruce, also reduced needle damage. The duration of increased thermotolerance was investigated in jack pine, black spruce and white spruce (Picea glauca (Moench) Voss) by comparing heat injury from high temperatures in non-hardened seedlings and in seedlings hardened at 38 degrees C for 180 minutes a day for either 1, 3 or 6 days. In all three species, the duration of acquired thermotolerance increased with the number of days of heat hardening. For jack pine and white spruce seedlings hardened at 38 degrees C for 6 days, increased thermotolerance persisted for at least 14 and 10 days, respectively, after the end of the hardening treatment. In contrast, the thermotolerance of black spruce seedlings hardened at 38 degrees C for 6 days remained elevated for only 4 days.  相似文献   

7.
Leaf reflectance at visible and near-infrared wavelengths (400-1000 nm) is related primarily to pigmentation, leaf structure and water content, and is an important tool for studying stress physiology and relationships between plants and their growth environment. We studied reflectance of two co-occurring Alaskan conifers, black spruce (Picea mariana (Mill.) BSP) and white spruce (Picea glauca (Moench) Voss), at elevations from 60 to 930 m a.s.l. along a latitudinal gradient from 61 degrees to 68 degrees N. Black spruce samples were collected from 24 sites and white spruce from 30 sites. Overall, reflectance spectra of the two species were similar, but from 400 to 700 nm, needle reflectance was consistently higher in black spruce than in white spruce (all P 相似文献   

8.

• Context  

Root growth is a characteristic to which nursery personnel is particularly attentive. The increase in root growth of white spruce seedlings in the autumn relies on the current season’s photosynthates. Needle hardening or a decrease in the mass of photosynthetically active foliage as a result of early frost may negatively affect the seedling’s photosynthetic capacity and its ability to fuel root growth.  相似文献   

9.
Seasonal retranslocation in white pine (Pinus strobus L.) and white spruce (Picea glauca (Moench) Voss) was examined in response to silvicultural treatments (scarification, annual fertilization application, and annual control of competing vegetation with herbicide) that changed both environmental conditions and the growth rate of the trees. Four years after plantation establishment and initial treatment, nutrient accumulation in current-year needles of white pine and retranslocation from 1-year-old needles were increased following the vegetation control treatment, which increased resource availability (nutrients, water and light) and, hence, growth rate. Nutrient accumulation also increased in current-year white spruce needles following the same treatment, whereas retranslocation decreased in 1-year-old white spruce needles. Correlations of retranslocation (N, P and K) with growth rate (shoot biomass increment) showed a strong positive relationship for white pine and a negative relationship for white spruce. Retranslocation of K was correlated with foliar and soil K concentrations; the availability of this nutrient was also significantly reduced by vegetation control. A general theory for the control of nutrient retranslocation in conifers, which is not based exclusively on either sink strength or soil nutrient availability, is proposed. We conclude that retranslocation response is species specific and related to the potential phenotypic growth response to changing environmental conditions and to short-term imbalance in the supply versus the demand for nutrients.  相似文献   

10.
Phenotypically selected individuals, to be used in a breeding program, and randomly selected individuals of white spruce (Picea glauca Moench Voss) were sampled from nine stands within a breeding region to document impacts of early domestication in a wild species. Needles from both selected and random samples were surveyed for electrophoretically detectable genic variation at twelve different enzyme systems. Average heterozygosity (0.172) was comparable to geographically broader surveys of this species. Although a large number of unique and rare alleles were observed, only 0.7% of the variations was attributable to the among-stand component. No changes in genotypic structure were associated with phenotypic selection using this set of molecular markers. Because of this lack of association, the isozymes could serve as an independent set of neutral variables to monitor variation. Allele frequency and heterozygosity were not significantly different in the selected versus random populations. There were, however, differences between the two population samples when measures of allelic richness were contrasted. Only 75% of the alleles were represented in the selected population. Implications of these changes on the utility of phenotypically selected populations as gene conservation samples, and their representativeness as breeding populations, are discussed.  相似文献   

11.
Water relations of bare-root jack pine (Pinus banksiana Lamb.) and white spruce (Picea glauca (Moench) Voss) planted in a greenhouse and on a boreal cut-over site were examined during the first growing season. In field-planted trees, maximum stomatal conductances (g(wv)) were initially low (< 0.10 cm s(-1)). Base and minimum xylem pressure potentials (Psi(x(base)) and Psi(x(min))) were less than -1.5 and -1.7 MPa for jack pine and -2.0 and -2.6 MPa for white spruce, respectively. During the growing season, maximum g(wv) increased in both species to around 0.2 cm s(-1). Base and minimum xylem pressure potentials also increased in both species to around -0.5 and -1.0 MPa in jack pine and -1.0 and -1.5 MPa in white spruce, respectively. Minimum xylem pressure potentials in white spruce fell below the turgor loss point during the first half of the growing season. Osmotic potential at the turgor loss point Psi(pi(TLP)) decreased after field planting to around -2.7 and -2.3 MPa in jack pine and white spruce, respectively. In the greenhouse, minimum values of Psi(pi(TLP)) were -2.2 and -2.3 MPa in jack pine and white spruce, respectively. Maximum bulk modulus of elasticity was greater in white spruce and underwent greater seasonal change than in jack pine. Relative water content (RWC) at turgor loss ranged between 71 and 74% in jack pine and 80 and 87% in white spruce. Available turgor (T(avail)), defined as the integral of turgor over the range of RWC between Psi(x(base)) and xylem pressure potential at the turgor loss point, was similar in jack pine and white spruce just after field planting. For the rest of the growing season, however, T(avail) in jack pine was two to three times that in white spruce. Diurnal turgor (T(diurnal)), defined as the integral of turgor over the range of RWC between Psi(x(base)) and Psi(x(min)), as a percent of T(avail) was higher in field-planted white spruce than jack pine until the end of the season. Dynamics of tissue water potential components are discussed in relation to plantation establishment.  相似文献   

12.
White spruce [Picea glauca (Moench) Voss] grafts growing in a seed orchard were sprayed with gibberellin A4/7 (GA4/7), either at different periods of time during the growing season or in different concentrations, for a 3-year period. Whole-tree spraying in May through July 1983 significantly increased cone production in 1984, while spraying in June through August of the same year was not effective. The best treatment in branch spraying was at the highest concentration (800 mg/L GA4/7). The spray was effective in a good, but not a poor, crop year. Vegetative budburst occurred in the first half of May and shoot elongation ended in late June. Needle primordia in a newly formed bud were not discernible until the end of June. Application of GA4/7 during the period of bud scale initiation and shoot elongation, and before needle primordial initiation, could have influenced the course of bud differentiation to increase the formation of reproductive buds.  相似文献   

13.
Bedford  L.  Sutton  R.F.  Stordeur  L.  Grismer  M. 《New Forests》2000,20(3):213-233
Two trials (``Wonowon' and ``Iron Creek') in the Prince George Forest Region of interiorBritish Columbia were begun in the mid 1980s toevaluate site preparation treatments for establishingwhite spruce (Picea glauca [Moench] Voss) in theBoreal White and Black Spruce biogeoclimatic zone. The14 treatments (9 or 10 per trial) were: [B.C.]Ministry, Sinkkila, and Bracke mounds; Bracke moundsmanually supplemented with 20-, 14-, or 6-cm cappingsof mineral soil; fertilized Sinkkila mounds; Brackepatches; fertilized Bracke patches; bladed strips;plowed ground; herbicide; and untreated controls,separately with both standard and nominally superior``alternate' planting stock. With minor aberrations,each trial consists of 5 randomized complete blockseach with one 80-tree plot per treatment; planting wasin spring, 1984 at Wonowon, 1987 at Iron Creek. Alltrees in mounding treatments and the inner 48 trees inother plots were monitored for performance through1998 at Wonowon, 1996 at Iron Creek. The herbicide andplowing treatments, and mounds capped thickly enoughwith mineral soil to inhibit weed regrowth, wereclearly superior to others. In the mounding treatments at Wonowon, survival rateincreased with capping thickness, but, while the 14 and 20 cmcappings were best, significant differences among them were few after 15 growing seasons.In both trials, patchscarification gave poorer results than did plantingwithout site preparation.  相似文献   

14.
The traumatic wound response of families of white spruce, Picea glauca (Moench) Voss, resistant or susceptible to the white pine weevil, Pissodes strobi (Peck), were compared after simulated weevil damage. Leaders from 331 trees were wounded just below the apical bud in the spring, coinciding with the natural time of weevil oviposition. A portable 1-mm diameter drill was used to drill 24 holes per leader. Leaders were removed in the fall and examined for evidence of traumatic resin canal formation. Drilled trees had a traumatic wound response 8 times greater than that of undrilled trees; however, undrilled trees also formed some resin canals in response to unknown causes. In the drilled trees, the traumatic wound response extended into the lower part of the leader, where it could possibly affect older larvae. Trees from resistant families responded with greater intensity than trees from susceptible families, by producing multiple rings of traumatic resin canals. Trees from resistant families also responded more rapidly than trees from susceptible families based on number of cells to the first ring of traumatic resin canals. Trees from some resistant families exhibited no traumatic resin canal formation, showing considerable within-family variation and suggesting that other resistance mechanisms might be important. In the year after drilling, there was a reduction in tree diameter growth and trees suffered a reduction in constitutive resin canals in the bark, which suggests some energetic cost of traumatic resin production. There was no indication that the extent of constitutive defenses, as measured by density of cortical resin canals before wounding, was related to the ability to produce traumatic resin canals. Screening trees based on their capacity to produce traumatic resin canals may be useful in selecting genotypes resistant to white pine weevil.  相似文献   

15.
Significant reductions in needle water content were observed in white spruce (Picea glauca (Moench) Voss), black spruce (Picea mariana (Mill) B.S.P.), and jack pine (Pinus banksiana Lamb.) seedlings in response to a 10-day drought, although turgor was apparently maintained. When the seedlings were re-watered after the drought, jack pine needles regained their original saturated volume, whereas white spruce and black spruce needles did not. Significant drought-induced reductions in turgor-loss volume (i.e., tissue volume at the point of turgor loss) were observed in shoots of all three species, especially jack pine. Repeated exposure to 7 days of drought or treatment with the cytochrome P(450) inhibitor, paclobutrazol ((2RS,3RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)-pentan-3-ol), reduced seedling height relative to that of untreated controls in all three species. The reductions in saturated and turgor-loss needle volumes in the paclobutrazol-treated seedlings were comparable with those of seedlings subjected to a 10-day drought. The treatment-induced reductions in shoot and needle water contents enabled seedlings to maintain turgor with tissue volumes close to, or below, the turgor-loss volume of untreated seedlings. Paclobutrazol-treated seedlings subsequently survived drought treatments that were lethal to untreated seedlings.  相似文献   

16.
In this paper, the potential stem wood production for Norway spruce was estimated for different regions in Sweden. This was done by using basic physiological relationships of intercepted radiation versus biomass production and knowledge of how a water deficit reduces the potential production, derived from results of field experiments on nutrient optimisation. To scale these relationships up to regional and national levels, data of incident radiation and humidity during the growing season for all of Sweden were used. The figures for potential and attainable production indicate that the temperate to boreal climate allows considerably higher production than the current production, if availability of water and nutrients is non-limiting. In northern Sweden, the attainable production is ca. 300% higher than the current production and in southern Sweden, the yield can be increased by ca. 100%. In absolute numbers, as a mean for a whole rotation period, it is possible to achieve an annual stem-wood dry mass production of 7–9 Mg ha−1 in southern and central and ca. 5–6 Mg in northern Sweden. This increased production would mean that rotation periods can be shorter than they are now by 20–30 years in southern Sweden and by ca. 50–60 years in northern Sweden.  相似文献   

17.
No statistically-significant effects of size (small and large) of wind-pollinated seeds from 18 seed-orchard clones could be found in the attributes of 8-month-old seedlings of Sitka spruce (Picea sitchensis (Bong.) Carr.). Clonal variations in seedling attributes was highly significant (P < 0.01), but these variations were within regional specifications for operationally-produced nursery stock.  相似文献   

18.
The Raman signature of propiconazole at 647–693 cm−1 was used to determine the propiconazole distribution in white spruce (Picea glauca). Samples treated with propiconazole were milled at ~1.5 mm intervals and analysed by methanol extraction and GC-MS to obtain a depth profile in the longitudinal direction. The concentration of propiconazole in the milled wood layers ranged from 0.5 to 7.3 mg/g (dry mass wood). The average Raman signal from each of the layers was linear (R 2=0.933) with the GC-MS-determined concentrations. The effective detection limit (concentration producing a signal three times the standard deviation) was 1.0 mg/g. The standard deviation of the method was approximately 0.3 mg/g.  相似文献   

19.
In the context of climate change, an increased frequency of drought stresses might occur at a regional scale in boreal forests. To assess photosynthetic responses to drought treatment, seedlings of 12 open-pollinated families of white spruce (Picea glauca (Moench) Voss) differing in their growth performance were grown in a controlled environment. Gas exchange and chlorophyll fluorescence parameters as well as shoot xylem water potential (WP) were measured for 21 successive days after watering was stopped. Net photosynthesis decreased as stomatal conductance decreased. Net photosynthesis was not affected by drought until WP reached –2.0 MPa when stomata were closed. Initial fluorescence (F and basic fluorescence after induction (F00) were not affected by drought. A progressive decrease in maximal (Fm) and variable fluorescences (Fv), maximum photosystem II (PS II) efficiency (Fv = Fm), effective quantum yield of PS II (FII), photochemical efficiency of open PS II (Fp), and photochemical quenching (qP) was observed at WP < - 1.0 MPa, whereas non-photochemical quenching (qN) remained high throughout the drought treatment. White spruce families with inferior growth performance showed higher values of Fm, Fv, Fv = Fm, Fp, and qN at WP< - 2.0MPa. The results indicated that chlorophyll fluorescence variables can be used as drought markers in relation to present or predicted climate conditions. These could be used for selecting planting stock adapted to drought periods or dry environments. These markers showed that slow-growing genotypes are better adapted to drought conditions than intermediate or fast-growing genotypes in present and predicted drought conditions.  相似文献   

20.
The effect of the seed cut of the uniform shelterwood silvicultural system on white pine seed production, seed characteristics, and seed viability during 2 mast seeding events was examined in operationally harvested second growth, white pine-dominated forest stands in central Ontario. Seed traps placed along transects in unmanaged and shelterwood stands in each of 3 blocks were used to monitor seed production in 2000 and 2006 (4 and 10 years after harvesting). During these 2 mast seed years between 386,000 and 2,730,600 seed ha?1 were produced among study stands. Total seed production expressed on a per hectare and unit pine basal area basis did not differ by harvest treatment or among blocks in either year. Variability in seed production among stands was primarily due to differences in stand structure, with seed production positively related to white pine basal area. Seed characteristics were largely similar between harvested and unmanaged stands and between seed years. Seed viability was relatively high in both years, with seed from shelterwoods germinating slightly slower than those from unmanaged stands. Seed quality, as estimated by laboratory germination performance, was higher in 2006 than 2000, likely due to improved seed development and maturation in the warmer, wetter growing season of 2006. Our results suggest that the seed cut of the uniform shelterwood system applied to second growth white pine stands is unlikely to adversely affect white pine seed production, seed quality, or potential for natural regeneration during mast seeding events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号