首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Purpose

The beneficial effect to the environment of nitrate (NO3 ?) removal by denitrification depends on the partitioning of its end products into nitrous oxide (N2O), nitric oxide (NO), and dinitrogen (N2). However, in subtropical China, acidic forest mineral soils are characterized by negligible denitrification capacity and thus reactive forms of N could not be effectively converted to inert N2, resulting in a negative environmental consequence. In this study, the influences of C input from litter decomposition on denitrification rate and its gaseous products under anoxic conditions in the acidic coniferous and broad-leaved forest soils in subtropical China were investigated using the acetylene (C2H2) blockage technique in the laboratory.

Materials and methods

The coniferous and broad-leaved forest soils with and without litter addition were incubated under anaerobic conditions for 244 h. There were three treatments for each forest soil including addition of 0.5 and 1% corresponding litter (gram of litter per gram of soil) and the control without addition of litter.

Results and discussion

The results showed that litter addition into the broad-leaved forest soil had no effect on average rates of denitrification (calculated as the sum of NO, N2O, and N2), whereas in the coniferous forest soil, the addition resulted in a significant increase in average denitrification rate. In the broad-leaved forest soil, both rates of litter addition decreased the production of NO but increased the production of N2, and high rates of litter addition into the coniferous forest soil promoted the reduction of N2O to N2.

Conclusions

Increased decomposition of litter in the forest soils could effectively reduce N2O and NO production through denitrification under anaerobic conditions.  相似文献   

2.
A better understanding of the nitrogen (N) cycle in agricultural soils is crucial for developing sustainable and environmentally friendly N fertilizer management and to propose effective nitrous oxide (N2O) mitigation strategies. This laboratory study quantified gross nitrogen transformation rates in uncultivated and cultivated black soils in Northeast China. It also elucidated the contribution made by nitrification and denitrification to the emissions of N2O. In the laboratory, soil samples adjusted to 60 % water holding capacity (WHC) were spiked with 15NH4NO3 and NH4 15NO3 and incubated at 25 °C for 7 days. The size and 15N enrichment of the mineral N pools and the N2O emission rates were determined between 0 and 7 days. The results showed that the average N2O emission rate was 21.6 ng N2O-N kg?1 h?1 in cultivated soil, significantly higher than in the uncultivated soil (11.6 ng N2O-N kg?1 h?1). Denitrification was found to be responsible for 32.1 % of the N2O emission in uncultivated soil, and the ratio increased significantly to 43.2 % in cultivated soil, due to the decrease in soil pH. Most of the increase in net N2O-N emissions observed in the cultivated soil was resulting from the increased production of N2O through denitrification. Gross nitrification rate was significantly higher in the cultivated soil than in the uncultivated soil, and the ratio of gross nitrification rate/ammonium immobilization rate was 6.87 in cultivated soil, much larger than the uncultivated soil, indicating that nitrification was the dominant NH4 + consuming process in cultivated soil, and this will lead to the increased production of nitrate, whereas the increased contribution of denitrification to N2O emission promoted the larger emission of N2O. This double impact explains why the risk of N loss to the environment is increased by long-term cultivation and fertilization of native prairie sites, and controlling nitrification maybe effective to abate the negative environmental effects.  相似文献   

3.
CO2 and N2O are important greenhouse gases that are related to soil mineralization–immobilization turnover and nitrification. To explore the responses of CO2 and N2O emissions to N deposition in forests with different N transformation characteristics, CO2 and N2O fluxes were measured in two NH4NO3 fertilized plots. One plot was in a temperate pine plantation in Heilongjiang Liangshui National Nature Reserve (LS) with slow and minimally coupled mineralization–immobilization turnover and a high nitrification rate. The other plot was in a subtropical bamboo forest in the Fujian Daiyun Mountain National Nature Reserve (DY) in China with rapid and coupled mineralization–immobilization turnover but a low nitrification rate. The results showed that CO2 emissions in the DY with a high mineralization rate were greater than those in the LS. Cumulative CO2 emissions were significantly enhanced by N addition in DY, but in LS, they were not affected. The mean N2O fluxes in the control were 0.010 and 0.008 mg N m?2 hr?1 for LS and DY, respectively. High N addition stimulated N2O emissions in both LS and DY, but the response ratio for N2O flux in LS (8.6) was larger than that in DY (2.9). These results suggested that soils with rapid and coupled mineralization–immobilization turnover are beneficial to CO2 emissions and their positive response to N deposition. A high nitrification rate contributed to high N2O emissions and the sensitive response of N2O emissions to N deposition.  相似文献   

4.

Purpose

Input of N as NH4 + is known to stimulate nitrification and to enhance the risk of N losses through NO3 ? leaching in humid subtropical soils. However, the mechanisms responsible for this stimulation effect have not been fully addressed.

Materials and methods

In this study, an acid subtropical forest soil amended with urea at rates of 0, 20, 50, 100 mg N kg?1 was pre-incubated at 25 °C and 60 % water-holding capacity (WHC) for 60 days. Gross N transformation rates were then measured using a 15N tracing methodology.

Results and discussion

Gross rates of mineralization and nitrification of NH4 +-N increased (P?<?0.05), while gross rate of NO3 ? immobilization significantly decreased with increasing N input rates (P?<?0.001). A significant relationship was established between the gross nitrification rate of NH4 + and the gross mineralization rate (R 2?=?0.991, P?<?0.01), so was between net nitrification rate of NH4 + and the net mineralization rate (R 2?=?0.973, P?<?0.05).

Conclusions

Stimulation effect of N input on the gross rate of nitrification of NH4 +-N in the acid soil, partially, resulted from stimulation effect of N input on organic N mineralization, which provides pH-favorable microsites for the nitrification of NH4 + in acid soils (De Boer et al., Soil Biol Biochem 20:845–850, 1988; Prosser, Advan Microb Physiol 30:125–181, 1989). The stimulated gross nitrification rate with the decreased gross NO3 ? immobilization rate under the elevated N inputs could lead to accumulation of NO3 ? and to enhance the risk of NO3 ? loss from humid forest soils.
  相似文献   

5.
利用15N同位素标记方法,研究在两种水分条件即60%和90% WHC下,添加硝酸盐(NH4NO3,N 300 mg kg-1)和亚硝酸盐(NaNO2,N 1 mg kg-1)对中亚热带天然森林土壤N2O和NO产生过程及途径的影响.结果表明,在含水量为60% WHC的情况下,高氮输入显著抑制了N2O和NO的产生(p<0.01);但当含水量增为90% WHC后,实验9h内抑制N2O产生,之后转为促进.所有未灭菌处理在添加NO2-后高氮抑制均立即解除并大量产生N2O和NO,与对照成显著差异(p<0.01),在60% WHC条件下,这种情况维持时间较短(21 h),但如果含水量高(90% WHC)这种情况会持续很长时间(2周以上),说明水分有效性的提高和外源NO2-在高氮抑制解除中起到重要作用.本实验中N2O主要来源于土壤反硝化过程,而且加入未标记NO2-后导致杂合的N2O(14N15NO)分子在实验21 h内迅速增加,表明这种森林土壤的反硝化过程可能主要是通过真菌的“共脱氮”来实现,其贡献率可多达80%以上.Spearman秩相关分析表明未灭菌土壤NO的产生速率与N2O产生速率成显著正相关性(p<0.05),土壤含水量越低二者相关性越高.灭菌土壤添加NO2-能较未灭菌土壤产生更多的NO,但却几乎不产生N2O,表明酸性土壤的化学反硝化对NO的贡献要大于N2O.  相似文献   

6.
 Soils are a major source of atmospheric NO and N2O. Since the soil properties that regulate the production and consumption of NO and N2O are still largely unknown, we studied N trace gas turnover by nitrification and denitrification in 20 soils as a function of various soil variables. Since fertilizer treatment, temperature and moisture are already known to affect N trace gas turnover, we avoided the masking effect of these soil variables by conducting the experiments in non-fertilized soils at constant temperature and moisture. In all soils nitrification was the dominant process of NO production, and in 50% of the soils nitrification was also the dominant process of N2O production. Factor analysis extracted three factors which together explained 71% of the variance and identified three different soil groups. Group I contained acidic soils, which showed only low rates of microbial respiration and low contents of total and inorganic nitrogen. Group II mainly contained acidic forest soils, which showed relatively high respiration rates and high contents of total N and NH4 +. Group III mainly contained neutral agricultural soils with high potential rates of nitrification. The soils of group I produced the lowest amounts of NO and N2O. The results of linear multiple regression conducted separately for each soil group explained between 44–100% of the variance. The soil variables that regulated consumption of NO, total production of NO and N2O, and production of NO and N2O by either nitrification or denitrification differed among the different soil groups. The soil pH, the contents of NH4 +, NO2 and NO3 , the texture, and the rates of microbial respiration and nitrification were among the important variables. Received: 28 October 1999  相似文献   

7.

Purpose

Better understanding of N transformations and the regulation of N2O-related N transformation processes in pasture soil contributes significantly to N fertilizer management and development of targeted mitigation strategies.

Materials and methods

15N tracer technique combined with acetylene (C2H2) method was used to measure gross N transformation rates and to distinguish pathways of N2O production in two Australian pasture soils. The soils were collected from Glenormiston (GN) and Terang (TR), Victoria, Australia, and incubated at a soil moisture content of 60% water-filled pore space (WFPS) and at temperature of 20 °C.

Results and discussion

Two tested pasture soils were characterized by high mineralization and immobilization turnover. The average gross N nitrification rate (ntot) was 7.28 mg N kg?1 day?1 in TR soil () and 5.79 mg N kg?1 day?1 in GN soil. Heterotrophic nitrification rates (nh), which accounting for 50.8 and 41.9% of ntot, and 23.4 and 30.1% of N2O emissions in GN and TR soils, respectively, played a role similar with autotrophic nitrification in total nitrification and N2O emission. Denitrification rates in two pasture soils were as low as 0.003–0.004 mg N kg?1 day?1 under selected conditions but contributed more than 30% of N2O emissions.

Conclusions

Results demonstrated that two tested pasture soils were characterized by fast N transformation rates of mineralization, immobilization, and nitrification. Heterotrophic nitrification could be an important NO3?–N production transformation process in studied pasture soils. Except for autotrophic nitrification, roles of heterotrophic nitrification and denitrification in N2O emission in two pasture soils should be considered when developing mitigation strategies.
  相似文献   

8.
A study was carried out to investigate the potential gross nitrogen (N) transformations in natural secondary coniferous and evergreen broad-leaf forest soils in subtropical China. The simultaneously occurring gross N transformations in soil were quantified by a 15N tracing study. The results showed that N dynamics were dominated by NH4+ turnover in both soils. The total mineralization (from labile and recalcitrant organic N) in the broad-leaf forest was more than twice the rate in the coniferous forest soil. The total rate of mineral N production (NH4+ + NO3) from the large recalcitrant organic N pool was similar in the two forest soils. However, appreciable NO3 production was only observed in the coniferous forest soil due to heterotrophic nitrification (i.e. direct oxidation of organic N to NO3), whereas nitrification in broad-leaf forest was little (or negligible). Thus, a distinct shift occurred from predominantly NH4+ production in the broad-leaf forest soil to a balanced production of NH4+ and NO3 in the coniferous forest soil. This may be a mechanism to ensure an adequate supply of available mineral N in the coniferous forest soil and most likely reflects differences in microbial community patterns (possibly saprophytic, fungal, activities in coniferous soils). We show for the first time that the high nitrification rate in these soils may be of heterotrophic rather than autotrophic nature. Furthermore, high NO3 production was only apparent in the coniferous but not in broad-leaf forest soil. This highlights the association of vegetation type with the size and the activity of the SOM pools that ultimately determines whether only NH4+ or also a high NO3 turnover is present.  相似文献   

9.
The intensive conversion from woodland to tea plantation in subtropical China might significantly change the potential supply processes and cycling of inorganic Nitrogen (N). However, few studies have been conducted to investigate the internal N transformations involved in the production and consumption of inorganic N and N2O emissions in subtropical soils under tea plantations. In a 15N tracing experiment, nine tea fields with different plantation ages (1-y, 5-y and 30-y) and three adjacent woodlands were sampled to investigate changes in soil gross N transformation rates in humid subtropical China. Conversion of woodland to tea plantation significantly altered soil gross N transformation rates. The mineralization rate (MNorg) was much lower in soils under tea plantation (0.53–0.75 mg N kg−1 d−1) than in soil sampled from woodland (1.71 mg N kg−1 d−1), while the biological inorganic N supply (INS), defined as the sum of organic N mineralized into NH4+ (MNorg) and heterotrophic nitrification (ONrec), was not significantly different between soils under woodland and tea plantation, apart from soil under 30-y tea plantation which had the largest INS. Interestingly, the contribution of ONrec to INS increased from 19.6% in soil under woodland to 65.0–82.4% in tea-planted soils, suggesting ONrec is the dominant process producing inorganic N in tea-planted soils. Meanwhile, the conversion from woodland to tea plantation destroyed soil NO3 retention by increasing ONrec, autotrophic nitrification (ONH4) and abiotic release of stored NO3 while decreasing microbial NO3 immobilization (INO3), resulting in greater NO3 production in soil. In addition, long-term tea plantation significantly enhanced the potential release of N2O. Soil C/N was positively correlated with MNorg and INO3, suggesting that an increase in soil C/N from added organic materials (e.g. rice hull) is likely to reduce the increased production of NO3 in the soils under tea plantation.  相似文献   

10.
Molecular nitrogen (N2) and nitrous oxide (N2O) generated by denitrification increase N losses in the soil–plant system. This study aimed to quantify N2 and N2O from potassium nitrate (K15NO3) applied to soils with different textures and moisture contents in the absence and presence of a source of carbon (C) using the 15N tracer method. In the three soils used (sandy texture (ST), sandy clay loam texture (SCLT), and clayey texture (CT)), three moisture contents were evaluated (40%, 60%, and 80% of the water holding capacity (WHC)) with (D+) and without (D?) dextrose added. The treatments received 100 mg N kg?1 (KNO3 with 23.24 atom% 15N). N2 emissions occurred in all of the treatments, but N2O emissions only occurred in the D+ treatment, showing increases with increasing moisture content. SCLT with 80% WHC in the D+ treatment exhibited the highest accumulated N emission (48.26 mg kg?1). The 15N balance suggested trapping of the gases in the soil.  相似文献   

11.
Amending vegetable soils with organic materials is increasingly recommended as an agroecosystems management option to improve soil quality. However, the amounts of NO, N2O, and N2 emissions from vegetable soils treated with organic materials and frequent irrigation are not known. In laboratory-based experiments, soil from a NO 3 ? -rich (340 mg N?kg?1) vegetable field was incubated at 30°C for 30 days, with and without 10 % C2H2, at 50, 70, or 90 % water-holding capacity (WHC) and was amended at 1.19 g?C kg?1 (equivalent to 2.5 t?C ha?1) as Chinese milk vetch (CMV), ryegrass (RG), or wheat straw (WS); a soil not amended with organic material was used as a control (CK). At 50 % WHC, cumulative N2 production (398–524 μg N?kg?1) was significantly higher than N2O (84.6–190 μg N?kg?1) and NO (196–224 μg N?kg?1) production, suggesting the occurrence of denitrification under unsaturated conditions. Organic materials and soil water content significantly influenced NO emissions, but the effect was relatively weak since the cumulative NO production ranged from 124 to 261 μg N?kg?1. At 50–90 % WHC, the added organic materials did not affect the accumulated NO 3 ? in vegetable soil but enhanced N2O emissions, and the effect was greater by increasing soil water content. At 90 % WHC, N2O production reached 13,645–45,224 μg N?kg?1 from soil and could be ranked as RG?>?CMV?>?WS?>?CK. These results suggest the importance of preventing excess water in soil while simultaneously taking into account the quality of organic materials applied to vegetable soils.  相似文献   

12.
To date, occurrence and stimulation of different nitrification pathways in acidic soils remains unclear. Laboratory incubation experiments, using the acetylene inhibition and 15N tracing methods, were conducted to study the relative importance of heterotrophic and autotrophic nitrification in two acid soils (arable (AR) and coniferous forest) in subtropical China, and to verify the reliability of the 15N tracing model. The gross rate of autotrophic nitrification was 2.28 mg?kg?1?day?1, while that of the heterotrophic nitrification (0.01 mg?kg?1?day?1) was negligible in the AR soil. On the contrary, the gross rate of autotrophic nitrification was very low (0.05 mg?kg?1?day?1) and the heterotrophic nitrification (0.98 mg?kg?1?day?1) was the predominant NO3 ? production pathway accounting for more than 95 % of the total nitrification in the coniferous forest soil. Our results showed that the 15N tracing model was reliable when used to study soil N transformation in acid subtropical soils.  相似文献   

13.
Nitrous oxide (N2O) emissions from the soil surface of five different forest types in Thailand were measured using the closed chamber method. Soil samples were also taken to study the N2O production pathways. The monthly average emissions (±SD, n?=?12) of N2O from dry evergreen forest (DEF), hill evergreen forest (HEF), moist evergreen forest (MEF), mixed deciduous forest (MDF) and acacia reforestation (ARF) were 13.0?±?8.2, 5.7?±?7.1, 1.2?±?12.1, 7.3?±?8.5 and 16.7?±?9.2?µg N m?2 h?1, respectively. Large seasonal variations in fluxes were observed. Emission was relatively higher during the wet season than during the dry season, indicating that soil moisture and denitrification were probably the main controlling factors. Net N2O uptake was also observed occasionally. Laboratory studies were conducted to further investigate the influence of moisture and the N2O production pathways. Production rates at 30% water holding capacity (WHC) were 3.9?±?0.2, 0.5?±?0.06 and 0.87?±?0.01?ng N2O-nitrogen (N) g-dw?1day?1 in DEF, HEF and MEF respectively. At 60% WHC, N2O production rates in DEF, HEF and MEF soils increased by factors of 68, 9 and 502, respectively. Denitrification was found to be the main N2O production pathway in these soils except in MEF.  相似文献   

14.

Purpose

Alpine ecosystems on the Qinghai-Tibetan Plateau are sensitive to global climatic changes. However, the effects of temperature change resulting from global warming or seasonal variation on soil N availability in those ecosystems are largely unknown.

Materials and methods

We therefore conducted a 15N tracing study to investigate the effects of various temperatures (5–35 °C) on soil gross N transformation rates in an alpine meadow (AM) soil on the Qinghai-Tibetan Plateau. A natural secondary coniferous forest (CF) soil from the subtropical region was chosen as a reference to compare the temperature sensitivity of soil gross N transformation rates between alpine meadow and coniferous forest.

Results and discussion

Our results showed that increasing temperature increased gross N mineralization and NH4 + immobilization rates and overall enhanced N availability for plants in both soils. However, both rates in the CF soil were less sensitive to a temperature change from 5 to 15 °C compared to the AM soil. In both soils, different N retention mechanisms could have been operating with respect to changing temperatures in the different climatic regions. In the CF soil, the absence of NO3 ? production at all incubation temperatures suggests that in the subtropical soil which is characterized by high rainfall, an increase in N availability due to increasing temperature could be completely retained in soils. In contrast, the AM soil may be vulnerable to N losses with respect to temperature changes, in particular at 35 °C, in which higher nitrification rates were coupled with lower NH4 + and NO3 ? immobilization rates.

Conclusions

Our results suggest that increased soil temperature arising from global warming and seasonal variations will most likely enhance soil N availability for plants and probably increase the risk of N losses in the alpine meadow on the Qinghai-Tibetan Plateau.
  相似文献   

15.
Abstract

A micro-plot 15N-tracer experiment was established in three different soils of a long-term soil fertility field experiment. The nutrient-poor loam sand has been subjected to various treatments over the years and this has resulted in different organic C (0.35% – 0.86%), microbial biomass (38.3 – 100.0 µg C mic g?1 soil), clay and fine silt contents. Using the 15N-pool dilution technique, we assessed gross N-transfer rates in the field. Gross N mineralization rates varied strongly among the three plots and ranged between 0.4 and 4.2 µg N g?1 soil d?1. Gross nitrification rates were estimated to be between 0 and 2.1 µg N g?1 soil d?1. No correlation between gross N mineralization rates and the organic matter content of the soils was established. However, gross nitrate consumption rates increased with increasing soil C content. The 15N-pool dilution technique was successfully used to measure gross N transfer rates directly in the field.  相似文献   

16.
Relative control of soil moisture [30, 60, and 80 percent water-holding capacity (WHC)] on nitrous oxide (N2O) emissions from Fargo-Ryan soil, treated with urea at 0, 150, and 250 kg N ha?1 with and without nitrapyrin [2-chloro-(6-trichloromethyl) pyridine] (NP), was measured under laboratory condition for 140 days. Soil N2O emissions significantly increased with increasing nitrogen (N) rates and WHC levels. Urea applied at 250 kg N ha?1 produced the greatest cumulative N2O emissions and averaged 560, 3919, and 15894 µg kg?1 at 30, 60, and 80 percent WHC, respectively. At WHC ≤ 60 percent, addition of NP to urea significantly reduced N2O losses by 2.6- to 4.8-fold. Additions of NP to urea reduced N2O emission at rates similar to the control (0 N) until 48 days for 30 percent WHC and 35 days for 60 and 80 percent WHC. These results can help devise urea-N fertilizer management strategies in reducing N2O emissions from silty-clay soils.  相似文献   

17.
Application of crop residues and its biochar produced through slow pyrolysis can potentially increase carbon (C) sequestration in agricultural production systems. The impact of crop residue and its biochar addition on greenhouse gas emission rates and the associated changes of soil gross N transformation rates in agricultural soils are poorly understood. We evaluated the effect of wheat straw and its biochar applied to a Black Chernozemic soil planted to barley, two growing seasons or 15 months (at the full-bloom stage of barley in the second growing season) after their field application, on CO2 and N2O emission rates, soil inorganic N and soil gross N transformation rates in a laboratory incubation experiment. Gross N transformation rates were studied using the 15N isotope pool dilution method. The field experiment included four treatments: control, addition of wheat straw (30 t ha?1), addition of biochar pyrolyzed from wheat straw (20 t ha?1), and addition of wheat straw plus its biochar (30 t ha?1 wheat straw + 20 t ha?1 biochar). Fifteen months after their application, wheat straw and its biochar addition increased soil total organic C concentrations (p?=?0.039 and <0.001, respectively) but did not affect soil dissolved organic C, total N and NH4 +-N concentrations, and soil pH. Biochar addition increased soil NO3 ?-N concentrations (p?=?0.004). Soil CO2 and N2O emission rates were increased by 40 (p?p?=?0.03), respectively, after wheat straw addition, but were not affected by biochar application. Straw and its biochar addition did not affect gross and net N mineralization rates or net nitrification rates. However, biochar addition doubled gross nitrification rates relative to the control (p?2 and N2O emissions and enhance soil C sequestration. However, the implications of the increased soil gross nitrification rate and NO3 ?-N in the biochar addition treatment for long-term NO3 ?-N dynamics and N2O emissions need to be further studied.  相似文献   

18.
A 15N dilution experiment was carried out to investigate effects of cultivation on the gross N transformation rate in coastal wetland zone. Microbial community composition was estimated by phospholipid fatty acid (PLFA) analysis and abundance of soil ammonia-oxidizing bacteria (AOB) was quantified by real-time polymerase chain reaction (PCR). Soil salinity decreased significantly, while total N increased after coastal wetland was cultivated. Microbial biomass (total PLFA), bacterial biomass, fungal biomass, and actinomycete biomass of the native coastal wetland soils were significantly (p < 0.05) lower than those of the cultivated soils whereas AOB population size also significantly increased after coastal wetland cultivation. Multiple regression analysis showed that total PLFA biomass and soil total N (TN) explained 97% of the variation of gross N mineralization rate in the studied soils (gross mineralization rate = 0.179 total PLFA biomass + 5.828TN − 2.505, n = 16, p < 0.01). Gross nitrification rate increased by increasing the soil AOB population size and gross mineralization rate (M) (gross nitrification rate = 3.39AOB + 0.18 M − 0.075, R 2 = 0.98, n = 16, p < 0.01). Management of salt discharge and mineral N fertilization during the cultivation of wetland soils might have changed composition of soil microflora and AOB population size, thus influencing mineralization and nitrification. Probably, the cultivation of coastal wetland soils increased the risk of N losses from soil through nitrate leaching and gas emission (e.g., N2O and NO).  相似文献   

19.
Purple soils (Eutric Regosols) are widely distributed in humid subtropical Southwest China. They are characterized by high nitrification activities, with risks of severe NO3? leaching. Incorporation of crop residues is considered an effective method to reduce NO3? loss. In the present study, we compared the effects of alfalfa, rice straw, and sugarcane bagasse on gross N transformation turnover in a purple soil (purple soil, pH 7.62) compared with those in an acid soil (acid soil, pH 5.26), at 12 h, 3 months, and 6 months after residue incorporation. The gross N transformation rates were determined by 15N tracing. All tested crop residues stimulated the gross N mineralization rates, but reduced the net mineralization rates in both soils at 12 h after residue incorporation; however, the extent of the effect varied with the crop residue qualities, with rice straw having the strongest effects. Crop residues reduced net nitrification rates by depressing gross autotrophic nitrification rates and stimulating NO3? immobilization rates in the purple soil, particularly after rice straw incorporation (net nitrification rate decreased from 16.72 mg N kg?1 d?1 in the control to ??29.42 mg N kg?1 d?1 at 12 h of residue incorporation); however, crop residues did not affect the gross autotrophic nitrification rates in the acid soil. Crop residue effects subsided almost completely within 6 months, with sugarcane bagasse showing the longest lasting effects. The results indicated that crop residues affected the N transformation rates in a temporal manner, dependent on soil properties and residue qualities.  相似文献   

20.
Nitrous oxide (N2O) from agricultural soil is a significant source of greenhouse gas emissions. Biochar amendment can contribute to climate change mitigation by suppressing emissions of N2O from soil, although the mechanisms underlying this effect are poorly understood. We investigated the effect of biochar on soil N2O emissions and N cycling processes by quantifying soil N immobilisation, denitrification, nitrification and mineralisation rates using 15N pool dilution techniques and the FLUAZ numerical calculation model. We then examined whether biochar amendment affected N2O emissions and the availability and transformations of N in soils.Our results show that biochar suppressed cumulative soil N2O production by 91% in near-saturated, fertilised soils. Cumulative denitrification was reduced by 37%, which accounted for 85–95 % of soil N2O emissions. We also found that physical/chemical and biological ammonium (NH4+) immobilisation increased with biochar amendment but that nitrate (NO3) immobilisation decreased. We concluded that this immobilisation was insignificant compared to total soil inorganic N content. In contrast, soil N mineralisation significantly increased by 269% and nitrification by 34% in biochar-amended soil.These findings demonstrate that biochar amendment did not limit inorganic N availability to nitrifiers and denitrifiers, therefore limitations in soil NH4+ and NO3 supply cannot explain the suppression of N2O emissions. These results support the concept that biochar application to soil could significantly mitigate agricultural N2O emissions through altering N transformations, and underpin efforts to develop climate-friendly agricultural management techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号