首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increases in numbers or activities of regulatory T lymphocytes (Tregs) have been linked to the establishments of several persistent infections. It has been previously shown that porcine reproductive and respiratory syndrome virus (PRRSV) can negatively modulate the host immune responses, resulting in persistent infection and secondary immunodeficiency. Recently, the existence of porcine CD4+CD25+ Tregs has been demonstrated. We investigated the effect of PRRSV on the CD4+CD25+ Tregs. The CD4+CD25+Foxp3+ T lymphocytes in the peripheral blood mononuclear cells (PBMCs) were identified, using the anti-human anti-Foxp3 monoclonal antibody. In vitro culture of porcine PBMC in the presence of PRRSV, but not classical swine fever virus, significantly increased the numbers of Foxp3+ lymphocytes, particularly in the CD4+CD25high subpopulation. The time-course study revealed that PRRSV significantly increased the numbers of viral-specific CD4+CD25highFoxp3+ subpopulation in the culture starting from 12 h through the end of the observation period. Consistent to the results obtained by flow cytometry, enhanced Foxp3 gene expression was observed in the PBMC cultured with PRRSV in a time-course manner. The presence of monocyte-derived DC in the co-culture significantly enhanced the induction of CD4+CD25+ Foxp3+ T lymphocytes. The PRRSV-induced CD4+CD25high T lymphocytes exhibited suppressive activity when co-cultured with PHA-activated, autologous peripheral blood leukocytes, indicating the suppressive activity of the PRRSV-specific Tregs. In addition, PRRSV exposure significantly increased the numbers of PRRSV-specific CD4+CD25+Foxp3+ subpopulation in the PBMC of infected pigs at 10 days post-infection. In summary, the results indicated that PRRSV could increase the numbers of viral-specific, inducible regulatory T lymphocytes in the porcine PBMC, both in vitro and in vivo. The findings suggested the novel immunomodulatory mechanism induced by PRRSV.  相似文献   

2.
This study evaluated the early modulation of the phenotype and cytokine secretion in swine immune cells treated with an engineered killer peptide (KP) based on an anti-idiotypic antibody functionally mimicking a yeast killer toxin. The influence of KP on specific immunity was investigated using porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) as ex vivo antigens. Peripheral blood mononuclear cells (PBMC) from healthy pigs were stimulated with KP and with a scramble peptide for 20 min, 1, 4 and 20 h or kept unstimulated. The cells were analyzed using flow cytometry and ELISA. The same time-periods were used for KP pre-incubation/co-incubation to determine the effect on virus-recalled interferon-gamma (IFN-γ) secreting cell (SC) frequencies and single cell IFN-γ productivity using ELISPOT.KP induced an early dose-dependent shift to pro-inflammatory CD172α+CD14+high monocytes and an increase of CD3+CD16+ natural killer (NK) T cells. KP triggered CD8α and CD8β expression on classical CD4CD8αβ+ cytotoxic T lymphocytes (CTL) and double positive (DP) CD4+CD8α+ Th memory cells (CD4+CD8α+low CD8β+low). A fraction of DP cells also expressed high levels of CD8α. The two identified DP CD4+CD8α+high CD8β+low/+high CTL subsets were associated with tumor necrosis factor alpha (TNF-α) and IFN-γ secretion. KP markedly boosted the reactivity and cross-reactivity of PRRSV type-1- and PCV2b-specific IFN-γ SC. The results indicate the efficacy of KP in stimulating Th1-biased immunomodulation and support studies of KP as an immunomodulator or vaccine adjuvant.  相似文献   

3.
The present study evaluated the lymphocyte activation in PRRSV-vaccinated pigs subsequently exposed to natural infection by in vitro stimulation of peripheral blood mononuclear cells (PBMC) with homologous vaccine and two heterologous PRRSV isolates. The responsiveness was assessed by determining IFN-γ secreting cells by ELISpot assay, lymphocyte CD8 phenotype by intracellular staining/flow cytometry, cytokine gene expression by real-time quantitative PCR and cytokine secretion by ELISA. Conventional pigs were weaned at 28 days of age and inoculated intramuscularly (IM) or needle-less intradermally (ID) with a modified-live PRRSV vaccine suspended in adjuvant, while control pigs were injected with adjuvant alone (ADJ). Blood samples were collected at vaccination, 35 days post-vaccination and after 35 days post-exposure to natural infection by a heterologous field strain. Thirty-five days post-vaccination, PRRSV vaccine induced a low but significant virus-specific IFN-γ secreting cell response upon stimulation with both the vaccine strain and the two isolates in vaccinated pigs. Conversely, after 35 days post-exposure, only the vaccine strain and the BS/114/S isolate triggered this response. Intracellular staining showed that PRRSV-specific immune cells reacting upon vaccine strain and BS/114/S stimulation were mostly CD8+ IFN-γ producing cells whereas the stimulation with BS/55 isolate induced an IFN-γ production associated to the CD8?IFN-γ+ phenotype. At 35 days post-vaccination, PBMC from vaccinated pigs showed lower IL-10 expression and release, and higher TNF-α gene expression upon stimulation with both the vaccine and viral isolates. After infection, both cytokines were not differently modulated in different groups. Immune parameters give evidence that IFN-γ secreting cells in the peripheral blood can be elicited upon PRRSV infection although vaccination itself does not stimulate high levels of these reactive cells. Moreover, the cross-reactivity against divergent PRRS viruses can show a different intensity and be differently associated with cytotoxic CD8+IFN-γ+ as well as CD8?IFN-γ+ cells. Overall, the obtained data confirmed that the immune activation against PRRSV is not dependent on the genetic divergence of the virus. Especially after infection, a different immune reactivity was evident upon stimulation with the different isolates in terms of frequency and CD8 phenotype of PRRSV-specific IFN-γ producing cells. The modulation of cytokines in vaccinated pigs appeared to be more dependent on vaccination or infection conditions than on stimulation by different isolates, and the changes of IL-10 more relevant than those of TNF-α at gene and protein levels. Moreover, under the conditions of this study, the PRRSV vaccine administered via the intradermal route by a needle-less device was confirmed to induce an immune response comparable or in some cases higher than the intramuscular route.  相似文献   

4.
To investigate cytokine alterations in pigs infected in-utero with porcine reproductive and respiratory syndrome virus (PRRSV), constitutive mRNA expression by peripheral blood mononuclear cells (PBMCs) was measured. PBMC from in-utero PRRSV-infected pigs displayed significantly increased IL-6, IL-10, and IFN-gamma mRNA expression at 0 and 14 days of age compared with age-matched control pigs. There were no significant differences in IL-2, IL-4, and IL-12 mRNA expression between in-utero PRRSV-infected and control pigs. However, the IL-10/IL-12 ratio was significantly increased in in-utero PRRSV-infected pigs at 0 and 14 days of age, suggesting the imbalance of IL-10 and IL-12 mRNA production. The abnormal mRNA expression of cytokines in in-utero PRRSV-infected pigs occurred concurrently with a significant decrease in the CD4(+)/CD8(+) T-cell ratio in peripheral blood. PRRSV was not isolated from the sera of pigs at 9 weeks of age that had been viremic at 0 and 14 days old. Delayed type hypersensitivity (DTH) responses to Tuberculin and analysis of cytokine mRNA expression by PBMC showed that cell-mediated immune response and cytokine message profiles in pigs infected in-utero with PRRSV had returned to levels similar to those of control pigs by 9 weeks of age. We conclude that in-utero infection with PRRSV results in significant alteration of cytokine mRNA expression that may cause transient immunomodulation. However, at 10 weeks of age the pigs' immune responses seemed to recover. This may help to understand the immunopathogenesis of in-utero PRRSV infection and the increased susceptibility to secondary bacterial pathogens in neonatal piglets.  相似文献   

5.
Three-week-old cesarean-derived colostrum-deprived (CD/CD) pigs were inoculated with porcine circovirus type 2 (PCV2, n = 19), porcine reproductive and respiratory syndrome virus (PRRSV, n = 13), concurrent PCV2 and PRRSV (PCV2/PRRSV, n = 17), or a sham inoculum (n = 12) to compare the independent and combined effects of these agents. Necropsies were performed at 7, 10, 14, 21, 35, and 49 days postinoculation (dpi) or when pigs became moribund. By 10 dpi, PCV2/PRRSV-inoculated pigs had severe dyspnea, lethargy, and occasional icterus; after 10 dpi, mortality in this group was 10/11 (91%), and all PCV2/ PRRSV-inoculated pigs were dead by 20 dpi. PCV2-inoculated pigs developed lethargy and sporadic icterus, and 8/19 (42%) developed exudative epidermitis; mortality was 5/19 (26%). PRRSV-inoculated pigs developed dyspnea and mild lethargy that resolved by 28 dpi. Microscopic lesions consistent with postweaning multisystemic wasting syndrome (PMWS) were present in both PCV2- and PCV2/PRRSV-inoculated pigs and included lymphoid depletion, necrotizing hepatitis, mild necrotizing bronchiolitis, and infiltrates of macrophages that occasionally contained basophilic intracytoplasmic inclusion bodies in lymphoid and other tissues. PCV2/ PRRSV-inoculated pigs also had severe proliferative interstitial pneumonia and more consistent hepatic lesions. The most severe lesions contained the greatest number of PCV2 antigen-containing cells. PRRSV-inoculated pigs had moderate proliferative interstitial pneumonia but did not develop bronchiolar or hepatic lesions or lymphoid depletion. All groups remained seronegative to porcine parvovirus. The results indicate that 1) PCV2 coinfection increases the severity of PRRSV-induced interstitial pneumonia in CD/CD pigs and 2) PCV2 but not PRRSV induces the lymphoid depletion, granulomatous inflammation, and necrotizing hepatitis characteristic of PMWS.  相似文献   

6.
Currently, killed-virus and modified-live porcine reproductive and respiratory syndrome virus (PRRSV) vaccines are used to control porcine reproductive and respiratory syndrome. However, both types of vaccines have inherent drawbacks; accordingly, the development of novel PRRSV vaccines is urgently needed. Previous studies have suggested that yeast possesses adjuvant activities, and it has been used as an expression vehicle to elicit immune responses to foreign antigens. In this report, recombinant Kluyveromyces lactis expressing GP5 of HP-PRRSV (Yeast-GP5) was generated and immune responses to this construct were analyzed in mice. Intestinal mucosal PRRSV-specific sIgA antibody and higher levels of IFN-γ in spleen CD4+ and CD8+ T cells were induced by oral administration of Yeast-GP5. Additionally, Yeast-GP5 administered subcutaneously evoked vigorous cell-mediated immunity, and PRRSV-specific lymphocyte proliferation and IFN-γ secretion were detected in the splenocytes of mice. These results suggest that Yeast-GP5 has the potential for use as a vaccine for PRRSV in the future.  相似文献   

7.
The purpose of this study was to evaluate the effect of meloxicam (MEL) on selected immune parameters of bovine CD25highCD4+, CD25lowCD4+, and CD25-CD4+ cells. Peripheral blood mononuclear cells (PBMCs) collected from 12-month-old heifers were treated with MEL at a concentration corresponding to the serum level of this medication following administration at the recommended dose (MEL 5 × 10-6 M) and at a concentration 10 times lower (MEL 5 × 10-7 M). After 12 and 24 h of incubation with the drug, the percentage of CD25highCD4+ cells decreased; however, this disturbance was quickly reversed. Furthermore, the absolute number of CD25highCD4+ cells in the PBMC populations treated with MEL 5 × 10-6 M for 48 and 168 h was increased. Prolonged (168 h) exposure to the drug increased the percentage of Foxp3+ cells in the CD25highCD4+ cell subpopulation. The higher dose of MEL was found to significantly increase the percentage of IFN-γ+ cells among the CD25-CD4+ cells. These results indicated that MEL does not exert an immunosuppressive effect by depleting CD4+ cells and suppression of IFN-γ+ production by these cells. Furthermore, IL-10 and TGF-β production was not changed following exposure to MEL.  相似文献   

8.
This paper investigates the in vitro effect of dexamethasone on bovine CD25highCD4+, CD25lowCD4+ and CD25CD4+ T cells. Only a small percentage of bovine CD25highCD4+ (2–4%) and CD25lowCD4+ (1–2%) cells expressed Foxp3. Dexamethasone caused considerable loss of CD25CD4+ cells, but it increased the relative and absolute numbers of CD25highCD4+ and CD25lowCD4+ lymphocytes, while at the same time reducing the percentage of Foxp3+ cells within the latter subpopulations. Considering all these, as well as the intrinsically poor Foxp3 expression in bovine CD25+CD4+, it can be concluded that the drug most probably increased the number of activated non-regulatory CD4+ lymphocytes. It has been found that changes in cell number were at least partly caused by proapoptotic effect of the drug on CD25CD4+ cells and antiapoptotic effect on CD25highCD4+ and CD25lowCD4+ cells. The results obtained from this study indicate that the involvement of CD4+ lymphocytes in producing the anti-inflammatory and immunosuppressive effect of dexamethasone in cattle results from the fact that the drug had a depressive effect on the production of IFN-γ by CD25CD4+ cells. Secretion of TGF-β and IL-10 by CD4+ lymphocytes was not involved in producing these pharmacological effects, because the drug did not affect production of TGF-β and, paradoxically, it reduced the percentage of IL-10+CD4+ cells.  相似文献   

9.
Twenty 6‐week‐old specific pathogen‐free pigs were divided into four groups. On day 0 of the experiment, PRRSV–PRV (n = 6) and PRRSV (n = 4) groups were intranasally inoculated with porcine reproductive and respiratory syndrome virus (PRRSV) (105.6 TCID50). On day 7, the PRRSV–PRV and PRV (n = 6) groups were intranasally inoculated with pseudorabies virus (PRV) (103.6 TCID50). Control pigs (n = 4) were kept as uninoculated negative controls. Half of the pigs in each group were euthanized and necropsied on day 14 or 21. Clinical signs such as depression and anorexia were observed in the PRRSV–PRV and PRV groups after inoculation with PRV. Although febrile response was observed after virus inoculations, the duration of that response was prolonged in the PRRSV–PRV group compared with the other groups. The lungs in the PRRSV–PRV group failed to collapse and were mottled or diffusely tan and red, whereas the lungs of the pigs in the other groups were grossly normal. Histopathologically, interstitial pneumonia was present in all PRRSV‐inoculated pigs, but the pneumonic lesions were more severe in the PRRSV–PRV group. Mean PRRSV titres of tonsil and lung in the PRRSV–PRV group were significantly (P < 0.05) higher than that in the PRRSV group on day 21. These results indicate that dual infection with PRRSV and PRV increased clinical signs and pneumonic lesions in pigs infected with both viruses, as compared to pigs infected with PRRSV or PRV only, at least in the present experimental conditions.  相似文献   

10.
Porcine reproductive and respiratory syndrome virus (PRRSV) recently emerged as an important cause of reproductive disorders and pneumonia in domestic pigs throughout the world. Acute cytocidal replication of PRRSV in alveolar lung macrophages causes the acute pneumonia; however, it remains largely unresolved whether there may also be a predisposition to longer-term local immunodeficiency in the PRRSV-convalescent lung. We applied various flow cytometric techniques to study the interplay between PRRSV replication and macrophage viability/function in pure cultures of porcine alveolar lung macrophages. Monitored by flow cytometric detection of intracellular PRRSV nucleocapsid protein, acute (24 h post infection) PRRSV replication did not impede the ability of alveolar macrophages to ingest fluorescently labelled Escherichia coli. At 48 h post infection, PRRSV-induced cytotoxicity (quantitated by flow analysis of cell size and membrane integrity) led to 40% reduction in the total number of phagocytozing cells. However, viable/uninfected macrophages in PRRSV-infected cultures exhibited normal phagocytic ability at 48 h, indicating that no soluble phagocytosis-suppressive mediators were induced by PRRSV infection in this system. In short, in our minimal system containing only a single cell type, phagocytosis-suppressive effects of PRRSV infection were detected, that acted at the culture level by reducing the total number of alveolar lung macrophages.  相似文献   

11.
Porcine reproductive and respiratory syndrome (PRRS) is a chronic viral disease of pigs caused by PRRS virus (PRRSV). The PRRSV VR2332 is the prototype North American parental strain commonly used in the preparation of vaccines. Goal of this study was to understand missing information on VR2332 induced immune modulation at the lungs and lymphoid tissues, the sites of PRRSV replication. Pigs were infected intranasally and samples collected at post-infection day (PID) 15, 30, and 60. Microscopically, lungs had moderate interstitial pneumonia, and the virus was detected in all the tested tissues. Peak antibody response and the cytokine IFN-γ secretion were detected at PID 30, with increased TGF-β until PID 60. Population of CD8+, CD4+, and CD4+CD8+T cells, Natural killer (NK) cells, and γδ T cells in the lungs and lymphoid tissues were significantly modulated favoring PRRSV persistence. The NK cell-mediated cytotoxicity was significantly reduced in infected pigs. In addition, increased population of immunosuppressive T-regulatory cells (Tregs) and associated cytokines were also observed in VR2332 strain infected pigs.  相似文献   

12.
13.
The natural response of pigs to porcine reproductive and respiratory syndrome virus (PRRSV) infections and vaccinations needs to be altered so that better protection is afforded against both homologous and heterologous challenges by this pathogen. To address this problem, real-time gene expression assays were coupled with cytokine Elispot and protein analyses to assess the nature of the anti-PRRSV response of pigs immunized with modified live virus (MLV) vaccine. Although T helper 1 (Th1) immunity was elicited in all vaccinated animals, as evidenced by the genesis of PRRSV-specific interferon-gamma secreting cells (IFNG SC), the overall extent of the memory response was variable and generally weak. Peripheral blood mononuclear cells (PBMC) isolated from these pigs responded to PRRSV exposure with a limited increase in their expression of the Th1 immune markers, IFNG, tumor necrosis factor-alpha and interleukin-15 (IL15), and a reduction in the quantity of mRNAs encoding the innate and inflammatory proteins, IL1B, IL8 and IFNA. Efforts to enhance Th1 immunity, by utilizing an expression plasmid encoding porcine IFNA (pINA) as an adjuvant, resulted in a temporary increase in the frequency of PRRSV-specific IFNG SC but only minor changes overall in the expression of Th1 associated cytokine or innate immune marker mRNA by virus-stimulated PBMC. Administration of pINA, however, did correlate with decreased IL1B secretion by cultured, unstimulated PBMC but had no effect on their ability to release IFNG. Thus, while exogenous addition of IFNA during PRRSV vaccination has an impact on the development of a Th1 immune response, other alterations will be required for substantial boosting of virus-specific protection.  相似文献   

14.
In vitro generated monocyte-derived dendritic cells (moDCs) have frequently been used to study the influence of porcine reproductive and respiratory syndrome virus (PRRSV) infection on antigen presenting cells. However, obtained results have often been conflicting in regard to expression of co-stimulatory molecules and interaction with T cells. In this study we performed a detailed phenotypic characterisation of PRRSV-infected moDCs and non-infected moDCs. For CD163 and CD169, which are involved in PRRSV-entry into host cells, our results show that prior to infection porcine moDCs express high levels of CD163 but only very low levels for CD169. Following infection with either PRRSV-1 or PRRSV-2 strains after 24 h, PRRSV-nucleoprotein (N-protein)+ and N-protein moDCs derived from the same microculture were analyzed for expression of swine leukocyte antigen-DR (SLA-DR) and CD80/86. N-protein+ moDCs consistently expressed higher levels of SLA-DR and CD80/86 compared to N-protein moDCs. We also investigated the influence of PRRSV-infected moDCs on proliferation and frequency of Foxp3+ regulatory T cells present within CD4+ T cells in in vitro co-cultures. Neither CD3-stimulated nor unstimulated CD4+ T cells showed differences in regard to proliferation and frequency of Foxp3+ T cells following co-cultivation with either PRRSV-1 or PRRSV-2 infected moDCs. Our results suggest that a more detailed characterisation of PRRSV-infected moDCs will lead to more consistent results across different laboratories and PRRSV strains as indicated by the major differences in SLA-DR and CD80/86 expression between PRRSV-infected and non-infected moDCs present in the same microculture.  相似文献   

15.
16.
Beta-glucan has been shown to enhance anti-tumor and anti-infection functions in animals. Pigs at 4 months of age were infected with porcine reproductive and respiratory syndrome virus (PRRSV), and peripheral blood monocytes (PBMC) were isolated for the detection of interferon gamma (IFNgamma)-producing cells. We found that soluble high molecular weight beta-glucan could increase IFNgamma-producing cell frequency in a dose-dependent manner in the enzyme-linked immunospot assay (ELISPOT) in the absence of antigenic restimulation. A concentration as low as 1.6 microg/ml gave a significant increase and a similarly high enhancement was achieved at concentrations from 3.2 to 100 microg/ml. In PRRSV-specific IFNgamma ELISPOT, soluble beta-glucan elicited increased PRRSV-specific responses at concentrations from 3.2 to 50 microg/ml, but not at 100 microg/ml, whereas insoluble beta-glucan had no effect. Soluble beta-glucan augmented the porcine cellular immune response in an antigen-independent fashion, whereas insoluble beta-glucan had no activity. This finding suggests that soluble beta-glucan may enhance innate antiviral immunity against PRRSV.  相似文献   

17.
Porcine respiratory and reproductive syndrome virus (PRRSV) disease, one of the most economically significant viral diseases in the swine industry, is characterized by miscarriages, premature farrowing, stillborn pigs, and respiratory disease associated with death and chronic poor performance of nursing and weaned pigs. Interleukin-12 (IL-12) is a key component in driving the development of cell-mediated immunity as well as stimulating interferon-gamma (IFN-gamma) production from T cells and natural killer cells. Although some studies have investigated the use of IL-12 as a vaccine adjuvant in swine, little is known about its effectiveness as a treatment against viral diseases in swine. The present study investigated whether recombinant porcine IL-12 (rpIL-12) enhances the immune response and thereby diminishes the effects of PRRSV infection in young pigs. Interestingly, in vitro experiments demonstrated that rpIL-12 is capable of inducing swine pulmonary alveolar macrophages (PAMs), the target cells of PRRSV, to produce IFN-gamma in a dose and time dependent manner. In addition, in vitro studies also revealed that rpIL-12 treatment was capable of significantly reducing PRRSV viral titers in PAMs. In vivo administration of rpIL-12 significantly decreased PRRSV titers in the lungs and blood of infected animals. Furthermore, treatment with rpIL-12 prevented significant growth retardation in PRRSV-infected animals. Finally, in response to viral antigen recall challenge, PAMs isolated from rpIL-12-treated/PRRSV-infected animals produced greater amounts of IFN-gamma and lesser amounts of interleukin-10 than PAMs isolated from non-rpIL-12-treated/PRRSV-infected animals. Taken together our data indicate that treatment with rpIL-12 may provide an effective approach to control or ameliorate PRRSV-induced disease in swine.  相似文献   

18.
The aim of this study was to investigate the effects of a porcine reproductive and respiratory syndrome virus (PRRSV) infection on the development of the immune response after pseudorabies virus (PRV) vaccination in pigs. Pigs were intranasally inoculated with the European PRRSV strain, Lelystad virus ter Huurne, and were vaccinated intramuscularly with PRV 2 weeks later (LV-PRV group). Control pigs were vaccinated with PRV only (PRV group). Eight weeks after PRV vaccination, pigs from both groups were challenged intranasally with wild-type PRV. We measured the lymphoproliferative, and the cytolytic responses to PRV of peripheral blood mononuclear cells (PBMC), isolated from blood samples. In addition, serum samples were examined for antibodies against PRV and LV. One week after PRV vaccination, PBMC proliferated abundantly to PRV in both groups. However, in the LV-PRV group the lymphoproliferative response declined after 1 week, whereas, in the PRV group, the lymphoproliferative response was high for 3 weeks and declined thereafter (P<0.05). After challenge, the lymphoproliferative response was 1 week earlier and was consistently and significantly higher in the PRV group than in the LV-PRV group. The PRV-specific killing was higher at 3 weeks after PRV vaccination and 5 weeks after PRV challenge 19+/-3 and 24+/-6%, respectively, in the PRV group, compared to 7+/-4 and 6+/-9%, respectively, in the LV-PRV group (P<0.05). However, later after vaccination and challenge the cytolytic response was identical in both groups. The antibody titre against PRV developed equally in both groups. After challenge, no PRV virus was isolated from both groups. From these results we conclude that, although PRRSV infection did cause changes in the time course of the T-lymphocyte response after PRV vaccination, PRRSV infection did not inhibit the development of vaccine-induced protection after PRV.  相似文献   

19.
ABSTRACT: Porcine reproductive and respiratory syndrome virus (PRRSV) is an arterivirus that shows a restricted in vivo tropism for subsets of porcine macrophages, with alveolar macrophages being major target cells. The virus is associated with respiratory problems in pigs of all ages and is commonly isolated on farms with porcine respiratory disease complex (PRDC). Due to virus-induced macrophage death early in infection, PRRSV hampers the innate defence against pathogens in the lungs. In addition, the virus might also directly affect the antimicrobial functions of macrophages. This study examined whether interaction of European genotype PRRSV with primary alveolar macrophages (PAM) affects their phagocytic capacity. Inoculation of macrophages with both subtype I PRRSV (LV) and subtype III PRRSV (Lena) showed that the virus inhibits PAM phagocytosis. Similar results were obtained using inactivated PRRSV (LV), showing that initial interaction of the virion with the cell is sufficient to reduce phagocytosis, and that no productive infection is required. When macrophages were incubated with sialoadhesin- (Sn) or CD163-specific antibodies, two entry mediators of the virus, only Sn-specific antibodies downregulated the phagocytic capacity of PAM, indicating that interaction with Sn, but not CD163, mediates the inhibitory effect of PRRSV on phagocytosis. In conclusion, this study shows that European genotype PRRSV inhibits PAM phagocytosis in vitro, through the interaction with its internalization receptor Sn. If similar events occur in vivo, this interaction may be important in the development of PRDC, as often seen in the field.  相似文献   

20.
不同CSF免疫状态下猪PRRS易感性及IFN-γ分泌细胞应答   总被引:1,自引:0,他引:1  
采用酶联免疫斑点检测技术(ELISpot)检测自然状态下猪外周血单核细胞(PBMC)中分泌IFN-γ的细胞数,并用带T细胞表位的猪繁殖与呼吸综合征病毒(Porcine reproductive and respiratory syndrome virus,PRRSV)特异性小分子多肽刺激培养的PBMC,观察IFN-γ的分泌变化。结果显示,猪瘟病毒(Classical fever virus,CSFV)抗体阳性组中感染PRRSV比率小于CSFV抗体阴性组。CSFV抗体阳性猪PBMC中IFN-γ分泌细胞数量均高于CS—FV抗体阴性组,CSFV抗体阴性且受PRRSV感染猪的PBMC对PRRSV多肽刺激不应答。结果表明,对CSFV疫苗应答好的猪对PRRSV感染有一定的抵抗,其细胞免疫处于活动状态,提示2种传染病的免疫应答机理有部分相关性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号