首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to determine whether subacute ruminal acidosis (SARA) could be diagnosed by continuous measurements of the reticular pH, as compared with the ruminal pH, using healthy cows fed a control diet and SARA cows fed a rumen acidosis-inducing diet. The reticular and ruminal pH were measured simultaneously by a radio transmission pH measurement system. The mean reticular pH at 1-h intervals decreased gradually from the morning feeding to the next feeding time in both healthy and SARA cows, though the decrease in the ruminal pH was observed to be more drastic as compared with that observed in the reticular pH. The threshold of the 1-h mean pH in the reticulum for a diagnosis of SARA was considered to be 6.3, and a significant positive correlation was observed between the reticular and ruminal pH. No differences in the concentrations of lactic acid, ammonia nitrogen, and volatile fatty acids were noted between the reticular and ruminal fluids in SARA cows. These results demonstrate that the reticular pH can be used to detect SARA in cows, as opposed to using the ruminal pH.  相似文献   

2.

Background

The prevalence of subacute ruminal acidosis (SARA) in dairy cows is high with large impact on economy and welfare. Its current field diagnosis is based on point ruminal pH measurements by oral probe or rumenocentesis. These techniques are invasive and inaccurate, and better markers for the diagnosis of SARA are needed. The goal of this study was to evaluate clinical signs of SARA and to investigate the use of blood, faecal and urinary parameters as indicators of SARA. Six lactating, rumen cannulated, Danish Holstein cows were used in a cross-over study with three periods. The first and second periods included two cows on control diet and two cows on nutritional SARA challenge. The third period only included two cows on SARA challenge. Control diet was a conventional total mixed ration [45.5% dry matter (DM), 17.8% crude protein, 43.8% neutral detergent fibre, and 22.5% acid detergent fibre (DM basis)]. SARA challenge was conducted by substituting control diet with grain pellets (50% wheat/barley) over 3 days to reach 40% grain in the diet. Ruminal pH was measured continuously. Blood samples were collected once daily at 7 h after feeding. Samples of faeces and urine were collected at feeding, and at 7 and 12 h after feeding. Blood samples were analysed for pCO2, pO2, pH, electrolytes, lactate, glucose, packed cell volume (PCV), and total plasma protein concentration. Milk composition, ruminal VFA, and pH of faeces and urine were measured.

Results

SARA was associated with decreased (P < 0.05) minimum ruminal, faecal and urinary pH. Daily times and areas of ruminal pH below 5.8, and 5.6 were increased to levels representative for SARA. Significant differences were detected in milk composition and ruminal VFAs. Blood calcium concentration was decreased (P < 0.05), and pCO2 tended to be increased (P = 0.10). Significant differences were not detected in other parameters.

Conclusions

SARA challenge was associated with changes in faecal and urinary pH, blood calcium concentration and pCO2. These may be helpful as indicators of SARA. However changes were small, and diurnal variations were present. None of these parameters are able to stand alone as indicators of SARA.  相似文献   

3.
Subacute ruminal acidosis(SARA)represents one of the most important digestive disorders in intensive dairy farms,and dairy cows are individually different in the severity of SARA risk.The objectives of the current study were to investigate differences in the ruminal bacterial community and metabolome in dairy cattle with different susceptibility to SARA.In the present study,12 cows were initially enrolled in the experiment.Based on average ruminal pH,4 cows with the lowest ruminal pH were assigned to the susceptible group(SUS,pH=5.76,n=4)and 4 cows with the highest ruminal pH assigned to the tolerant group(TOL,pH=6.10,n=4).Rumen contents from susceptible(SUS,n=4)and tolerant(TOL,n=4)dairy cows were collected through rumen fistula to systematically reveal the rumen microbial and metabolic alterations of dairy cows with different susceptibility to SARA using multi-omics approaches(16S and 18S rRNA gene sequencing and metabolome).The results showed that despite being fed the same diet,SUS cows had lower ruminal pH and higher concentrations of total volatile fatty acids(VFA)and propionate than TOL cows(P<0.05).No significant differences were observed in dry matter intake,milk yield,and other milk compositions between the SUS and TOL groups(P>0.05).The principal coordinates analysis based on the analysis of molecular variance indicated a significant difference in bacterial composition between the two groups(P=0.01).More specifically,the relative abundance of starch-degrading bacteria(Prevotella spp.)was greater(P<0.05),while the proportion of fiber-degrading bacteria(unclassified Ruminococcaceae spp.,Ruminococcus spp.,Papillibacter,and unclassified Family_-XIII)was lower in the rumen of SUS cows compared with TOL cows(P<0.05).Community analysis of protozoa showed that there were no significant differences in the diversity,richness,and community structure(P>0.05).Metabolomics analysis revealed that the concentrations of organic acids(such as lactic acid),biogenic amines(such as histamine),and bacterial degradation products(such as hypoxanthine)were significantly higher in the SUS group compared to the TOL group(P<0.05).These findings revealed that the higher proportion of starch-degrading bacteria/lower fiber-degrading bacteria in the rumen of SUS cows resulted in higher VFA-producing capacity,in particular propionate.This caused a disruption in metabolic homeostasis in the rumen which might be the reason for the higher susceptibility to SARA.Overall,these findings enhanced our understanding of the ruminal microbiome and metabolic changes in cows susceptible to SARA.  相似文献   

4.
We developed a novel wireless radio transmission pH measurement system to continuously monitor ruminal bottom pH in cows, and compared these measurements to pH values determined by a spot-sample method. The wireless system consists of a pH sensor, data measurement receiver, relay unit, and personal computer with special software. The bullet-shaped sensor can be easily administered orally via a catheter into the rumen, without surgery. The glass electrode, using a temperature compensation system, can detect the rumen fluid pH with high accuracy. The ruminal bottom pH in healthy rumen-fistulated cows was measured as 6.52 ± 0.18 by the wireless system and as 6.62 ± 0.20 by the spot-sample method; with a correlation between pH measurements using these different methods (n = 8, 24 samples, r = 0.952, P < 0.01). When measured serially in a cow fed a diet evoking rumen acidosis, the ruminal bottom pH decreased markedly following the morning feeding and then increased gradually by the next morning feeding. This wireless system is a ready-to-use tool for estimating circadian changes in ruminal bottom pH.  相似文献   

5.
Evaluation of the radio‐transmission pH‐measurement system for monitoring the ruminal pH and subacute ruminal acidosis (SARA) in cattle is described. This is done in order to reveal the possible application of this system for detection and pathophysiological research of SARA by continuous ruminal pH measurement. The possibility of using this system for assessment of the ruminal pH in SARA cattle, and the presence of negative correlation between the ruminal pH and ruminal temperature in heathy and SARA cattle were determined. In addition, the 16S rRNA gene pyrosequencing analysis showed that the ruminal microbial community was simpler in SARA cattle, and the bacterial numbers in SARA cattle were lower than those in healthy hay‐fed cattle. Concentrate feeding might have reduced the diversity of the ruminal microbial community. Changes in the ruminal microbial community of SARA cattle might be related to the changes in ruminal pH followed by the decrease in the number of some bacteria. Continuous monitoring of the ruminal pH using the radio‐transmission pH‐measurement system would be applied for detection and prevention of SARA in the field and pathophysiological research of SARA, including ruminal zymology and bacteriology, which have been determined previously by sampling of the ruminal fluid and measuring of ruminal pH.  相似文献   

6.
Feeding of high‐concentrate diets to cattle increases the risk of subacute ruminal acidosis (SARA). Indwelling wireless pH sensors have become popular as an early diagnostic tool for SARA recently. However, the recommended pH thresholds of SARA derive from measurements taken from free‐rumen liquid (FRL) in the ventral rumen, and not from the reticulum, where the mentioned sensors are located. The aim of this study was to evaluate commercially available indwelling pH boli for the accuracy and precision in predicting ruminal pH of FRL and the particle‐associated rumen liquid (PARL) under varying dietary concentrate levels. An additional aim was to define SARA pH thresholds of indwelled pH boli, which can be used for SARA diagnostics. The experiment was conducted with eight nonlactating rumen cannulated Holstein cows fed 0% or 65% concentrate. Data showed that the mean pH of indwelled boli was consistently higher than in FRL and PARL (pH 6.62 ± 0.02, 6.43 ± 0.02 and 6.18 ±0.02, respectively) across feeding regimens. Interestingly, the diurnal differences in pH among indwelled boli, FRL and PARL became greater during concentrate feeding, especially at 8 h after the morning feeding, suggesting that with high‐concentrate diets a particular adjustment of reticular sensor pH vs. ruminal pH in FRL and PARL is needed. The concordance correlation coefficient analysis, representing the reproducibility of the bolus measurements, was high for bolus‐FRL (0.733) and moderate for bolus‐PARL (0.510) associations. Furthermore, the quantitative relationship of the pH in FRL and PARL to the pH of the boli was described by linear regression analysis. The study determined that the common SARA threshold of pH 5.8 in FRL corresponds to a bolus pH of 6.0.  相似文献   

7.
Twelve dairy cows in mid to late lactation were fed iso-nitrogenous diets (161 g CP/kg DM, forage:concentrate ratio 65:35) where rolled barley and coarsely ground seeds from either narrow-leafed lupin or field pea supplemented grass–clover silage. Feed allowance was individually restricted and fixed (18.8 ± 0.6 kg dry matter/day) throughout the experiment to avoid refusals. The experiment was of 2 × 2 change-over design and utilized a previous change-over experiment with 3 periods as covariate. Nitrogen balance was assessed by quantitative urine sampling and fecal spot sampling in eight cows whereas rumen metabolism was studied in four cannulated cows. Production of energy corrected milk was 24.3 kg/day with the lupin diet and 23.2 kg/day with the pea diet (P < 0.05). Daily milk fat yield was also higher (P < 0.05) with the lupin diet. Proportion of feed N excreted in milk did not differ between diets. Milk urea concentration, as well as the amounts of total urinary N and urinary urea were higher (P < 0.05) for the lupin diet, while urinary N proportion of feed N only tended (P = 0.08) to be higher with the lupin diet. N balance was lower with the lupin diet. Digestibilities of organic matter, neutral detergent fiber and crude protein did not differ between diets and neither did ruminal pools of these constituents. In addition, there were no differences between the diets with respect to the ruminal concentrations of NH3-N and total volatile fatty acids, and only minor differences in ruminal pH and ruminal concentrations of iso-acids and α-amino-N. It is concluded that the higher fat content in lupins compared to peas is an advantage in typical Scandinavian home-grown rations and probably explains the higher milk yield in this experiment. Differences in protein utilization between lupins and peas are of small magnitude when fed ground without thermal processing. In practical feeding, ad libitum forage allowance may create response differences between lupin seeds and peas not observed in this experiment.  相似文献   

8.

Background

The prevalence and the clinical consequences of subacute ruminal acidosis (SARA) in dairy cows are still poorly understood. In order to evaluate the prevalence of SARA, 26 German dairy farms were included in a field study. In each herd, between 11 and 14 lactating dairy cows were examined for their ruminal pH using rumenocentesis. Milk production data and farm management characteristics were recorded. Each farm was scored for lameness prevalence among lactating animals, and body condition score was recorded three times four to five weeks apart in all animals examined. Farms were grouped on basis of ruminal pH and compared for lameness, body condition, milk production parameters and style of management. Animals were grouped on basis of their measured ruminal pH and compared accordingly for milk production parameters and body condition score.

Results

Of 315 cows examined, 63 individuals (20%) exhibited a ruminal pH of ≤ 5.5 at time of rumenocentesis. Of 26 farms examined, eleven farms had three or more of their cows experiencing a ruminal pH of ≤ 5.5 and were classified as likely experiencing subacute ruminal acidosis. These farms tended to be bigger than the others and offered less lying space to the lactating cows. There was no clear tendency regarding lameness. Among individual cows, animals with a low ruminal pH of ≤ 5.5 were found to be in significantly poorer body condition than animals with higher pH values (p < 0,05).

Conclusions

The study shows 11 out of 26 of herds likely experiencing SARA. Bigger herds tend to be at a higher risk for SARA, while individuals with low ruminal pH tend to be lower in body condition. The study points to the importance of management in preventing SARA.  相似文献   

9.
在奶牛养殖中,亚急性瘤胃酸中毒(subacute ruminal acidosis,SARA)是一种高发的营养代谢病。随着我国奶牛养殖集约化程度的提高,为提升奶牛生产性能饲喂大量高能谷物饲料极易诱发SARA,导致瘤胃液pH值降低,瘤胃菌群发生改变,瘤胃上皮黏膜层受损,进而影响瘤胃代谢功能。分析了奶牛不同生理阶段、择食行为以及个体差异等SARA的易感因素,探讨了SARA对奶牛瘤胃菌群变化、瘤胃上皮细胞基因表达、瘤胃屏障功能的影响,以期为阐明SARA造成瘤胃功能损伤的机制、降低奶牛发生SARA的风险提供参考。  相似文献   

10.

The objective of this study was to evaluate blood levels of various hormones and compounds related to energy metabolism in cows with subacute ruminal acidosis (SARA). We investigated 11 lactating cows presumed to have SARA based on duration of ruminal pH <5.6 and reticulum pH <6.3 in 2015–2016. Kraft pulp (KP) was used to supplement feed of 7 of the cows studied in an effort to reduce SARA. We continuously monitored ruminal pH and measured blood concentrations of hormones and metabolites related to energy metabolism. Blood measurements included glucose (GLU), total cholesterol (TC), free fatty acid (FFA), insulin, adiponectin (ADN), malate dehydrogenase (MDH), and lactate dehydrogenase (LDH). Additionally, we analyzed milk data (milk yield, milk fat percentage, milk protein percentage, milk urea nitrogen, and protein fat ratio) and reproduction data. The results demonstrated that ADN levels at 4 weeks post-parturition correlated with the total amount of time that the ruminal or reticulum fluid pH was under the threshold during 1 week post-parturition, as well as the numbers of days the cows were diagnosed with SARA (SARA-positive days) up to 30 days post-parturition. SARA-positive days in 2016 were higher than those in 2015. In both years, numbers of SARA-positive days for cows supplemented with KP were lower than those for cows without KP. Increased ADN levels may be a compensatory reaction to frequent SARA which modulates the inflammatory response against high LPS levels and improves insulin resistance caused by LPS. ADN may serve as an estimative index for SARA.

  相似文献   

11.
Finding an optimal balance between the amount of physically effective fibre and rumen fermentable carbohydrates in the diets of high-producing dairy cows is difficult, but critical to prevent sub-acute ruminal acidosis (SARA), optimize digestion, nutrient utilization, and improve productivity. The main aim of the present review was to provide a summary of recent achievements regarding the role that interactions between dietary factors such as grain fermentability and physically effective neutral detergent fibre (peNDF) have on rumen fermentation and SARA as well as on production performance in high-producing dairy cows. The review first considers factors related to grain fermentability and finds that the latter variable depends mainly on the source of starch as well as in processing and conservation method; however, dairy cow's response to grain fermentability should be considered in relation with the total amount of starch and/or concentration of peNDF in the diet. Forages and current methods used in the evaluation of their physical characteristics were also reviewed suggesting the use of Penn State Particle Separator as an adequate approach to determine the distribution of particle fractions as well as the content of peNDF in both forages and total mixed rations. Furthermore, results reviewed in this study suggest that a content of peNDF> 1.18 (expressed inclusive of particles-dry matter > 1.18 mm) in the diet of about 30–32% is sufficient in maintaining a daily mean of ruminal pH of 6.2, lowering the risk of SARA, and preventing milk fat depression without exerting any negative effects on daily feed intake and milk production. The review concludes with a practical recommendation in terms of balancing diets with peNDF> 1.18 and ruminally degradable starch, suggesting that a ratio between the two variables lower than 1.45 should be avoided when formulating diets for lactating dairy cows.  相似文献   

12.
Risk factors associated with high or low long-term incidence of displaced abomasum (DA) or clinical ketosis were studied in 60 Swedish dairy herds, using multivariable logistic regression modelling. Forty high-incidence herds were included as cases and 20 low-incidence herds as controls. Incidence rates were calculated based on veterinary records of clinical diagnoses. During the 3-year period preceding the herd classification, herds with a high incidence had a disease incidence of DA or clinical ketosis above the 3rd quartile in a national database for disease recordings. Control herds had no cows with DA or clinical ketosis. All herds were visited during the housing period and herdsmen were interviewed about management routines, housing, feeding, milk yield, and herd health. Target groups were heifers in late gestation, dry cows, and cows in early lactation. Univariable logistic regression was used to screen for factors associated with being a high-incidence herd. A multivariable logistic regression model was built using stepwise regression. A higher maximum daily milk yield in multiparous cows and a large herd size (p = 0.054 and p = 0.066, respectively) tended to be associated with being a high-incidence herd. Not cleaning the heifer feeding platform daily increased the odds of having a high-incidence herd twelvefold (p < 0.01). Keeping cows in only one group in the dry period increased the odds of having a high incidence herd eightfold (p = 0.03). Herd size was confounded with housing system. Housing system was therefore added to the final logistic regression model. In conclusion, a large herd size, a high maximum daily milk yield, keeping dry cows in one group, and not cleaning the feeding platform daily appear to be important risk factors for a high incidence of DA or clinical ketosis in Swedish dairy herds. These results confirm the importance of housing, management and feeding in the prevention of metabolic disorders in dairy cows around parturition and in early lactation.  相似文献   

13.
Controlling rumen disorders is critical to ensure successful dairy herd health management. Lactation diets of dairy cows are commonly rich in concentrates and low in physically effective fibre. Feeding of these diets increases the risk of rumen disorders with far‐reaching consequences for cattle health, welfare and sustainability of dairy production. The term subacute ruminal acidosis or SARA is often used as a synonym for poor rumen health. Being subclinical, SARA lacks of clear symptoms and is therefore difficult to diagnose and to control in the practice. This review article summarises common and identifies new direct and indirect cow signals related to SARA. We have performed a scientific evaluation and interpretation of each of these cow signals by highlighting their advantages and disadvantages from the practitioner's point of view. The gold standard of SARA cow signals still remains direct measurement of ruminal pH. However, continuous pH monitoring is cost‐intensive and often biased by sensor drift. Single‐point ruminal pH measurements by oral stomach tubing or rumenocentesis have strong limitations. Therefore, there is a need for reliable and robust markers of SARA that are easily accessible and inexpensive. Such indirect parameters are the observation of chewing and feeding activities, as well as the monitoring of milk, faecal, urine and blood variables. Also, novel technologies that allow rapid and non‐invasive measurement of the rumen mucosa thickness and ruminal motility patterns might provide advantages in SARA diagnosis. Due to several constraints of these indirect diagnostic tools, such as limited specificity and sensitivity, we strongly recommend using a combination of the signals to reliably identify cows at risk of SARA in a dairy herd.  相似文献   

14.
The aim of this study was to estimate the prevalence of subacute ruminal acidosis (SARA) in Polish high‐yielding dairy herds. Also, the relationships between the chemical composition of the diet and the feed particle size, ruminal pH and the occurrence of this metabolic disease and the fermentation profile were determined. Rumen fluid samples were obtained from a total of 213 cows from nine dairy herds (≥20 cows per herd) via rumenocentesis. Almost 14% (30/213) of cows as acidotic (pH<5.6) were found, which is indicative of SARA. Moreover, 44% of the herds were classified as SARA‐positive and 56% as SARA‐negative. Results of the current study suggested that the physically effective NDF (NDF>1.18 mm)‐to‐starch ratio could be better indices than peNDF>1.18 mm to preventing the occurrence of SARA, and their level should not be lower than 1.00. Also, linear negative relationships between rumen fluid pH and concentration of propionate, valerate and total VFA were determined. According to the herd's SARA status and rumen fluid biochemical indices, there were significant differences between the pH of rumen fluid (p ≤ 0.01), concentrations of acetate (p ≤ 0.05), propionate (p ≤ 0.05), n‐butyrate (p ≤ 0.01), n‐valerate (p ≤ 0.01), the sum of VFA (p ≤ 0.01) and ammonia (p ≤ 0.05) in SARA‐positive herds compared to SARA‐negative herds. The better understanding the strategy of ruminant nutrition to coordinate energy conversion and the role of the ruminal pH in regulating N‐NH3 production, absorption through rumen mucosa, urea secretion, the more successfully we can utilize these processes with due recognition of animal needs and welfare, as well as prevention of SARA occurrence.  相似文献   

15.
16.
To assess the relationship between pH and temperature in the ruminal bottom fluid, circadian changes were monitored using cows fed a control diet (C diet) or a rumen acidosis-inducing diet (RAI diet) by using a wireless radio-transmission pH- measurement system. These two parameters were measured simultaneously at 10-min intervals on day 14 after commencement of feeding. Compared to the mean ruminal pH for 60 min immediately after the morning feeding (0 hr), significantly lower pH was noted 3-13 hr later (P<0.05) and 4-19 hr later (P<0.01) in cows fed the C and RAI diets, respectively, although the reduction in the latter was much higher than that in the former. In contrast, significantly higher ruminal temperature was found at 8 and 12-14 hr later (P<0.05) and 6, 8, and 10-19 hr later (P<0.01) in cows fed the C and RAI diets, respectively. A significant negative correlation was observed between the lowest ruminal pH and its corresponding ruminal temperature in cows fed the C and RAI diets (r=-0.722 and -0.650, P<0.01, respectively), suggesting active fermentation and volatile fatty acid production in the rumen. However, ruminal pH profiles may not be predictable by measuring only ruminal temperature because decreases in ruminal pH were preceded by increases in ruminal temperature, and circadian changes in pH and temperature were associated with ruminal fermentation.  相似文献   

17.
Continuous recording of ruminal pH in cannulated cattle has been practiced to study rumen metabolism. However, most systems reported did not permit animal mobility during pH recording. Therefore, the objective of this study was to develop a continuous rumen pH data acquisition system that permitted animal mobility during data acquisition. A further objective was to compare the pH readings obtained using the continuous recording system to readings obtained at the same time using spot sampling. The continuous recording system was composed of a heavy-duty electrode and a data logger. The electrode was attached to a 0.5-kg weight to help maintain the electrode in the ventral sac of the rumen. The electrode was connected via a 0.5-m cable to a lightweight data logger that was mounted on the animal's back using a belt wrapped around the girth. The data logger was battery powered and could hold over 13,000 pH data values. A personal digital assistant was used to configure and download data from the data logger during the experiment. Ruminal pH was continuously recorded (every 10 s) using a dry Holstein cow fed alfalfa hay ad libitum in a 3-d experiment to compare the performance of the continuous system to spot samples taken from the ventral sac of the rumen, the same location as the continuous electrode. The spot samples were collected 3 times per d for 3 d. At every sampling time, 3 replicate samples were collected, pH was determined immediately using a handheld pH meter, and readings were averaged (n = 3) and compared with the average of the 3 pH readings recorded using the continuous system at the same time. The pH recorded by spot sampling (6.63 +/- 0.04) was greater (P = 0.009) than that of the continuous system (6.56 +/- 0.03), with a correlation of r = 0.88 (P = 0.002). The continuous recording system has the potential to facilitate measurement of ruminal pH in free-roaming cattle.  相似文献   

18.
本试验旨在探究亚急性瘤胃酸中毒(subacute rumen acidosis, SARA)对泌乳奶牛血液生化指标和血浆代谢组的影响。试验选用8头装有永久性瘤胃瘘管的泌乳中期奶牛,随机分成对照组(CON)(n=4)和处理组(SARA)(n=4),CON组与SARA组分别饲喂精粗比为4∶6和6∶4的全混合日粮,试验周期为3周。于试验期每周最后一天晨饲后0、2、4、6、8和12 h进行瘤胃pH的测定,同时在pH测定当天晨饲后6 h采集颈静脉血样,用于血液生化指标和代谢组的分析。结果表明,与CON组相比,SARA组的瘤胃pH显著降低(P=0.002),两组干物质采食量没有显著差异(P=0.524)。血浆生化指标结果显示,与CON组比较,SARA组奶牛的β-羟丁酸浓度显著降低(P=0.007),甘油三酯浓度显著升高(P=0.014)。采用液相-质谱(LC-MS)联用技术对血浆进行代谢组学分析,主成分分析(PCA)和偏最小二乘法分析(PLS-DA)结果显示,SARA组奶牛血浆代谢物组成较CON组发生明显变化,两组间共检测到26种差异代谢物(VIP>1 & FDR<0.05),与CON组相比,SARA组奶牛血浆中的7-酮脱氧胆酸、脱氧胆酸、胆酸、12-酮脱氧胆酸、12(13)Ep-9-KODE、12,13-DHOME和L-天冬酰胺代谢物含量显著升高(FDR<0.05),而十一烷二酸、十六烷二酸、9-HODE、血氧烷B3、PGE2、L-精氨酸、L-色氨酸、L-苏氨酸、异丁酰甘氨酸、异戊酰甘氨酸、马尿酸、4-羟基马尿酸和6-磷酸-2-脱氢-D-葡萄糖酸酯等代谢物含量显著降低(FDR<0.05)。综上,与CON组比较,SARA组奶牛的脂代谢、氨基酸代谢和糖代谢发生显著变化,这些物质可作为SARA潜在的生物标志物。  相似文献   

19.
The effects of anti-lipopolysaccharide (LPS) antibody on rumen fermentation and LPS activity were investigated during subacute ruminal acidosis (SARA) challenge. Eleven Holstein cattle (164 ± 14 kg) were used in a 3 × 3 Latin square design. Cattle were fed a roughage diet on days −11 to −1 (pre-challenge) and day 2 (post-challenge), and a high-grain diet on days 0 and 1 (SARA challenge). For 14 days, 0-, 2-, or 4-g of anti-LPS antibody was administered once daily through a rumen fistula. Ruminal pH was measured continuously, and rumen fluid and blood samples were collected on days −1, 0, 1, and 2. Significantly lower ruminal LPS activity on day 1 was observed in the 2- and 4-g groups than those in the 0-g group. In addition, significantly higher 1-hr mean ruminal pH on SARA challenge period (days 0 and 1) was identified in the 4-g group than in the 0-g group. However, rumen fermentation measurements (total volatile fatty acid [VFA], VFA components, NH3-N and lactic acid) and peripheral blood metabolites (glucose, free fatty acid, beta-hydroxybutyrate, total cholesterol, blood urea nitrogen, aspartate aminotransferase and gamma-glutamyl transferase) were not different among the groups during the experimental periods. Therefore, anti-LPS antibody administration mitigates LPS release and pH depression without the depression of rumen fermentation and peripheral blood metabolites during SARA challenge in Holstein cattle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号