首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The size, number, and biomass of bacteria and microscopic fungi were studied in chernozems of different land uses (forest, fallow, pasture, and cropland), in paleosols under mounds of different ages in the territories adjacent to the background recent chernozems; and in the cultural layer of an ancient settlement of the Bronze Age, Early Iron Age, and Early Middle Age (4100–1050 years ago). The method of cascade filtration revealed that bacterial cells had a diameter from 0.1 to 1.85 μm; their average volume varied from 0.2 to 1.1 μm3. Large bacterial cells predominated in the soils of natural biocenoses; fine cells were dominants in the arable soils and their ancient analogues. The bacterial biomass counted by the method of cascade filtration was first found to be 10–380 times greater than that determined by luminescence microscopy. The maximal bacterial biomass (350–700 μg/g) was found in the soils of the birch forest edge (~80-year-old) and under the 80-year-old fallow. In the soils of the 15–20 year-old fallows and pastures, the bacterial biomass was 110–180 μg/g; in the arable soils and soils under the mounds, it was 80–130 and 30–130 μg/g, respectively. The same sequence was recorded in soils for the content of fungal mycelium and spores, which predominated over the bacterial mass. With the increasing age of the buried paleosols from 1100 to 3900 years, the share of the biomass of fungal spores increased in the total fungal and total microbial biomasses. In the cultural layer of the Berezovaya Luka (Altai region) settlement that had been functioning about 4000 years ago, the maximal biomass and number of fungal spores and the average biomass of bacteria and fungal mycelium comparable to that in the studied soils were revealed. In this cultural layer, the organic matter content was low (Corg, 0.4%), and the content of available phosphorus was high (P2O5, 17 mg/g). These facts attest to the significant saturation of this layer with microbial cenoses 4000 years ago and to their partial preservation up to now owing to the high concentration of ancient human wastes there.  相似文献   

2.
The fungi-to-bacteria ratio in soil ecological concepts and its application to explain the effects of land use changes have gained increasing attention over the past decade. Four different main approaches for quantifying the fungal and bacterial contribution to microbial tissue can be distinguished: (1) microscopic methods, (2) selective inhibition, (3) specific cell membrane components and (4) specific cell wall components. In this review, the different methods were compared and we hypothesized that all these approaches result in similar values for the fungal and bacterial contribution to total microbial biomass, activity, and residues (dead microbial tissue) if these methods are evenly reliable for the estimation of fungal biomass. The fungal contribution to the microbial biomass or respiration varied widely between 2 and 95% in different data sets published over the past three decades. However, the majority of the literature data indicated that fungi dominated microbial biomass, respiration or non-biomass microbial residues, with mean percentages obtained by the different methodological approaches varying between 35 and 76% in different soil groups, i.e. arable, grassland, and forest soils and litter layers. Microscopic methods generally gave the lowest average values, especially in arable and grasslands soils. Very low ratios in fungal biomass C-to-ergosterol obtained by microscopic methods suggest a severe underestimation of fungal biomass by certain stains. Relatively consistent ratios of ergosterol to linoleic acid (18:2ω6,9) indicate that both cell membrane components are useful indicators for saprotrophic and ectomycorrhizal fungi. More quantitative information on the PLFA content of soil bacteria and the 16:1ω5 content of arbuscular mycorrhizal fungi is urgently required to fully exploit the great potential of PLFA measurements. The most consistent results have been obtained from the analysis of fungal glucosamine and bacterial muramic acid in microbial residues. Component-specific δ13C analyses of PLFA and amino sugars are a promising prospect for the near future.  相似文献   

3.
Ergosterol is a fungus-specific chemical component which has been extensively used to assess the fungal biomass and activity in soils. In the present study, we investigated the soil ergosterol content in a group of Japanese soils differing in management. In addition, the relationships among the soil ergosterol content (SEC), microbial biomass C (MBC), and microbial biomass N (MBN) were also tested in different seasons. Our results showed that the SEC was lower in intensively cropped soils than in pasture and forest soils. In general, no consistent trend was observed for SEC of pasture soils within the same sampling period. However, SEC tended to decrease in most of the soils in autumn, which may be ascribed to the effect of seasonal changes on fungal biomass. No strong evidence could be obtained for the effect of different fertilizers on SEC, which can be due to different management variables and interspecific variations between fungal communities at different soil sites. Our results did not suggest the presence of a noticeable correlation between SEC and MBC or MBN. The ratio of SEC in total biomass C was lower (0.20 and 0.11% in spring and autumn, respectively) compared with the values reported.  相似文献   

4.
Central Brazil is the region with the most dynamic agriculture expansion worldwide, where tropical forests and Cerrado (Brazilian savanna) are converted to pastures and crop fields. Following deforestation, agricultural practices, such as fertilization, tillage and crop rotations, alter soil parameters and affect microbial abundances and the C and N cycles. The objective of this study was to compare changes in soil fertility, stocks of soil C and N, microbial biomass, and abundance of bacteria, fungi and archaea in Cerrado soils following land use change to crops (soybean/corn/cotton) and pasture (the perennial forage grass Brachiaria brizantha A. Rich.). Agriculture increased soil fertility and conserved soil C and N since their absolute concentration values were highest in agriculture soils and the C and N stocks adjusted by soil density were similar to the native vegetation soils. At the same time, agriculture changed the microbial abundances (decrease of microbial biomass C and N, increase of archaea, and reduction of bacteria and fungi at the crop sites), and N dynamics (increase of soil ammonium and nitrate concentrations). Even if these changes can be beneficial for food and agricultural commodities production, all these soil alterations should be further investigated due to their possible unknown effects on biosphere–hydrosphere–atmosphere exchange processes such as greenhouse gases emissions and nitrate leaching.  相似文献   

5.
The distribution of the fungal biomass and diversity of cultivated microscopic fungi in the profiles of some soils from East (Progress Station, valleys of the Larsemann Hills oasis) and West (Russkaya Station, the Marie Byrd Land) Antarctica regions were studied. The structure of the biomass (spore/mycelium and live cells/dead cells) was analyzed by fluorescence microscopy with staining using a set of coloring agents: calcofluor white, ethidium bromide, and fluorescein diacetate. The species composition of the cultivated microscopic fungi was determined on Czapek’s medium. The fungal biomass in the soils studied is not high (on the average, 0.3 mg/g of soil); the greatest biomass (0.6 mg/g) was found in the soil samples with plant residues. The fungal biomass is mainly (to 70%) represented by small (to 2.5 μm) spores. About half of the fungal biomass is composed of living cells. There are differences in the distribution of the fungal biomass within the profiles of different primitive soils. In the soil samples taken under mosses and lichens, the maximal biomass was registered in the top soil horizons. In the soils with the peat horizon under stone pavements, the greatest fungal biomass was registered in the subsurface horizons. Thirty-eight species of cultivated microscopic fungi were isolated from the soils studied. Species of the genus Penicillium and Phoma herbarum predominated.  相似文献   

6.
Characterizing functional and phylogenetic microbial community structure in soil is important for understanding the fate of microbially-derived compounds during the decomposition and turn-over of soil organic matter. This study was conducted to test whether amino sugars and muramic acid are suitable biomarkers to trace bacterial, fungal, and actinomycetal residues in soil. For this aim, we investigated the pattern, amounts, and dynamics of three amino sugars (glucosamine, mannosamine and galactosamine) and muramic acid in the total microbial biomass and selectively cultivated bacteria, fungi, and actinomycetes of five different soils amended with and without glucose. Our results revealed that total amino sugar and muramic acid concentrations in microbial biomass, extracted from soil after chloroform fumigation varied between 1 and 27 mg kg−1 soil. In all soils investigated, glucose addition resulted in a 50-360% increase of these values. In reference to soil microbial biomass-C, the total amino sugar- and muramic acid-C concentrations ranged from 1-71 g C kg−1 biomass-C. After an initial lag phase, the cultivated microbes revealed similar amino sugar concentrations of about 35, 27 and 17 g glucosamine-C kg−1 TOC in bacteria, fungi, and actinomycetes, respectively. Mannosamine and galactosamine concentrations were lower than those for glucosamine. Mannosamine was not found in actinomycete cultures. The highest muramic acid concentrations were found in bacteria, but small amounts were also found in actinomycete cultures. The concentrations of the three amino sugars studied and muramic acid differed significantly between bacteria and the other phylogenetic microbial groups under investigation (fungi and actinomycetes). Comparison between the amino sugar and muramic acid concentrations in soil microbial biomass, extracted after chloroform fumigation, and total concentrations in the soil showed that living microbial biomass contributed negligible amounts to total amino sugar contents in the soil, being at least two orders of magnitude greater in the soils than in the soil inherent microbial biomass. Thus, amino sugars are significantly stabilized in soil.  相似文献   

7.
Stock farming plays an important role in the agriculture of alpine regions although deleterious effects on the soils are most pronounced here. We investigated the effects of cattle trampling on soil physical, chemical and microbial properties in a Swiss sub-alpine pasture. About 10% of the study site was bare of vegetation as a result of repeated cattle trampling and the bulk density of these bare steps was 20% higher than of the soils unaffected by trampling. In the upper 25 cm, soil organic carbon (SOC) concentrations and total SOC stocks were 35% and 20% respectively lower than on the vegetated slope. As compared with the vegetated slope, topsoils of the bare steps featured narrower C:N-ratios and were more enriched in the 15N isotope, with typical values of deeper soil layers. This indicates that bare soils primarily evolved by erosion and not by a compaction, which might, together with the reduced litter input, explain the lower SOC contents. The abundances of soil microbes, estimated by the concentrations of phospholipid fatty acid (PLFA), were 30% smaller in the bare soils than in the vegetated areas. This depletion was most pronounced for fungi as expressed in the lower concentrations of the fatty acid 18:2ω6.9 (45%) and ergosterol (50%). The lower fungal abundance very likely has negative consequences for the stability of the bare soils, since fungi play an important role in the formation of soil aggregates. In summary, our results show that cattle trampling decreases soil carbon storage and alters soil microbial community structure.  相似文献   

8.
Soil organic matter contents, soil microbial biomass, potentially mineralizable nitrogen (N) and soil pH values were investigated in the Ap horizons of 14 field plots at 3 sites which had been under organic farming over various periods. The objective was to test how these soil properties change with the duration of organic farming. Site effects were significant for pH values, microbial biomass C and N, and for potentially mineralizable N at 0—10 cm depth. The contents of total organic C, total soil N, and potentially mineralizable N tended to be higher in soils after 41 versus 3 years of organic farming, but the differences were not significant. Microbial biomass C and N contents were higher after 41 years than after 3 years of organic farming at 0—10 cm depth, and the pH values were increased at 10—27 cm depth. Nine years of organic farming were insufficient to affect soil microbial biomass significantly. Increased biomass N contents help improve N storage by soil micro‐organisms in soils under long‐term organic farming.  相似文献   

9.
The aim of this study was to determine the effects of plant absence or presence on microbial properties and enzyme activities at different levels of salinity in a sandy clay soil. The treatments involved five salinity levels—0.5 (control), 2.5, 5, 7.5, and 10 dS m?1 which were prepared using a mixture of chloride salts—and three soil environments (unplanted soil, and soils planted with either wheat or clover) under greenhouse conditions. Each treatment was replicated three times. At the end of the experiment, soil microbial respiration, substrate-induced respiration (SIR), microbial biomass C (MBC), and enzyme activities were determined after plant harvest. Increasing salinity decreased soil microbial properties and enzyme activities, but increased the metabolic quotient (qCO2) in both unplanted and planted soils. Most microbial properties of planted soils were greater than those of unplanted soils at low to moderate salinity levels, depending upon plant species. There was a small or no difference in soil properties between the unplanted and planted treatments at the highest salinity level, indicating that the indirect effects of plant presence might be less important due to significant reduction of plant growth. The lowered microbial activity and biomass, and enzyme activities were due to the reduction of root activity and biomass in salinized soils. The lower values of qCO2 in planted than unplanted soils support the positive influence of plant root and its exudates on soil microbial activity and biomass in saline soils. Nonetheless, the role of plants in alleviating salinity influence on soil microbial activities decreases at high salinity levels and depends on plant type. In conclusion, cultivation and growing plant in abandoned saline environments with moderate salinity would improve soil microbial properties and functions by reducing salinity effect, in particular planting moderately tolerant crops. This helps to maintain or increase the fertility and quality of abandoned saline soils in arid regions.  相似文献   

10.
An 8 year study to investigate the effects of Zn-spiked sewage sludge additions on the microbial community structure and microbial processes was carried out in a field soil under pasture. The microbial community structure was evaluated using a combination of multiplex-terminal restriction fragment length polymorphism (M-TRFLP) and T-RFLP fingerprinting approaches. Soil respiration, microbial biomass and enzymatic activities were measured as indicators of soil microbial processes. Changes in the microbial community structure, with Zn additions were evident in all the microbial groups investigated (bacteria, fungi, archaea, actinobacteria and rhizobia/agrobacteria). The fungal community showed the greatest response to Zn additions compared to the other microbial communities measured. The relative abundance of several fungal terminal restriction fragments (TRFs) significantly increased in high Zn treated treatments, at the expense of others, some of which were lost from T-RFLP profiles completely. These results indicate that metal-spiked sludge application can have long-lasting impacts on the composition of the microbial community in pasture soils. Despite notable changes in community structure there was no significant long-term impact of Zn-spiked sludge applications on microbial respiration, biomass or enzyme activities.  相似文献   

11.
The main change in soil use in Amazonia is, after slash and burn deforestation followed by annual crops, the establishment of pastures. This conversion of forest to pasture induces changes in the carbon cycle, modifies soil organic matter content and quality and affects biological activity responsible for numerous biochemical and biological processes essential to ecosystem functioning. The aim of this study was to assess changes in microbial biomass and activity in fallow and pasture soils after forest clearing. The study was performed in smallholder settlements of eastern Brazilian Amazonia. Soil samples from depths of 0–2, 2–5 and 5–10 cm were gathered in native forest, fallow land 8–10 yr old and pastures with ages of 1–2, 5–7 and 10–12 yr. Once fallow began, soil microbial biomass and its activity showed little change. In contrast, conversion to pasture modified soil microbial functioning significantly. Microbial biomass and its basal respiration decreased markedly after pasture establishment and continued to decrease with pasture age. The increase in metabolic quotient in the first years of pasture indicated a disturbance in soil functioning. Our study confirms that microbial biomass is a sensitive indicator of soil disturbance caused by land‐use change.  相似文献   

12.
Soil subsidence has become a critical problem since the onset of drainage of the organic soils in the Everglades Agricultural Area (EAA), which may impair current land uses in the future. The objectives of this study were to characterize soil microbial community‐level physiology profiles, extracellular enzymatic activities, microbial biomass, and nutrient pools for four land uses: sugarcane, turfgrass, pasture, and forest. Long‐term cultivation and management significantly altered the distribution and cycling of nutrients and microbial community composition and activity in the EAA, especially for sugarcane and turf fields. The least‐managed fields under pasture had the lowest microbial biomass and phosphorus (P) levels. Turf and forest had more microbial metabolic diversity than pasture or the most intensively managed sugarcane fields. Land‐use changes from sugarcane cropping to turf increased microbial activity and organic‐matter decomposition rates, indicating that changes from agricultural to urban land uses may further contribute to soil subsidence.  相似文献   

13.
Perennial rye grass (Lolium perenne) was grown in a greenhouse pot experiment on seven soils to answer the question whether the microbial colonisation of roots is related to existing differences in soil microbial indices. The soils were similar in texture, but differed considerably in soil organic matter, microbial biomass, and microbial community structure. Ergosterol and fungal glucosamine were significantly interrelated in the root material. This ergosterol was also significantly correlated with the average ergosterol content of bulk and rhizosphere soil. In addition, the sum of fungal C and bacterial C in the root material revealed a significant linear relationship with microbial biomass C in soil. The colonisation of roots with microorganisms increased apparently with an increase in soil microbial biomass. In the root material, microbial tissue consisted of 77% fungi and 23% bacteria. In soil, the fungal dominance was slightly, but significantly lower, with 70% fungi and 30% bacteria. Fungal glucosamine in the root material was significantly correlated with that in soil (r=0.65). This indicates a close relationship between the composition of dead microbial remains in soil and the living fraction in soil and root material for unknown reasons.  相似文献   

14.
The total microbial biomass (TMB) was assessed in the chestnut and light chestnut soils and in the paleosols under burial mounds (steppe kurgans) in the Lower Volga region on the basis of data on the organic carbon content in the extracted microbial fraction supplemented with the data on the extraction completeness as a conversion coefficient. The completeness of the microbial fraction extraction was determined by direct counting of the microbial cells and colony-forming units (on plates with soil agar). The total microbial biomass varied from 400 to 6600 μg of C/soil. Its values in the buried soils were 3–5 times lower than those in the surface soils. The TMB distribution in the buried chestnut soil profile was close to that in its modern analogue (with the minimum in the B1 horizon). In the buried light chestnut paleosols, the TMB values usually increased down the profile; in the recent light chestnut soils, the maximum TMB values were found in the uppermost horizon.  相似文献   

15.
The biological properties of the most widespread automorphic and hydromorphic soils of cultural and native cenoses in the Terskii variant of the altitudinal zonality (Kabardino-Balkaria) are compared. The data on the humus reserves in the 0- to 20-cm soil layer and those on the carbon content in the microbial biomass calculated on the basis of the results of substrate-induced respiration measurements are presented. The share of carbon in the microbial biomass of the total organic carbon in the soils was determined. Long-term (more than 70 years) farming on the studied soils significantly changed their biological properties. The humus content and its reserves became lower by 25–40%. The physiological activity of the microbial biomass in the cultural soils decreased by more than 60%. Presently, the soils of the cultural cenoses function as an entire natural system, but at a lower level of fertility; the loss of more than 30% of the bioorganic potential (the critical threshold of soil system stability) indicates the disturbance of soil ecological functions, their stability, and the capability of self-restoration.  相似文献   

16.
Soil compaction can affect the turnover of C and N (e.g. by changing soil aeration or by changing microbial community structure). In order to study this in greater detail, a laboratory experiment simulating total soil porosities representative of field conditions in cropped and pasture soils was set up. Soils were silty clay loams (Typic Endoaquepts) from a site that had been cropped with cereals continuously for 28 years, a permanent pasture and a site that had been cropped with maize continuously for 10 years. Soils from the three sites were compacted into cores to different total porosities (corresponding bulk densities ranging from 0.88 to 1.30 Mg m−3). The soil cores were equilibrated to different matric potentials (ranging from −1 to −100 kPa), yielding values for the fraction of air-filled pores of < 0.01 to 0.53 m3 m−3, and then incubated at 25°C for 21 days. C-mineralization was on average 15, 33 and 21 μg C g−1 day−1 for soils from the cropped, pasture and maize sites, respectively, and was positively correlated with soil water contents. Net N-mineralization showed a similar pattern only for well-aerated, high total porosity cores (corresponding bulk density 0.88 Mg m−3) from the pasture soil. Denitrification at < 0.20 m3 m−3 for the fraction of air-filled pores may have caused the low N-mineralization rates observed in treatments with high water content or low porosity. Microbial biomass estimates decreased significantly with increasing water contents if measured by fumigation-extraction, but were not significantly affected by water content if estimated by the substrate-induced respiration method. The degree of soil compaction did not affect the microbial biomass estimates significantly but did affect microbial activity indirectly by altering aeration status.  相似文献   

17.
The toxic effects of heavy metals, commonly found in urban wastes on the soil microflora In several series the influence of soluble salts of Cd, Cr, Zn, Cu, Ni and Hg in various concentrations was tested on the development of bacteria and fungi in cultural studies and in soil model systems. In addition the changes in microbial biomass, in the activity of oxidoreductases and hydrolases, and in nitrification were measured in five soils. Comparison of the results of bacteria-plate-counts in the presence of heavy metals in agar-media and in soils demonstrated that all tested elements have a more toxic effect on isolated soil microorganisms under culture conditions than when tested after heavy metal application to soils. Beside Hg, eucaryotic soil fungi proved to be 10 – 50 fold more resistant to heavy metals in vitro as well as in situ. For calculating the effect of heavy metals on soil microbial activity soil enzymatic methods are not reliable and can be used only to some extent, because some cellfree encymes in the soil are activated or inactivated immediately by heavy metals. In long-term experiments, the microbial biomass and nitrification in soil is not significantly influenced by the elements Cd, Cu and Ni in the concentration range of the tolerable limit content. In contrast, Cr, Zn and Hg reduced these microbiological properties more or less distinctly.  相似文献   

18.
The contents of carbon in the total microbial biomass (C-TMB) and in the microorganisms reactivated with glucose (C-RG) and the portion of glucose-reactivated microorganisms in the microbial community (C-RG/C-TMB) were determined in paleosols buried under desert-steppe kurgans (burial mounds) 5100–3960 years ago and in the background surface light chestnut soils. In the paleosols, the corresponding indices reached 986 μg/g (C-TMB), 14.6 μg/g (C-RG), and 1.5% (C-RG/C-TMB) and were considerably lower than those in the background surface soil. The lowest values were found for the paleosols buried 4260–3960 years ago, which confirms a conclusion about the paleoecological crisis during this time interval.  相似文献   

19.
The soil chemical properties and microbial numbers in three volcanic ash soils and two non-volcanic ash soils, which had been continuously subjected to the same tea cultivation practices (21 y), were investigated. The results obtained were as follows. 1) pH values of all the soils gradually decreased from the original pH value (near neutral or mildly acid pH) to strongly acid values of about 4 or lower. In contrast, long-term tea cultivation practices resulted in the increase of the total C and N contents in the surface layers (0–20 cm) while the contents remained stable in the subsurface layers (20–40 cm). The increase in the organic matter content in non-volcanic ash soils was presumably due to the accumulation of microbial residues. The availability of P increased markedly. 2) Numbers of bacteria, actinomycetes, fungi, and denitrifiers were higher in volcanic ash soils than in non-volcanic ash soils, and also higher in surface layers than in subsurface layers. The results suggest that in spite of the same cultivation practices, the soil depth and soil type affected the microbial numbers in the tea soils. Numbers of autotrophic NH4 + oxidizers were low in comparison with the numbers of autotrophic NO2 - oxidizers. Influence of soil type and soil depth on autotrophic nitrifiers was not clear. 3) Total C and N contents in the tea soils were parameters closely related to the numbers of bacteria, actinomycetes, and fungi. For actinomycetes and fungi, the prediction could be more accurate, especially for total N content, if the estimations could be made within the same soil layers. The numbers per unit of C or N were higher in the surface layers than in the subsurface layers. 4) High concentration of NO3 --N in the tea soils used suggests that nitrification could occur despite the low pH value (3.2-3.8). The negative relationship between the number of total bacteria or actinomycetes and soil NH4 +-N concentration suggests that some NH4 +-N was converted to organic microbial biomass-No.  相似文献   

20.
盘锦芦苇湿地土壤微生物生物量C的季节动态   总被引:2,自引:0,他引:2  
基于盘锦湿地生态系统野外观测站芦苇群落2005年4月 ̄10月的定位观测资料,分析了盘锦芦苇湿地土壤微生物生物量C的季节变化规律及生态特性:盘锦湿地土壤微生物量生物量C在三个土壤层次都表现出随着芦苇生长季的变化呈现先增长、后下降的"M型"变化趋势。相关分析结果表明:气候因子中降水量和空气相对湿度对微生物生物量碳的影响大于气温;土壤因子中土壤热通量和土壤平均温度的影响大于土壤含水量。通径分析结果表明:在环境因子的综合作用中,起直接作用的因子主要是气温和土壤平均温度,其它因子影响较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号