首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
The ages of organic matter of some dark-colored horizons and calcareous concretions in some Vertisols from tropical,subtropical and warm-temperate zones of China were studied using radiocarbon dating method.The relationship between soil age and genesis of Vertisols was also expounded based on the study of their genetic characteristics and micromorphological features.The results show that although Vertisols have developed for a relatively long time,their weathering and soil forming process are weak and young with little horizonation.This is closely related to their special grochemical soil forming environment.Low-lying terrain,heavy texture,clay minerals dominated by montmorillonites and alternative drying-wetting climate give rise to the vertic features expressed in intense swelling-shrinking and cracking-closing in soils.As a result,the soil development and soil leaching process are resisted,and the climatic effect on the horizonation is impeded.Moreover,pedoturbation eliminates the horizonation in the upper part of soil profile,and postpones their evolution into zonal soils.So vertisols show certain pedogenic inertia and stay at relatively young developmental stage.Therefore,Vertisols are intrazonal soils dominated by local soil forming factors such as the relief and parent materials.  相似文献   

2.
This paper is a review of some advances in the studies on 1.4-nm intergrade mineral of soils in subtropical China. 1)1.4-nm intergrade mineral occurs ubiquitously in soils of subtropical China. The 1.4-nm mineral in red soil and yellow soil is mainly 1.4-nm intergrade mineral, and in acidic yellow-brown soil (pH < 5.5) is vermiculite alone or 1.4-nm intergrade mineral together with vermiculite. The distribution and the content of 1.4-nm intergrade mineral in the mountain soils are more widespread and higher than those of the corresponding soils in horizontal zone. 2) The interlayer material of 1.4-nm intergrade mineral in these soils appears to be hydroxy-A1 polymers instead of hydroxy-Fe, proto-imogolite or kaolin-like material. There is a significant positive correlation between A1 amount extracted from the soil with sodium citrate after DCB extraction and pH value of the citrate solution after the extraction. The citrate can also extract a certain amount of silicon from the soil, but the silicon may not come from interlayer of 1.4-nm intergrade mineral. 3) It was seldom studied that either vermiculite or smectite did the natural 1.4-nm intergrade mineral come from in soil, or it was commonly thought to come from vermiculite. A recent report has revealed that it can come from smectite. There are some different behaviors between the 1.4-nm intergrade mineral derived from vermiculite and that from smectite. For example, they exert different influences on the formation of gibbsite. The 1.4-nm intergrade mineral derived from smectite may promote the formation of gibbsite in the yellow soil. 4) The type of 1.4-nm minerals in soils. i.e., vermiculite or 1.4-nm intergrade mineral, may be significant to soil properties, such as soil acidity, exchangeable Al, electric charge amount and specific surface area. Therefore, the management for the soil in which 1.4-nm mineral is mainly 1.4-nm intergrade mineral or vermiculite should be dealt with differently.  相似文献   

3.
Oxalic acid plays an important role in improving the bioavailability of soil nutrients. Batch experiments were employed to examine the influences of oxalic acid on extraction and release kinetics of potassium (K) from soils and minerals along with the adsorption and desorption of soil K^+. The soils and minerals used were three typical Chinese soils, black soil (Mollisol), red soil (Ultisol), and calcareous alluvial soil (Entisol), and four K-bearing minerals, biotite, phlogopite, muscovite, and microcline. The results showed that soil K extracted using 0.2 mol L^-1 oxalic acid was similar to that using 1 mol L^-1 boiling HNO3. The relation between K release (y) and concentrations of oxalic acid (c) could be best described logarithmically as y = a + blogc, while the best-fit kinetic equation of K release was y = a + b√t, where a and b are the constants and t is the elapsed time. The K release for minerals was ranked as biotite 〉 phlogopite 〉〉 muscovite 〉 microcline and for soils it was in the order: black soil 〉 calcareous alluvial soil 〉 red soil. An oxalic acid solution with low pH was able to release more K from weathered minerals and alkaline soils. Oxalic acid decreased the soil K^+ adsorption and increased the soil K^+ desorption, the effect of which tended to be greater at lower solution pH, especially in the red soil.  相似文献   

4.
While research on pedogenesis mainly focuses on long-term soil formation and most often neglects recent soil evolution in response to human practices or climate changes, this article reviews the impact of artificial subsurface drainage on soil evolution. Artificial drainage is considered as an example of the impact of recent changes in water fluxes on soil evolution over time scales of decades to a century. Results from various classical studies on artificial drainage including hydrological and environmental studies are reviewed and collated with rare studies dealing explicitly with soil morphology changes, in response to artificial drainage. We deduce that soil should react to the perturbations associated with subsurface drainage over time scales that do not exceeding a few decades. Subsurface drainage decreases the intensity of erosion and must i) increase the intensity of the lixiviation and eluviation processes, ii) affect iron and manganese dynamics, and iii) induce heterogeneities in soil evolution at the ten meter scale. Such recent soil evolutions can no longer be neglected as they are mostly irreversible and will probably have unknown, but expectable, feedbacks on crucial soil functions such as the sequestration of soil organic matter or the water available capacity.  相似文献   

5.
中国土壤分类法中铁铝土的分类   总被引:4,自引:1,他引:3  
The development of the classification of ferrallitic soils in China is reviewed and the classification of Ferralisols and Ferrisols in Chinese Soil Taxonomy is introduced in order to discuss the correlation between the ferrallitic soil classification in the Chinese Soil Taxonomy and those of the other soil classification systems. In the former soil classification systems of China, the ferrallitic soils were classified into the soil groups of Latosols, Latosolic red soils, Red soils, Yellow soils and Dry red soils, according to the combination of soil-forming conditions, soil-forming processes, soil features and soil properties. In the Chinese Soil Taxonomy, most of ferrallitic soils are classified into the soil orders of Ferralisols and Ferrisols based on the diagnostic horizons and/or diagnostic characteristics with quantitatively defined properties. Ferralisols are the soils that have ferralic horizon, and they are merely subdivided into one suborder and two soil groups. Ferrisols are the soils that have LAC-ferric horizon but do not have ferralic horizon, and they are subdivided into three suborders and eleven soil groups. Ferralisols may correspond to part of Latosols and Latosolic red soils. Ferrisols may either correspond to part of Red soils, Yellow soils and Dry red soils, or correspond to part of Latosols and Latosolic red soils.  相似文献   

6.
GONGZITONG  CHENZHICHENG 《土壤圈》2000,10(2):125-133
The development of the classification of ferrallitic soils in China is reviewed and the classification of Ferralisols and Ferrisols in Chinese Soil Taxonomy is introduced in order to discuss the correlation between the ferrallitic soil classification in the Chinese Soil Taxonomy and those of the other soil classification systems.In the former soil classification systems of China,the ferrallitic soils were classified into the soil groups of Latosols,Latosoilc red soils,Red soils,Yellow soils and Dry red soils,according to the combination of soilforming conditions,soil-forming processes,Soil features and soil properties.In the Chinese Soil Taxonomy,most of ferrallitic soils are classified into the soil orders of Ferralisols and Ferrisols based on the diagnostic horizons and /or diagnostic characteristics with quantitatively defined properties.Ferralisols are the soils that have ferralic horizon,and they are merely subdivided into one suborder and two soil groups.Ferrisols are the soils that have LAC-ferric horizon but do not have ferralic horizon.and they are subdivided into three suborders and eleven soil groups.Ferralisols may correspond to part of Latosols and Latosolic red soils.Ferrisols may either correspond to part of Red soils,Yellow soils and Dry red soils,or correspond to part of Latosols and Latosolic red soils.  相似文献   

7.
A soil column method was used to compare the effect of drip fertigation (the application of fertilizer through drip irrigation systems, DFI) on the leaching loss and transformation of urea-N in soil with that of surface fertilization combined with flood irrigation (SFI), and to study the leaching loss and transformation of three kinds of nitrogen fertilizers (nitrate fertilizer, ammonium fertilizer, and urea fertilizer) in two contrasting soils after the fertigation. In comparison to SFI, DFI decreased leaching loss of urea-N from the soil and increased the mineral N (NH4^+-N + NO3^--N) in the soil. The N leached from a clay loam soil ranged from 5.7% to 9.6% of the total N added as fertilizer, whereas for a sandy loam soil they ranged between 16.2% and 30.4%. Leaching losses of mineral N were higher when nitrate fertilizer was used compared to urea or ammonium fertilizer. Compared to the control (without urea addition), on the first day when soils were fertigated with urea, there were increases in NH4^+-N in the soils. This confirmed the rapid hydrolysis of urea in soil during fertigation. NH4^+-N in soils reached a peak about 5 days after fertigation, and due to nitrification it began to decrease at day 10. After applying NH4^+-N fertilizer and urea and during the incubation period, the mineral nitrogen in the soil decreased. This may be related to the occurrence of NH4^+-N fixation or volatilization in the soil during the fertigation process.  相似文献   

8.
金沙江干热峡谷中退化的土壤生态系统生物学特征初探   总被引:4,自引:0,他引:4  
Distribution characteristics of soil animals,microorganisms and enzymatic activity were studied in the dry red soil and Vertisol ecosystems with different degradation degrees in the Yuanmou dry hot valley of the Jinsha River,China.Results showed that Hymenoptera,Araneae and Collembola were the dominant groups of soil animals in the polts studied.The numbers of groups and individuals and density of soil animals in the dry red soil series were higher than those in the Vertisol series,and the numbers of individuals and density of soil animals decreased with the degree of soil degradation.Bacteria dominated microbiococnosis not only in the dry red soils but also in the Vertisols.Microbial numbers of the dry red soil series were higher than those of Vertisol series,and decreased with the degree of soil degradation.The activities of catalase,invertase,urease and alkaline phosphatase declined with the degradation degree and showed a significant decline with depth in the profiles of both the dry red soils and the Vertisols,but activities of polyphenol oxidase and acid and neutral phosphatase showed the same tendencies only in the Vertisols.It was concluded that the characteristics of soil animals,microorganisms and enzymatic activity could be used as the bio-indicators to show the degradation degree of the dry red soils and Vertisols.Correlation among these soil bio-indicators was highly significant.  相似文献   

9.
The reasons for the Yangtze River flood calamity in 1998 are briefly introduced. The authors believe that using a “soil reservoir“ concept is an important means to help control flooding of the Yangtze River. A “soil reservoir“ has a large potential storage capacity and its water can be rapidly “discharged“ into the underground water in a timely fashion. The eroded, infertile soils of the Yangtze River Watershed are currently an obstacle to efficient operation of the “soil reservoir“. The storage capacity of this “soll reservoir“ has been severely hampered due to intensive soil erosion and the formation of soil crusts. Therefore, possible measures to control floods in the Yangtze River Watershed include: rehabilitating the vegetation to preserve soil and water on the eroded infertile soils, enhancing infiltration of the different soil types, and utilizing the large “soil reservoir“ of the upper reaches of the Yangtze River.  相似文献   

10.
The zonal soils in the south subtropical zone of Fujian are lateritic red soils.A type of dark clayey soils.which was historically defined as lateritic red soils,derived from weathering products of the basalts was indicated by the investigation results to be markedly different from lateritic red soils and could be classified as Typical Hapluderts.They are distributed as complex zones with the lateritic red soils.The vertisols in this region were considered as a type of lithogenic soils and the vertic characteristics delay and inhibit the soils from allitic processes and then formed an independent soil type.The vertisols have higher fertility and better agricultural production characters than the lateritic red soils.The different ways in utilizing and managing these soils according to their properties and fertility are also suggested.  相似文献   

11.
我国土壤放射性碳年龄   总被引:2,自引:0,他引:2       下载免费PDF全文
刘良梧  茅昂江 《土壤学报》2001,38(4):506-513
我国地域辽阔 ,土壤类型众多。土壤中不仅含有有机质和腐殖质 ,而且许多土壤中还含有丰富的钙质结核、分散碳酸盐以及贝壳、珊瑚等可供放射性碳断代的良好对象。土壤有机和无机1 4 C年龄研究表明 ,我国大多数土壤是全新世时期的产物。其中又以全新世中期和晚期的土壤占绝对优势。人为土纲中的土壤年龄与六千余年来我国悠久的农业耕种历史密切相关。相比之下 ,只有少数土壤形成于晚更新世晚期。而另一些土壤有数个形成、发育阶段 ,它们的年龄自然亦就跨越不同的地质时期 ,具有多元化的特点。  相似文献   

12.
Five variants of the distribution of clay (<0.001 mm) and physical clay (<0.01 mm) fractions along the vertical profiles of Vertisols (slitozems) and vertic soils (slitic subtypes of different soil types) from the European part of Russia are distinguished: (1) accumulative, (2) even, (3) regressive, (4) with a maximum in the middle-profile horizon and with their approximately equal contents in the upper and the lower horizons, and (5) eluvial–illuvial. These distribution patterns are related to the lithological specificity of sedimentation and formation of parent materials composed of swelling clays of different geneses and ages. Solonetzic, eluvial- gley, and solodic processes contribute to the development of the eluvial–illuvial and, partly, regressive variants of clay distribution. All the five variants with a predominance of the even distribution pattern can be found in Vertisols. Most of Vertisols in the European part of Russia have a medium clayey or a heavy clayey texture in the entire profile. The regressive distribution pattern is typical of the group of vertic soils. In the upper horizons of Vertisols, where slickensides do not form, the texture is usually heavier than that in the analogous horizons of vertic soils. The middle-profile and lower horizons with slickensides have similar statistical distributions of particle-size fractions in Vertisols proper and in vertic soils. However, in Vertisols, a tendency for a more frequent occurrence of the soils with a higher content of the clay fraction and with a higher portion of this fraction in the physical clay fraction is observed (as compared with the vertic soils).  相似文献   

13.
Moralistic soils (vertic and non-vertic black clays) were sampled along a 200 m top sequence in the Transvaal Highveld, South Africa. The Milk wood soil on the upper part of the margalitic top sequence has an Al horizon which lacks both slickensides and self-mulching properties but has strong blocky structure, the others are all self-mulching (i.e. Vertisols). The Vertisols differ in some morphological properties such as the absence (Mngazi series) and presence (Arcadia series) of pedogenic calcite accumulation, both overlying decomposed dolerite, whereas the third member from a red-black centenary sequence is calcareous with a gleyed subsoil horizon. Chemical and XRD analysis suggest that the clays of the Vertisols comprise mainly a partly chloritized iron-rich smectite with Ie > Mg + Al in the octahedral layer (and interlayer positions), while in the upland Milkwood soil intergradient halloysitic clay occurs in addition to a more‘open’structured chloritized iron smectite. The mineralo-chemical results and the geomorphic data suggest that the genesis of these soils is controlled primarily by the internal soil water regime.  相似文献   

14.
Different hypotheses about the genesis of gilgai microtopography and corresponding soil complexes with clayey swelling soils are considered in this review. Their diversity is stipulated by specificities of the objects themselves and by the history of studies of the composition, properties, regimes, and landscape conditions of the areas with Vertisols in different countries. Most of the hypotheses about the genesis of Vertisols with the gilgai microtopography suggest that strong swelling–shrinking processes take place in these soils in the course of moistening–drying cycles; the origin of shear stress in the soils, its spatial patterns, and the particular ways of translocation of the soil material are discussed. At the early stage of Vertisol studies, a hypothesis about the leading role of the process of “self-swallowing” of the soils as a result of filling of open cracks with the material from the upper soil horizons was popular. However, numerous facts suggest that the intensity of this process is relatively low, so that it cannot play the major role in the gilgai formation and cyclic changes in the thickness and properties of the soil horizons in Vertisols. Another important mechanism is the uneven moistening and drying of the whole soil volume resulting in the irregular distribution of inner tensions in the soil with the development of shear stress and plastic deformation of the soil mass. The hypotheses suggested in the recent decades are based on the models of soil mechanics. A number of hypotheses consider possible alternation and duration of evolutionary stages of the development of Vertisols with the gilgai microtopography.  相似文献   

15.
应用物元分析法评价安徽省土壤重金属污染现状   总被引:4,自引:0,他引:4  
徐笠  常江  杜艳  梁家妮 《土壤》2009,41(6):875-879
土壤重金属评价是土壤重金属污染研究的重要方向.本研究改进了土壤重金属污染评价的物元分析模型,并且对评价因子权重的计算方法进行修正,提出了基于污染物浓度和毒性的双权重因子的物元分析评价方法.通过对安徽省主要土壤中重金属的评价,得到如下结果:3种土壤中,黄褐土污染最为严重,其次为黄红壤,污染最轻的为砂姜黑土.  相似文献   

16.
The Vertisols of the Purna Valley, which cover the districts of Amravati, Akola and Buldhana in the state of Maharashtra, India, lack any perceptible evidence of salt efflorescence on the soil surface which would indicate the presence of salt, but the drainage conditions are poor. The limited data available indicate that the adverse physical condition of the soils is due to their poor hydraulic conductivity (HC), which is impaired by sodium in the exchange complex. However, the factors and processes that are inherently related to the development of sodicity in these shrink-swell soils are not yet understood. In order to establish the cause-effect relationship, eight Vertisol pedons from methodically selected sites were studied morphometrically in the field, and for their sodicity-related physical and chemical properties in the laboratory. The soils are deep, calcareous, clayey and very dark greyish brown to dark brown in colour. Cracks extend up to the slickenside zones in soils of Pedons 1–3 in the northeastern area of the valley, while they cut through the slickenside zones in soils of Pedons 4–8 in the southwest. The slickenside faces were larger in the soils of the southwest than in those of the northeast. All these soils meet the specifications of the Vertisols order of soil taxonomy. Saturation extracts of the soils had very low electrical conductivity (ECe ⩽ 2 ds m−1). They ranged from moderately alkaline in the northeast, Pedons 1–3, to strongly alkaline in the southwest, pedons 4–8. In soils from the northeast the exchangeable sodium percentage (ESP) was less than 5 throughout the depth of the pedons, whereas in other soils it was up to 6 in the surface horizons and between 7 and 26 in the subsoil horizons; four of these soils qualified as sodic according to the criteria of the United States Salinity Laboratory. The inherently low hydraulic conductivity was due to the dispersion of clay particles caused by a high percentage of exchangeable magnesium (EMP) in the highly smectitic soils, and also to a slight increase in ESP (⩾5). The results of this study suggest that ESP 5 should be used as the lower limit for sodic subgroups of Vertisols, rather than ESP 15 as given in Keys to Soil Taxonomy (Soil Survey Staff, 1994). This is because there are severe limitations to the use of such soils owing to the development of adverse physical conditions even at such a low ESP. The authors emphasize the need to keep this fact in mind during future land resource management programmes on the soils of this valley as well as on similar soils occurring elsewhere. The development of sodicity in the soils of the southwestern part of the valley has been attributed to the semi-arid climatic conditions that have induced the pedogenetic process of depletion of calcium ions from the soil solution in the form of calcium carbonate, thereby resulting in an increase of both the sodium adsorption ratio (SAR) and the ESP with pedon depth. This chemical degradation, which affects the sodicity of Vertisols, appears to be a basic process that needs to be recognised in the future along with those already described as natural processes of soil degradation.  相似文献   

17.
不同施钾方式对甘薯钾素吸收及产量的影响   总被引:1,自引:1,他引:1  
【目的】钾素是调控块根类作物生长和产量的关键因子,特别是对淀粉型甘薯后期块根膨大及产量形成尤为重要。本试验选择胶州(砂姜黑土)和即墨(风沙土)两个不同土壤质地类型的试验点布置田间试验,探究不同施钾方式在两种不同类型土壤条件下对甘薯钾素吸收、 钾肥利用率以及产量形成的影响,以期对甘薯生产提供理论指导。【方法】借助水肥一体化技术能够实现甘薯钾营养的精细化调控,提高钾肥利用率和促进甘薯生长。试验共设置4个处理: K0(不施钾肥,CK)、 K1(钾肥基施)、 K2(钾肥1/2基施+1/2封垄期追施)和K3(钾肥全部封垄期追施)。【结果】与CK相比,三种不同施钾方式均显著提高了甘薯生物量、 养分吸收量及产量(P0.05)。与K3和 K1处理相比,砂姜黑土条件下K2分别增产18.7%和10.4%,但K3和 K1处理之间的产量差异不显著; 风沙土条件下K2增产幅度分别为35.3%和17.3%,其中K1处理的产量显著高于 K3处理(P0.05)。与K1处理相比,K2处理显著提高了甘薯生长中后期(115天~150天)钾素积累量和地下部生长速率,同时提高了钾收获指数、 钾肥偏生产力、 钾效率、 钾肥农学利用率。与K1 和K3相比,砂姜黑土条件下K2处理的钾肥表观利用率分别提高了12.5%和8.8%,风沙土条件下K2处理的钾肥表观利用率分别提高了13.9%和13.2%。不同土壤类型条件下同一施钾方式相比较,砂姜黑土条件下氮钾积累量、 生物量和产量均高于风沙土,但K2处理的钾素日积累速率、 钾素利用率与增产效应均表现为风沙土高于砂姜黑土。【结论】在供钾量较低的风沙土上采用分期施钾(1/2基施+1/2封垄期追施)能显著提高钾肥利用率和增加甘薯产量,是甘薯合适的施钾方式。  相似文献   

18.
Humic matter in virgin and cultivated Vertisols and Arenosols from Pandamatenga (northern Botswana) has been studied by chemical fractionation and visible and infrared derivative spectroscopies. The in vitro soil respiration was also determined. Soils contained <15 g of total C kg(-1) and displayed scant mineralization activity. In Vertisols, cultivation has led to scarce significant changes in humus characteristics, pointing to a noteworthy resilience of the organic matter. Humic acids showed a very dark color, indicating a large concentration of aromatic structures and stable free radicals. Infrared spectra were featureless and alike. This strong structural stability is also suggested by Curie-point pyrolysis of humic acids, which failed to yield substantial amounts of diagnostic products, mainly in the case of Vertisols. Some unexpected similarities between Vertisols and Arenosols indicate that the influence of external factors on the humic acid formation processes prevails on that of the geological substrate. In Pandamatenga soils only small amounts of recalcitrant C and N forms are sequestered; they represent stable pools relatively independent from short- or medium-term climatic changes or management practices.  相似文献   

19.
黄淮海平原晚第四纪古土壤   总被引:4,自引:0,他引:4  
刘良梧 《土壤学报》1999,36(1):9-14
本文运用孢子花粉,古生物化石和放射性碳断代等手段,从土壤剖面层段的特征,土壤年龄和环境变化方面证明,分布于黄淮海平原的变性土不是现代土壤,而是古土壤,该古土壤自晚新世晚期以来经历了三次沉积-成土作用旋回,其土壤发育程度较弱,且是由钙质结核土层,暗色土层,表土层和(或)淤土层组成的一个叠置型古土壤。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号