共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
针对如何实现快速、高效的采摘,提出机器人智能采摘实验平台系统,该采摘机器人依靠视觉反馈控制来识别采摘物的位置。研究机器人手臂的运动控制,构建机器人的运动学模型。分析机械手的视觉伺服控制问题,直接将图像位置误差矢量映射到所需的末端执行器速度矢量。对机器人智能采摘进行试验分析,试验任务进行171次,准确率94.67%。试验结果验证该视觉伺服控制方法在实际场景中对采摘物识别效率,提高视觉伺服系统的鲁棒性和有效性。 相似文献
3.
机器视觉系统对于采摘机器人的研发至关重要,其性能直接影响机器人的自动导航水平和果实的定位与识别能力,要实现采摘机器人从研发到生产,首先要设计智能化机器视觉系统.为此,在采摘机器人导航机器视觉系统的设计上,引入了计算机处理系统和智能PID控制算法.采用计算机处理系统后,机器人具有更加强大的图像处理能力和控制编程能力,加上... 相似文献
4.
为了提高采摘机器人果实定位和识别的准确性,在采摘机器人机器视觉系统的设计上引入了果实三维重构方法,利用二维采集图像信息的处理,通过坐标转换关系,实现了三维模型的构建.为了验证三维模型重构对机器视觉果实识别准确性的提高作用,模拟青椒夜间作业的采摘环境,对不采用三维重构和采用三维重构技术两种情况下的果实识别准确率进行了对比... 相似文献
5.
为了解决采摘机器人识别目标果实难的问题,提出了一种基于机器视觉及深度学习的采摘机器人目标识别技术,可结合图像采集、图像处理、SSD深度学习算法,实现对橘柑的精准识别。试验结果表明:采摘机器人目标识别技术对橘柑具有较高的识别率,证实了该方法的可行性,对采摘机器人研究具有一定的参考价值。 相似文献
6.
7.
《农机化研究》2021,43(11)
随着自动化技术在农业生产中应用的逐渐推广,农业生产智能化、自动化水平越来越高,采摘机器人在果蔬采摘过程中的应用逐渐广泛。果蔬采摘完成后的分拣作业是较为繁重的工作,为克服传统分拣作业分拣效率低、分拣精度差等问题,在深入研究机器视觉工作原理的基础上,进行了机器视觉系统的数学建模,完成了采摘机器人分拣控制系统总体方案的设计。同时,将机器视觉技术应用到采摘机器人的分拣作业中,完成系统硬件模块的设计、选型及软件流程设计,并对该系统进行了仿真实验。实验结果表明:基于机器视觉的采摘机器人分拣控制系统结构简单,目标识别和分拣精度高,系统安全性和稳定性较高,具有较大的推广价值。 相似文献
8.
为了提高采摘机器人定位导航效率,改变单一的定位导航模式,将无线传感网络和机器视觉系统引入到了定位导航系统的设计上,通过联合定位的方式,提高导航效率.进行定位时,首先,由无线传感网络定位系统迅速定位作业区域,采摘机器人规划路径自主到达指定作业区域;然后,利用机器视觉系统对果实进行图像采集,采用图像匹配功能发现成熟待采摘果... 相似文献
9.
10.
智能移动水果采摘机器人设计与试验 总被引:10,自引:0,他引:10
设计了一种智能移动水果采摘机器人,该机器人主要由智能移动平台、采摘机械臂、末端执行器、横向滑移机构和控制系统组成。用VC++语言编写了系统控制程序,开发了人机交互界面。样机在江苏省丰县果园进行了综合试验,结果表明:该机器人能够完成自主导航、自主采摘及自主装箱作业,移动平台、采摘机械臂及末端执行器能够实现智能协调控制。整个系统工作性能稳定,成熟果实的识别正确率为81.73%,采摘成功率为86.92%,单个苹果采摘平均耗时9.50 s。 相似文献
11.
果蔬采摘机器人一般采用移动式机器人,虽有着强大的计算能力和移动性,但其感知能力的局限性限制了其智能的发展。为了提高果蔬采摘机器人的智能移动性能,使其拥有更好的实现自主导航的能力,采用(system on a programma-ble chip,SOPC)微处理器系统设计了一种新的智能移动式机器人控制系统,并采用神经网络算法对其进行了优化,大大提高了机器人移动的精确性,增强了输入和输出的线性关系,使控制系统在单片芯片上实现了复杂系统的全部功能。通过测试发现:机器人的移动躲避障碍物时速度的稳定性较好,移动误差较低,实现了果蔬采摘无人控制下的智能移动。 相似文献
12.
基于激光视觉的智能识别苹果采摘机器人设计 总被引:1,自引:0,他引:1
为了提高苹果采摘视觉识别系统的精度,增强视觉系统的抗干扰能力和自适应能力,设计了一种新的苹果采摘机器人激光视觉识别系统,可以直接获得层次关系的深度图像,实现了果园非结构化环境中果实的识别与定位。为了测试激光识别系统苹果采摘机器人的采摘效果,在果园中对其采摘性能进行了测试:首先采用高清相机完成了对果实图像的采集,通过图像处理准确地实现了苹果的识别,在遮挡率低于50%时其识别率达到了90%以上;然后利用激光测距方法对苹果进行距离测量,成功定位了果实位置,其响应时间仅为3.58s,动作效率快,实现了苹果的高效率、高精度采摘功能。 相似文献
13.
利用PLC和机器视觉技术,采用图像传感器拍摄水果图像,提取出目标水果图像的坐标和位姿,并以此驱动控制采摘机器人以最优路径和最佳姿态采摘到目标水果.为了验证系统稳定性,在苹果种植区进行了实际采摘试验,结果表明:采摘机器人机械手可以稳定抓持到目标苹果并完成采摘过程,且期间耗时较短,具有较强的稳定性. 相似文献
14.
为了提高农业机器人在复杂野外环境下采摘油茶果的速度和准确性,针对机器人视觉感知的关键技术,设计了一种农业机器人果实检测、定位和采摘系统。首先,使用双目相机采集油茶果的左右图像;然后,应用先进的目标检测网络YOLOv4-tiny检测出左右图像中的油茶果;再次,不同于传统的双目相机图像的立体匹配技术,根据YOLOv4-tiny网络生成的预测框提取出油茶果图像的感兴趣区域,并根据预测框的生成机制自适应地进行立体匹配以求解出视差,为后续使用三角测量原理求出油茶果采摘点提供参考;最后,使用基于Eye-in-Hand手眼标定的农业机器人进行采摘试验,验证了本研究的可行性和准确性。试验结果表明:YOLOv4-tiny网络能够精确和实时地检测油茶果,提出的定位方法满足采摘机器人的应用需求,验证了本研究的可行性和准确性。研究可为果园环境中作业的农业采摘机器人视觉感知关键技术提供参考。 相似文献
15.
以智能采摘自动识别定位方式为研究对象,对葡萄自动采摘前端的图像采集和分析处理过程进行分析,利用VUE自底向上逐层构建的方式,设计一种能够对目标进行自动识别定位的智能采摘机器人识别定位算法。采用高清相机对采摘目标图像进行采集,将原始图像进行二值化处理,获取图像灰度等级,并采用葡萄图像分割的方式获取葡萄采摘点,最后通过最小角度拟合的方式确定葡萄果梗采摘点。试验结果表明:智能采摘机器人前端识别定位方法平均运行成功率高于90%,平均运行时间0.65s,能够快速准确地进行采摘对象识别定位,可为智能采摘机器人技术的推广提供理论基础。 相似文献
16.
常规水果采摘机械目标识别方法多数采用特征阈值化法,对水果图像进行分割处理,不能根据水果图像中某些目标存在的共同特征将其分割为特定区域,无法为目标识别提供有力支持,降低了水果采摘机械目标识别的精确率。基于此,引入机器视觉技术原理,以类球状水果为例,提出了一种全新的水果采摘机械目标识别方法。利用高性能的拍摄相机,随机选取类球状水果进行图像采集与预处理,获取特征突出、不存在噪声点的图像,采用机器视觉技术设计图像分割算法,将图像划分为多个超像素块,对类球状水果图像边缘进行平滑处理,获取融合特征的类球状水果采摘机械目标识别显著图,完成机械目标识别。实验分析可知,通过这方法识别类球状水果采摘机械目标,其识别结果的精确率、召回率与调和平均值等三个评测指标均≥95.38%,识别效果优势显著。 相似文献
17.
针对果蔬自动化、智能化采摘的技术需求,中国机器人及人工智能大赛推出了采摘机器人子项目。在此背景下,课题组设计了一款用于果蔬采摘机器人竞赛的智能机器人。机器人采用轮式移动底盘与关节型机械臂结合的形式,能够利用视觉导航按照规划路径移动,可通过视觉方式检测沿途中固定和随机的作业对象,确定目标后实施采摘作业,并且根据竞赛规则搭建了场地,进行了实际测试与调试。试验结果显示,机器人性能稳定,作业可靠且效率高,而且最终在比赛过程中得以验证,取得了良好成绩。 相似文献
18.
19.