共查询到20条相似文献,搜索用时 62 毫秒
1.
生物炭吸附去除溶液中硝态氮研究综述 总被引:1,自引:0,他引:1
近年来,生物炭对减少水体环境中的硝酸盐污染、土壤氮素淋溶损失等问题的研究正日益受到国内外研究者的关注。通过对目前国内外生物炭对NO-3-N的吸附研究文献进行总结分析,得出了生物炭对NO-3-N的吸附机理及其影响吸附效果的因素等,指出生物炭对吸附NO-3-N的可行性,并提出未来该研究领域中尚存的薄弱环节包括吸附机理的模型建立、工业水处理的应用研究、提高吸附效率的改性方法、生物炭吸附材料的解吸及再生利用、对土壤理化性质的影响及其作用机理等。 相似文献
2.
该文建立了采用离子色谱作为检测手段的土壤硝态氮含量测定方法。分析比较了不同的样品处理条件,确立了以0.01molL氯化钙溶液作为提取剂,液样比例1∶5(VW),20~25℃水浴振荡30min,结合以氢氧化钾溶液为淋洗液,阴离子交换柱分离,电导检测器检测的离子色谱检测手段。该方法的精密度及准确度试验结果显示其适用于大部分类型土壤中硝态氮含量的测定。 相似文献
3.
灌溉土壤硝态氮运移与土壤湿度的关系 总被引:11,自引:0,他引:11
经室内地中渗透仪实验观测和对自然界一些现象的分析证实,灌溉土壤硝态氮的运移与土壤湿度有良好的相关关系。据此提出了提高灌溉土壤氮素利用率和减轻硝态氮对底土及地下水污染的措施。 相似文献
4.
利用极限学习机模型解译高氯离子干扰下盐碱土中硝酸根离子选择电极响应信号,系统分析了漂移校正算法、能斯特及极限学习机模型对电极法硝态氮(NO~-_3-N)预测结果准确性的影响差异。结果表明,漂移校正算法可明显提高传感器标定方程的重复性和一致性,响应斜率及截距电位的波动范围分别缩小了3.67%和7.25%;极限学习机模型的最优隐含层节点数为14;基于极限学习机的电极法NO~-_3-N质量浓度预测模型可较好抑制盐碱土中氯离子干扰,与标准检测结果之间的最大绝对误差和均方根误差分别为6.36 mg/L和4.02 mg/L。相关研究结论可为电极法测土过程中的信号校正、数据处理模型和模型参数选取提供参考。 相似文献
5.
电极法测定土壤硝态氮精度的提高方法 总被引:2,自引:0,他引:2
离子选择性电极为土壤硝态氮含量分析提供了一种快速、低成本的技术方案。以提高基于电极法的土壤硝态氮检测精度为目的,探讨了电极信号特点与环境因素对检测精度的影响;从硬件电路和软件测量模型两方面研究减少误差、提高精度的方法;进行了有、无阻抗变换-滤波模块电极电势信号采集的对比实验,并通过软件编程将不同测量模型(线性回归模型与温度校正模型)嵌入到检测仪表,进行了温度变化时土壤硝态氮检测的对比实验。结果表明,设计的硬件抗干扰电路可以使测量仪表准确采集混杂在高频噪声中的离子选择性电极电势信号(误差和波动均小于1 m V),具有良好的准确度和抗干扰能力;当温度变化时,嵌入温度校正模型时仪表测量的相对误差不大于8.20%,与离子色谱法(参考值)进行相关性分析的相关系数R达到0.998 6,可有效减小由温度变化引起的电极测量误差,提高检测精度。 相似文献
6.
基于电极法的土壤硝态氮检测中,共存氯离子、温度变化、土壤水分是影响检测精度的重要因素。为消除干扰因素影响,进行测量模型的研究,基于电极检测原理与最小二乘法多元线性回归进行建模的理论分析,并研究考虑土壤水分影响后湿土直测的校正方法;开展建模集溶液检测实验,探讨各干扰因素对检测结果的影响,并根据建模集64个观测值分别建立25℃的一元线性回归模型(基础模型)、25℃的多元线性回归模型(硝酸根与氯离子浓度同时测量)和5~30℃的多元温度校正模型(温度变化较大时硝酸根与氯离子浓度同时测量);开展验证集溶液检测实验,验证并比较3种模型的可适用性;并开展不同含水率的湿土直测实验,验证湿土直测校正公式的准确性。结果表明,在温度变化、氯离子共存的条件下,25℃的多元线性回归模型效果最佳(硝酸根离子与氯离子浓度的测量误差分别在-8.37%和-12.03%内),满足多组分现场速测的精度要求;用湿土直测校正公式代替繁琐费时的土壤前处理,可有效减小土壤水分引起的误差。因此,利用多元线性回归模型结合湿土直测校正公式进行电极法土壤硝态氮的检测,可减小干扰因素影响、有效提高现场检测的时效性与准确性。 相似文献
7.
8.
9.
电极法检测土壤硝态氮时,共存氯离子是影响检测精度的重要因素。针对当前检测仪为单一离子离线检测的问题,设计了基于嵌入式开发的ISE土壤硝态氮多参数检测仪。仪器嵌入BP神经网络模型,实现土壤硝态氮的在线实时检测。针对BP算法收敛速度慢、易陷入局部极小值的缺点,采用5种方法进行改进;采用两个校正方法校准检测仪检测结果;采用稳定判断程序提高电势采集的稳定性。开展标准溶液检测试验,验证检测仪检测精度;开展土壤硝态氮检测试验,并将检测结果与传统的一元线性模型结果和光学法检测结果进行对比,验证检测仪排除氯离子干扰的效果及检测土壤硝态氮的准确性。结果表明,检测仪对离子的检测结果与离子计检测结果误差不超过1.0mV,满足精度要求;检测仪对土壤硝态氮含量的检测结果与光学法检测结果的平均相对误差为8.83%,低于一元线性模型与光学法检测结果的平均相对误差12.17%,拟合系数R2均大于0.97。基于ISE的土壤硝态氮多参数检测仪可有效减小氯离子干扰,准确性高,可用于土壤硝态氮的在线检测。 相似文献
10.
利用电容式传感器连续监测土壤硝态氮质量分数的试验研究 总被引:1,自引:0,他引:1
通过室内和田间试验,研究土壤硝态氮质量分数与电容式传感器监测的土壤电导率、含水率和温度的定量关系。在室内以NH4NO3分析纯为溶质,进行了溶液质量浓度0~10g/L的7次土柱试验;在2009年和2010年春玉米生育期内监测了不同滴灌水量条件下土壤电导率、含水率和温度动态变化。结果表明,土壤电导率能较好的反映土壤硝态氮质量分数的变化;土壤硝态氮质量分数与电导率、含水率和温度之间的关系可用二次多项式描述,且3个土壤参数对土壤硝态氮质量分数的影响均达到了极显著水平(P≤0.01);由于回归模型的拟合精度受土壤初始养分盐分质量分数及空间变异等因素的影响,为获得较高的预测精度,应进行田间标定。 相似文献
11.
稻壳炭对铵态氮的吸附机理研究 总被引:4,自引:0,他引:4
研究了500℃连续热解制备的稻壳炭对水溶液中NH+4-N的吸附特性和稻壳炭用量、颗粒粒径、NH+4-N初始质量浓度、p H值、振荡时间等因素对NH+4-N吸附特性的影响。结果表明,随着NH+4-N溶液初始质量浓度、p H值的不断升高,稻壳炭对NH+4-N的平衡吸附量不断增加,而随着振荡时间的推移,平衡时稻壳炭对NH+4-N的单位吸附量不断增加,60 min内吸附较快,在吸附90 min左右时保持不变,这说明稻壳炭对NH+4-N的吸附在1.5 h左右基本达到平衡,对于初始质量浓度为3 mg/L和5 mg/L的NH+4-N溶液,稻壳炭对NH+4-N的最大吸附量分别为31.26、81.14 mg/kg。稻壳炭的颗粒粒径越小,单位吸附量越高,0.25 mm以下的稻壳炭对NH+4-N的吸附容量较大。从热力学和动力学角度探究了吸附机理,结果表明,稻壳炭对NH+4-N的等温吸附过程符合Freundlich模型,表明稻壳炭对水溶液中的NH+4-N吸附为不均一的多分子层吸附;准二级吸附模型能较好地描述吸附的全过程,稻壳炭吸附NH+4-N主要包含液膜扩散、表面吸附、颗粒内部扩散过程,主要以物理吸附为主。 相似文献
12.
生物炭对砂壤土氮素淋失的影响试验研究 总被引:2,自引:0,他引:2
通过室内土柱模拟试验,研究了生物炭对砂壤土的p H值、电导率及氮素淋失的影响。试验设5个生物炭添加比例,分别为0(CK)、1%(T1)、2%(T2)、4%(T3)、6%(T4)。结果表明,p H值和电导率均随生物炭添加比例的增加呈逐渐升高的趋势,其中,各处理砂壤土的电导率较CK分别提高了2.79%、10.88%、11.30%、12.50%。土壤淋溶液中氮素随生物炭添加比例的增加,呈逐渐减小趋势,氮素累积淋溶量也逐渐减小。各处理淋溶液中氮素的淋失总量较CK分别降低了2.89%、7.41%、9.50%和12.25%。研究表明,生物炭能够有效改变砂壤土的理化性质,降低氮素的淋失量,降低地下水面源污染的风险。 相似文献
13.
为探究杨木炭对东北黑土吸附猪粪沼液氮素特性的影响,明晰其吸附机理,选取杨木炭和壤质、砂质两种黑土,以活性炭作为标准比较炭,系统研究活性炭、杨木炭的粒径及添加比例、初始质量浓度、振荡时间、温度对黑土吸附、解吸猪粪沼液中氨态氮、硝态氮特性的影响规律,并拟合等温吸附模型和吸附动力学模型。结果表明:黑土对猪粪沼液氮素的吸附能力随着活性炭和杨木炭粒径的减小、添加比例的增加而显著增加;当粒径为0. 25 mm、添加比例10%时,添加杨木炭的黑壤土和黑砂土的氨态氮、硝态氮的吸附量为224. 8、107 mg/kg和212. 4、104 mg/kg,比空白纯黑壤土和黑砂土提高388. 7%、296. 3%和453. 13%、333. 33%,比添加活性炭的黑壤土和黑砂土降低19. 71%、10. 08%和12. 38%、7. 14%,但添加杨木炭比添加活性炭对吸附平衡后沼液中氨态氮、硝态氮浓度变化影响的差异均不超过2. 5%;添加活性炭黑土、杨木炭黑土、空白纯黑土和纯炭对猪粪沼液中氨态氮的吸附过程为吸热反应,而对硝态氮的吸附过程为放热反应,且所有吸附过程均经历快速、缓慢、趋于平衡3个阶段,硝态氮快速吸附的时间更短; Freundlich、Langmuir模型和准二级模型均能较好描述其等温吸附过程和吸附动力学过程,Freundlich模型比Langmuir模型相对更优,吸附反应过程同时存在不均匀的多分子层表面物理吸附和均匀的单分子层化学吸附;添加活性炭、杨木炭黑土对沼液中氨态氮、硝态氮的吸附量越大,解吸率也越大,但解吸量远小于有效吸附量,添加杨木炭的黑壤土和黑砂土对氨态氮、硝态氮的有效吸附量比添加活性炭的黑壤土和黑砂土减少14. 57%、9. 19%和5. 34%、5. 74%。杨木炭在提高黑土对猪粪沼液氮素的吸附能力、减少猪粪沼液氮素损失方面的效果优良,可为杨木炭和猪粪沼液在东北黑土改良方面的深入研究提供理论依据。 相似文献
14.
水氮供应对温室黄瓜氮素吸收及土壤硝态氮分布的影响 总被引:2,自引:1,他引:2
采用温室小区试验,研究了不同水氮供应条件对温室黄瓜氮素吸收及土壤硝态氮分布的影响。结果表明,氮素在植株体各器官中的累积量随生育期的推进不断增大,在盛果期累积量达到最大,且总体增长趋势呈"S"型;在不同生育期,黄瓜各器官中氮累积量均表现为叶茎根,而在盛果期,果实中的氮累积量达到最大,且随灌水量和施肥量的增加而增加;灌水量、施氮量及水氮交互作用对黄瓜氮累积量、UPE及PFP均有显著性影响,在同一灌水条件下,NUE、UPE及PFP均随着施氮量的增加而减少,而对于同一施氮水平,UPE、PFP均随着灌水量的增加显著提高,NUE在不同灌水量条件下变化趋势则有所不同。灌水量及施氮量对土壤硝态氮分布有重要影响,且施氮量是影响土壤硝态氮累积的关键因素,随灌水量的增加表层土壤中硝态氮累积量呈逐渐降低的趋势,而随施氮量的增加则逐渐增大,且施氮量越高,淋洗现象越明显。 相似文献
15.
灌水施氮方式对玉米生育期土壤NO3--N时空分布的影响 总被引:1,自引:0,他引:1
在干旱区大田条件下,以制种玉米金西北22号为供试材料,采用交替灌水、固定灌水、均匀灌水和交替施氮、固定施氮、均匀施氮二因素三水平的完全组合方案,在拔节期、大喇叭口期、抽雄期、灌浆期和成熟期对0~100 cm土层分层监测植株正下方、植株正南侧和植株正北侧的土壤NO_3~--N含量。结果表明:监测时期内,植株南、北两侧较植株下和0~40 cm土层较40~100 cm土层的土壤NO_3~--N含量时空分布受灌水施氮方式影响更大。固定灌水固定施氮下,水氮同区时土壤NO_3~--N在施氮侧下移,而水氮异区时土壤NO_3~--N在施氮侧累积。灌浆期,40~80 cm土层的植株下,与均匀灌水相比,交替灌水下不同施氮方式的土壤NO_3~--N含量减少9.9%~14.4%。交替灌水均匀施氮或交替灌水交替施氮使得土壤NO_3~--N在较长时间内维持在0~40 cm土层周围,成熟期二者0~100 cm土层的土壤NO_3~--N残留量相近,但较其他处理减少11.7%~27.3%。综上,交替灌水均匀施氮或交替灌水交替施氮使玉米生育期土壤NO_3~--N含量时空分布比较合理,成熟期土壤NO_3~--N残留量较低。 相似文献
16.
为揭示水炭运筹下铵态氮、硝态氮在不同土层的分布规律和土壤氮素在水稻植株中的分布规律,设置两种水分管理模式(浅湿干灌溉、常规淹灌)和4个秸秆生物炭施用量水平(0、2. 5、12. 5、25 t/hm~2),采用田间小区和~(15)N示踪微区结合的方法,研究了不同水炭运筹下0~60 cm土层NH_4~+-N、NO_3~--N和肥料NH_4~+-~(15)N、NO_3~--~(15)N的累积分布,以及土壤氮素在水稻植株中的分布情况,并计算了不同水炭运筹下的土壤盈亏状况。试验结果表明:浅湿干灌溉模式下,稻田土壤中的NH_4~+-N累积量随土层深度的增加而减小,施加适量的秸秆生物炭增加了0~20 cm土层NH_4~+-N、NO_3~--N累积量,同时减少了20~60 cm土层的累积量。相同秸秆生物炭施用水平下,浅湿干灌溉模式0~20 cm土层中NH_4~+-N、NO_3~--N累积量和肥料NH_4~+-~(15)N、NO_3~--~(15)N累积量均高于常规淹灌模式,浅湿干灌溉模式20~40 cm和40~60 cm土层NO_3~--~(15)N累积量较常规淹灌模式显著降低(P 0. 05)。浅湿干灌溉模式积累的土壤氮素有9. 79%~13. 96%分布在植株叶片,15. 71%~20. 03%分布在植株茎鞘,66. 00%~74. 50%分布在植株穗部。综合考虑寒地黑土区土壤氮库盈亏平衡,浅湿干灌溉模式施加12. 5 t/hm~2秸秆生物炭的水炭运筹模式最优。 相似文献
17.
为分析农业生产对农业生态系统和地下水环境的影响,2012-2013年在冶河灌区开展小麦、玉米轮作区农田土壤含水率和硝态氮田间试验,同时对地下水位和水质进行了监测。通过分析试验数据,结果表明:小麦、玉米轮作周期0~300cm土层范围内,土壤含水率变化呈X型。计划灌水定额相同,不同地块灌溉引起土壤含水率明显变化的土层深度不同,其原因是主要受土壤初始含水率和土壤空间异质性的影响;小麦、玉米轮作周期0~300cm土层范围内,土壤剖面硝态氮含量变化呈单调递减曲线。2013年3月土壤硝态氮累积量最高,2013年5月硝态氮的淋洗量最大。在地下水位埋深8~9m,灌水量为900~1 200m3/hm2时,硝态氮运移主要发生在耕层土壤,施肥和降水是土壤硝态氮向深层土壤淋洗、地下水质变化的主要影响因素。 相似文献
18.
为解决农村稻秆的资源化利用问题,将稻秆用NaOH改性做吸附剂处理亚甲基蓝染料废水;考察pH值、吸附剂投加量、染料浓度和温度对染料吸附性能的影响;分析改性稻秆对亚甲基蓝染料的吸附动力学过程。研究结果表明,亚甲基蓝浓度为150mg/L,pH值为12、吸附剂投加量为4g/L时,改性稻秆对亚甲基蓝染料有很好的去除效果,染料的吸附率达到98.1%;改性稻秆对亚甲基蓝染料的吸附符合Freundlich等温模型,最大吸附量为52.910mg/g,升高温度能够增加吸附剂对亚甲基蓝染料的吸附效果;改性稻秆吸附亚甲基蓝是一个快速吸附过程,符合伪二级吸附动力学方程。 相似文献
19.
《灌溉排水学报》2019,(3)
【目的】通过水肥管理达到减少温室土壤硝态氮残留、维持土壤质量的目的,探求温室土壤硝态氮残留与水肥用量的关系。【方法】在滴灌施肥条件下,以灌水量和氮、磷、钾及有机肥用量为试验因素,根据当地日光温室番茄长季节栽培实际中的水肥用量,设计各试验因子的水肥水平,采用五元二次通用旋转组合设计进行试验。拉秧后测定耕层土壤硝态氮量,建立土壤硝态氮量与水肥因子间的数学模型,据此分析了各单因子效应及二因素的耦合效应。【结果】施氮量对土壤硝态氮残留量影响最大,施磷量、灌水量和施钾量次之,有机肥用量最小。当其他因子为0水平时,土壤硝态氮残留量随氮肥用量的增多而增加,随施磷量呈开口向上的抛物线变化,随灌水量、施钾量以及有机肥用量呈开口向下的抛物线变化。灌水量及氮、磷、钾和有机肥用量对土壤硝态氮残留产生的影响程度随其他因子的水平而变,存在明显交互作用。模型寻优显示:灌水量455.1~471.5 mm,施氮量532.3~586.5 kg/hm2,施磷量420.8~466.4 kg/hm2,施钾量646.1~723.5 kg/hm2,有机肥用量25.6~27.9 t/hm2,耕层土壤硝态氮量可维持在100~150 mg/kg的较低水平。【结论】温室菜地土壤硝态氮残留量相对较大,可以通过优化水肥用量来减少土壤硝态氮的残留,故在滴灌施肥条件下仍需严格控制水肥用量。 相似文献
20.
暗管排水和有机肥施用下滨海设施土壤氮素行为特征 总被引:3,自引:0,他引:3
为揭示暗管排水和微生物有机肥施用下滨海设施土壤氮素的归趋和转化机制,设计了暗管排水结合有机肥处理(S-OF)、暗管排水结合无机肥处理(S-IF)和无暗管排水的无机肥处理(CK),以葡萄和油菜间作栽培为模型系统,观测土壤总氮含量在垂直剖面上的分布、耕层土壤矿质态氮含量和有机态氮含量的变化及其与土壤理化性质的相关性。结果表明:暗管排水和微生物有机肥共同驱动下,土壤容重有所降低,孔隙度升高;暗管排水促使耕层土壤总氮向深层土壤迁移,相比S-IF,S-OF处理耕层土壤总氮的降低幅度较小;滨海设施土壤耕层的总氮80%以上以有机态形式存在,矿质态氮所占比例很小,S-OF处理有利于试验后期土壤矿质态氮含量的提升;耕层土壤矿质态氮含量与土壤有机质、总有机碳含量呈极显著正相关。暗管排水和微生物有机肥施用有利于改善滨海设施土壤结构,提高耕层土壤有机质和总有机碳含量,促进土壤有机态氮向矿质态氮的转化,本研究结果可为滨海设施土壤改良和水肥决策提供科学依据。 相似文献