首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
为解决自然环境中番茄叶片病虫害检测场景复杂、检测精度较低,计算复杂度高等问题,提出一种SLP-YOLOv7-tiny的深度学习算法。首先,将主干特征提取网络中部分3×3的卷积Conv2D(2D convolution)改为分布偏移卷积DSConv2D(2D Depthwise Separable Convolution),以减少网络的计算量,并且使计算速度更快,占用内存更少;其次,将无参数注意力机制(parameter-free attention module, SimAM)融合到骨干特征提取网络中,加强模型对病虫害特征的有效提取能力和特征整合能力;最后,将原始YOLOv7-tiny的CIOU损失函数,更替为Focal-EIOU损失函数,加快模型收敛并降低损失值。试验结果表明,SLP-YOLOv7-tiny模型整体识别精准度、召回率、平均精度均值mAP0.5(IOU阈值为0.5时的平均精度)、mAP0.5~0.95(IOU阈值从0.5到0.95之间的所有值进行平均计算的平均精度)分别为95.9%、94.6%、98.0%、91.4%,与改进前YOLOv7-tiny相比,分别提升14.7、29.2、20.2、30个百分点,同时,计算量降低了62.6%,检测速度提升了13.2%。与YOLOv5n、YOLOv5s、YOLOv5m、YOLOv7、YOLOv7-tiny、Faster-RCNN、SSD目标检测模型相比,mAP0.5分别提升了2.0、1.6、2.0、2.2、20.2、6.1和5.3个百分点,而计算量大小仅为YOLOv5s、YOLOv5m、YOLOv7、Faster-RCNN、SSD的31.5%、10.6%、4.9%、4.3%、3.8%。结果表明SLP-YOLOv7-tiny可以准确快速地实现番茄叶片病虫害的检测,且模型较小,可为番茄叶片病虫害的快速精准检测的发展提供一定的技术支持。  相似文献   

2.
为解决光线遮蔽、藻萍干扰以及稻叶尖形状相似等复杂环境导致稻田杂草识别效果不理想问题,该研究提出一种基于组合深度学习的杂草识别方法。引入MSRCP(Multi-Scale Retinex with Color Preservation)对图像进行增强,以提高图像亮度及对比度;加入ViT分类网络去除干扰背景,以提高模型在复杂环境下对小目标杂草的识别性能。在YOLOv7模型中主干特征提取网络替换为GhostNet网络,并引入CA注意力机制,以增强主干特征提取网络对杂草特征提取能力及简化模型参数计算量。消融试验表明:改进后的YOLOv7模型平均精度均值为88.2 %,较原YOLOv7模型提高了3.3个百分点,参数量减少10.43 M,计算量减少66.54×109次/s,有效提高模型速度与精度。识别前先经过MSRCP图像增强后,改进YOLOv7模型的平均精度均值提高了2.6个百分点,模型对光线遮蔽、藻萍干扰以及稻叶尖形状相似的复杂环境下平均精度均值分别提高5.3、3.6、3.1个百分点;再加入ViT分类网络后,模型平均精度均值进一步提高,较原模型平均精度均值整体提升了4.4个百分点,在复杂环境下的平均精度均值较原模型整体提升了6.2、6.1、5.7个百分点。ViT-改进YOLOv7模型的平均精度均值为92.6 %,相比于YOLOv5s、YOLOXs、MobilenetV3-YOLOv7、YOLOv8和改进YOLOv7分别提高了11.6、10.1、5.0、4.2、4.4个百分点。研究结果可为稻田复杂环境的杂草精准识别提供支撑。  相似文献   

3.
基于改进YOLOv5s和迁移学习的苹果果实病害识别方法   总被引:8,自引:8,他引:0  
为实现对苹果果实病害的快速准确识别,提出了一种基于改进YOLOv5s的果实病害识别模型:GHTR2-YOLOv5s (YOLOv5s with Ghost structure and TR2 module),并通过迁移学习策略对其进行优化。在YOLOv5s基础上通过加入幻影结构和调整特征图整体宽度得到小型基线模型,通过卷积块注意力模块(Convolutional Block Attention Module, CBAM)和加权双向特征金字塔网络(Bidirectional Feature Pyramid Network, BIFPN)提高模型精度,使用TR2(Two Transformer)作为检测头增强模型对全局信息的获取能力。改进后模型大小和识别速度为2.06 MB和0.065 s/张,分别为YOLOv5s模型的1/6和2.5倍;IoU阈值为0.5下的平均精度均值(mAP0.5)达到0.909,能快速准确地识别苹果果实病害。研究通过在线图像增强与迁移学习相结合的方式提高模型收敛速度,进一步提高模型精度,其mAP0.5达到0.916,较原始模型提升8.5%。试验结果表明,该研究提出的基于GHTR2-YOLOv5s和迁移学习的苹果病害识别方法有效优化了模型训练过程,实现了占用较少计算资源的情况下对苹果病害进行快速准确地识别。  相似文献   

4.
基于改进YOLOv7模型的复杂环境下鸭蛋识别定位   总被引:1,自引:1,他引:0  
在干扰、遮挡等复杂环境下,对鸭蛋进行快速、准确识别定位是开发鸭蛋拾取机器人的关键技术,该研究提出一种基于改进YOLOv7(you only look once)模型的复杂环境鸭蛋检测方法,在主干网络加入卷积注意力模块(CBAM,convolutional block attention module),加强网络信息传递,提高模型对特征的敏感程度,减少复杂环境对鸭蛋识别干扰;利用深度可分离卷积(DSC,depthwise separable convolution)、调整空间金字塔池化结构(SPP,spatial pyramid pooling),降低模型参数数量和运算成本。试验结果表明,与SSD、YOLOv4、YOLOv5_M以及YOLOv7相比,改进YOLOv7模型的F1分数(F1 score)分别提高了8.3、10.1、8.7和7.6个百分点,F1分数达95.5%,占内存空间68.7 M,单张图片检测平均用时0.022 s。与不同模型在复杂环境的检测对比试验表明,改进的YOLOv7模型,在遮挡、簇拥、昏暗等复杂环境下,均能对鸭蛋进行准确快速的识别定位,具有较强鲁棒性和适用性。该研究可为后续开发鸭蛋拾取机器人提供技术支撑。  相似文献   

5.
为了快速精准地识别复杂果园环境下的葡萄目标,该研究基于YOLOv5s提出一种改进的葡萄检测模型(MRWYOLOv5s)。首先,为了减少模型参数量,采用轻量型网络MobileNetv3作为特征提取网络,并在MobileNetv3的bneck结构中嵌入坐标注意力模块(coordinate attention,CA)以加强网络的特征提取能力;其次,在颈部网络中引入RepVGG Block,融合多分支特征提升模型的检测精度,并利用RepVGG Block的结构重参数化进一步加快模型的推理速度;最后,采用基于动态非单调聚焦机制的损失(wise intersection over union loss,WIoU Loss)作为边界框回归损失函数,加速网络收敛并提高模型的检测准确率。结果表明,改进的MRW-YOLOv5s模型参数量仅为7.56 M,在测试集上的平均精度均值(mean average precision,mAP)达到97.74%,相较于原YOLOv5s模型提升了2.32个百分点,平均每幅图片的检测时间为10.03 ms,比原YOLOv5s模型减少了6.13 ms。与主流的目标检测模型S...  相似文献   

6.
改进YOLOv3的复杂环境下红花丝检测方法   总被引:2,自引:2,他引:0  
天气变化、光照变化、枝叶遮挡等复杂环境给红花丝的快速、准确检测带来挑战,影响红花采摘机器人的作业效率,该研究基于改进YOLOv3提出了一种目标检测算法(GSC-YOLOv3)。首先GSC-YOLOv3采用轻量级网络幻影结构GhostNet替换主干特征提取网络,并在保证良好检测精度的前提下,最大限度压缩算法参数,提高算法速度,从而使用少量参数生成红花丝有效特征;其次使用空间金字塔池化结构(spatial pyramid pooling,SPP)实现特征增强,弥补提取红花丝特征过程中的信息损失;最后将卷积块注意力模块(convolutional block attention module,CBAM)融入特征金字塔结构,以解决特征融合过程中的干扰问题,提高算法的检测效率和精度。检测结果表明:GSC-YOLOv3算法在测试集下的平均精度均值达到91.89%,比FasterR-CNN、YOLOv3、YOLOv4、YOLOv5、YOLOv6、YOLOv7算法分别高12.76、2.89、6.35、3.96、1.87、0.61个百分点;在GPU下的平均检测速度达到51.1帧/s,均比其他6种算法高。...  相似文献   

7.
采用改进YOLOv4-tiny的复杂环境下番茄实时识别   总被引:7,自引:7,他引:0  
实时识别番茄的成熟度是番茄自主采摘车的关键功能。现有目标识别算法速度慢、对遮挡番茄和小番茄识别准确率低。因此,该研究提出一种基于改进YOLOv4-tiny模型的番茄成熟度识别方法。在头部网络(Head network)部分增加一个76×76的检测头(y3)来提高小番茄的识别准确率。为了提高被遮挡番茄的识别准确率,将卷积注意力模块(Convolution Block Attention Module,CBAM)集成到YOLOv4-tiny模型的骨干网络(Backbone network)部分。在深层卷积中使用Mish激活函数替代ReLU激活函数以保证提取特征的准确性。使用密集连接的卷积网络(Densely Connected Convolution Networks, DCCN)来加强全局特征融合,并建立红风铃番茄成熟度识别的数据集。试验结果表明,与YOLOv3、YOLOv4、YOLOv4-tiny、YOLOv5m和YOLOv5l模型相比,改进YOLOv4-tiny-X模型的平均精度均值(mean Average Precision, mAP)分别提高了30.9、0.2、0.7、5.4和4.9个百分点,在Nvidia GTX 2060 GPU 上达到111帧/s的速度,平均精度均值达到97.9%。不同模型的实时测试可视化结果表明,改进模型能够有效解决遮挡和小番茄识别准确率低的问题,可为番茄采摘车研制提供参考。  相似文献   

8.
基于改进YOLOv5的茶叶杂质检测算法   总被引:1,自引:1,他引:0  
针对现有目标检测算法检测茶叶杂质精度低、速度慢的问题,该研究提出了一种基于改进YOLOv5的茶叶杂质检测算法。采用K-Means聚类算法对杂质真实框聚类,以获取适合茶叶杂质特征的锚框尺寸;通过在主干特征提取网络CSPDarkNet中引入前馈卷积注意力机制(Convolutional Block Attention Module,CBAM),将茶叶杂质输入特征图依次经过通道注意力模块和空间注意力模块,获得特征图通道维度和空间维度的关键特征;在颈部网络中添加空间金字塔池化(Spatial Pyramid Pooling,SPP)模块,融合并提取不同感受野的关键特征信息;将普通卷积替换成深度可分离卷积,增大小目标预测特征图的置信度损失权重,构建了轻量化的改进YOLOv5网络结构模型;分别制作了铁观音茶叶中混合有稻谷、瓜子壳、竹片和茶梗4种杂质的数据集并进行茶叶杂质检测试验。结果表明,改进的YOLOv5比常规YOLOv5在茶叶杂质检测中具有更高的置信度分数,且定位更为准确,未出现漏检现象。改进YOLOv5的多类别平均精度(Mean Average Precision,mAP)和每秒传输帧数(Frame Per Second,FPS)达到96.05%和62帧/s,均优于主流的目标检测算法,验证了改进算法的高效性和鲁棒性。该研究成果可为提升茶叶制作过程中小目标杂质检测精度与检测速度奠定基础。  相似文献   

9.
目标检测与分割是实现黄花菜智能化采摘的关键技术,原始目标检测算法容易出现漏检、误检等问题,无法满足自然环境下生长的黄花菜采摘要求。该研究提出一种基于改进YOLOv7-seg的黄花菜目标检测与实例分割识别算法模型(YOLO-Daylily)。通过在YOLOv7-seg骨干网络(backbone)中引入CBAM(convolutional block attention module)注意力机制模块,降低背景等干扰因素的影响;在ELAN(efficient layer aggregation networks)模块中采用PConv(partial convolution)替换原有的3×3卷积层,减少冗余计算和内存访问,提升对目标黄花菜特征提取的能力。颈部网络(neck)采用坐标卷积(CoordConv)替换PA-FPN(path aggregation-feature pyramid networks)中1×1卷积层,增强模型对位置的感知,提高掩膜(mask)鲁棒性。在改进的PA-FPN结构中采用残差连接方法将浅层特征图几何信息与深层特征图语义信息特征相结合,提高模型对目标黄花菜的检测分割性能。消融试验表明:改进后的算法检测准确率、召回率和平均精度分别达到92%、86.5%、93%,相比YOLOv7-seg基线算法分别提升2.5、2.3、2.7个百分点;分割准确率、召回率和平均精度分别达到92%、86.7%、93.5%,比基线算法分别提升0.2、3.5、3个百分点。与Mask R-CNN、SOLOv2、YOLOV5-seg、YOLOv5x-seg算法相比,平均精度分别提升8.4、12.7、4.8、5.4个百分点。改进后的模型减少了漏检、误检等情况,对目标定位更加精准,为后续黄花菜智能化采摘实际应用提供理论支持。  相似文献   

10.
基于改进YOLOv4-Tiny的蓝莓成熟度识别方法   总被引:3,自引:2,他引:1  
为实现自然环境下蓝莓果实成熟度的精确快速识别,该研究对YOLOv4-Tiny网络结构进行改进,提出一种含有注意力模块的目标检测网络(I-YOLOv4-Tiny)。该检测网络采用CSPDarknet53-Tiny网络模型作为主干网络,将卷积注意力模块(Convolution Block Attention Module,CBAM)加入到YOLOv4-Tiny网络结构的特征金字塔(Feature Pyramid Network,FPN)中,通过对每个通道的特征进行权重分配来学习不同通道间特征的相关性,加强网络结构深层信息的传递,从而降低复杂背景对目标识别的干扰,且该检测网络的网络层数较少,占用内存低,以此提升蓝莓果实检测的精度与速度。对该研究识别方法进行性能评估与对比试验的结果表明,经过训练的I-YOLOv4-Tiny目标检测网络在验证集下的平均精度达到97.30%,能有效地利用自然环境中的彩色图像识别蓝莓果实并检测果实成熟度。对比YOLOv4-Tiny、YOLOv4、SSD-MobileNet、Faster R-CNN目标检测网络,该研究在遮挡与光照不均等复杂场景中,平均精度能达到96.24%。平均检测时间为5.723 ms,可以同时满足蓝莓果实识别精度与速度的需求。I-YOLOv4-Tiny网络结构占用内存仅为24.20 M,为采摘机器人与早期产量预估提供快速精准的目标识别指导。  相似文献   

11.
为解决自然环境中苹果叶片病害检测场景复杂、小目标病害检测难度高以及模型参数大无法在移动端和嵌入式设备部署等问题,提出一种基于YOLOv5s的苹果叶片小目标病害轻量化检测方法。该方法将YOLOv5s的骨干网络更改为ShuffleNet v2轻量化网络,引入CBAM(convolutional block attention module)注意力模块使模型关注苹果叶片小目标病害,添加改进RFB-s(receptive field block-s)支路获取多尺度特征,提高苹果叶片病害检测精度,并更改边界框回归损失函数为SIoU(scylla-intersection over union),增强病斑定位能力。试验表明改进后的YOLOv5s模型在IoU大于0.5时的平均精度均值(mean average precision,mAP0.5)和每秒传输帧数(frame per second,FPS)分别达到90.6%和175帧/s,对小目标的平均检测准确率为38.2%,与基准模型YOLOv5s相比,其mAP0.5提升了0.8个百分点,参数量减少了6.17 MB,计算量减少了13.8 G,对小目标的检测准确率提高了3个百分点。改进后的YOLOv5s目标检测模型与Faster R-CNN、SSD、YOLOv5m、YOLOv7、YOLOv8和YOLOv5s目标检测模型相比,具有最小的参数量和计算量,对小目标病害叶斑病和锈病的检测准确率分别提高了1.4、4.1、0.5、5.7、3.5、3.9和1.5、4.3、1.2、2.1、4、2.6个百分点,该方法为真实自然环境下苹果叶片病害尤其是小目标病害的轻量化检测提供参考依据。  相似文献   

12.
赵晨  陈明 《农业工程学报》2024,40(11):168-177
针对水下底栖生物检测模型参数量过多,计算量过大,同时水下环境复杂容易造成错检和漏检,影响模型在水下底栖生物检测任务中的准确性的问题。提出了一种水下底栖生物轻量化检测算法YOLOv7-RFPCW。对YOLOv7网络重新设计轻量级网络结构,降低了特征提取网络的参数量和计算量,减少模型体积。设计了P-ELAN和P-ELAN-W模块,进一步轻量化特征提取网络;针对水下图像颜色失真,目标的空间位置不准确的问题,采用CBAM注意力模块加强特征融合,减少信息丢失,以更好地适应特殊的水下环境;针对水下目标容易出现形状变形的问题,使用WIOU-V3损失函数替换默认的CIOU损失函数,提高水下底栖生物检测的鲁棒性。试验结果显示,改进后的模型YOLOv7-RFPCW的参数量和计算量分别减少了75.9%和30.7%,模型体积减小了75.3%,精度提升了1.9个百分点。这一综合性的提升兼顾了轻量化和精度,为在水下环境中部署提供了可行的解决方案,验证了所提出的改进算法能胜任水下底栖生物检测任务。  相似文献   

13.
基于轻量型卷积神经网络的马铃薯种薯芽眼检测算法   总被引:1,自引:1,他引:0  
马铃薯种薯芽眼属于小目标物体,识别难度大、要求高。为了在试验台(芽眼识别装置)上快速、准确地完成识别任务,该研究提出一种基于轻量型卷积神经网络的芽眼检测模型。首先,为了降低模型的计算量和聚焦小目标物体,替换YOLOv4的主干网络CSPDarkNet-53为GhostNetV2轻量型特征提取网络;其次,在YOLOv4的颈部网络中,使用深度可分离卷积(depthwise separable convolution,DW)模块代替普通卷积块进一步降低模型计算量;最后,更改边界框损失函数为具有角度代价的边界框损失函数(SIoU),避免因预测框的位置不确定,而影响模型收敛速度和整体检测性能。结果表明,改进后芽眼检测模型参数量为12.04 M,使用笔记本电脑CPU检测单张图片的时间为0.148 s,从试验台收集的测试数据显示平均精度为89.13%。相对于其他主干特征提取网络CSPDarkNet-53、MobileNetV1、MobileNetV2、MobileNetV3、GhostNetV1,其检测精度分别高出1.85、0.75、2.67、4.17、1.89个百分点;与同类目标检测模型SSD、Fa...  相似文献   

14.
为快速获取单分蘖水稻植株的形态结构和表型参数,该研究提出了一种基于目标检测和关键点检测模型相结合的骨架提取和表型参数获取方法。该方法基于目标检测模型生成穗、茎秆、叶片的边界框和类别,将所得数据分别输入到关键点检测模型检测各部位关键点,按照语义信息依次连接关键点形成植株骨架,依据关键点坐标计算穗长度、茎秆长度、叶片长度、叶片-茎秆夹角4种表型参数。首先,构建单分蘖水稻的关键点检测和目标检测数据集;其次,训练Faster R-CNN、YOLOv3、YOLOv5s、YOLOv5m目标检测模型,经过对比,YOLOv5m的检测效果最好,平均精度均值(mean average precision,mAP)达到91.17%;然后,应用人体姿态估计的级联金字塔网络(cascaded pyramid network,CPN)提取植株骨架,并引入注意力机制CBAM(convolutional block attention module)进行改进,与沙漏网络(hourglass networks,HN)、堆叠沙漏网络模型(stacked hourglass networks,SHN)和CPN模型相比,CBAM-CPN模型的预测准确率分别提高了9.68、8.83和0.5个百分点,达到94.75%,4种表型参数的均方根误差分别为1.06、0.81、1.25 cm和2.94°。最后,结合YOLOv5m和CBAM-CPN进行预测,4种表型参数的均方根误差分别为1.48 、1.05 、1.74 cm和2.39°,与SHN模型相比,误差分别减小1.65、3.43、2.65 cm和4.75°,生成的骨架基本能够拟合单分蘖水稻植株的形态结构。所提方法可以提高单分蘖水稻植株的关键点检测准确率,更准确地获取植株骨架和表型参数,有助于加快水稻的育种和改良。  相似文献   

15.
针对YOLOv5(you only look once version five)模型在农作物害虫密集目标上的检测效果无法满足实际需求,以及训练过程中模型收敛速度较慢等问题,该研究提出了融入全局响应归一化(global response normalization,GRN)注意力机制的YOLOv5农作物害虫识别模型(YOLOv5-GRNS)。设计了融入GRN注意力机制的编码器(convolution three,C3)模块,提高对密集目标的识别精度;利用形状交并比(shape intersection over union,SIoU)损失函数提高模型收敛速度和识别精度;在公开数据集IP102(insect pests 102)的基础上,筛选出危害陕西省主要农作物的8种害虫类型,构建了新数据集IP8-CW(insect pests eight for corn and wheat)。改进后的模型在新IP8-CW和完整的IP102两种数据集上进行了全面验证。对于IP8-CW,全类别平均准确率(mean average precision,mAP)mAP@.5和mAP@.5:.95分别达到了72.3%和47.0%。该研究还对YOLOv5-GRNS模型进行了类激活图分析,不仅从识别精度,而且从可解释性的角度,验证了对农作物害虫、尤其是密集目标的优秀识别效果。此外,模型还兼具参数量少、运算量低的优势,具有良好的嵌入式设备应用前景。  相似文献   

16.
针对复杂环境下柑橘果实大量重叠、枝叶遮挡且现有模型参数量大、计算复杂度高等问题,提出了一种基于改进YOLOv8n的柑橘识别模型YOLOv8-MEIN。首先,该研究设计了ME卷积模块并使用它改进YOLOv8n的C2f模块。其次,为了弥补CIoU损失函数在检测任务中泛化性弱和收敛速度慢的问题,使用Inner-CIoU损失函数加速边界框回归,提高模型检测性能。最后,在自建数据集上进行模型试验对比,试验结果表明,YOLOv8-MEIN模型交并比阈值为0.5的平均精度均值mAP0.5值为96.9%,召回率为91.7%,交并比阈值为0.5~0.95的平均精度均值mAP0.5~0.95值为85.8%,模型大小为5.8MB,参数量为2.87M。与原模型YOLOv8n相比,mAP0.5值、召回率、mAP0.5~0.95值分别提高了0.4、1.0、0.6个百分点,模型大小和参数量相比于原模型分别降低了3.3%和4.3%,为柑橘的自动化采摘提供技术参考。  相似文献   

17.
疏果期苹果目标检测是实现疏果机械化、自动化需要解决的关键问题。为实现疏果期苹果目标准确检测,该研究以YOLOv7为基础网络,融合窗口多头自注意力机制(Swin Transformer Block),设计了一种适用于近景色小目标检测的深度学习网络。首先在YOLOv7模型的小目标检测层中添加Swin Transformer Block,保留更多小尺度目标特征信息,将预测框与真实框方向之间的差异考虑到模型训练中,提高模型检测精度,将YOLOv7中的损失函数CIoU替换为SIoU。最后利用Grad-CAM方法产生目标检测热力图,进行有效特征可视化,理解模型关注区域。经测试,该文模型的检测均值平均精度为95.2%,检测准确率为92.7%,召回率为91.0%,模型所占内存为81 MB,与原始模型相比,均值平均精度、准确率、召回率分别提高了2.3、0.9、1.3个百分点。该文模型对疏果期苹果具有更好的检测效果和鲁棒性,可为苹果幼果生长监测、机械疏果等研究提供技术支持。  相似文献   

18.
为提高小麦病害检测精度,实现将模型方便快速部署到移动端,该研究提出了一种基于改进YOLOv8的轻量化小麦病害检测方法。首先,使用PP-LCNet模型替换YOLOv8网络结构的骨干网络,并在骨干网络层引入深度可分离卷积(depthwise separable convolution, DepthSepConv)结构,减少模型参数量,提升模型检测性能;其次,在颈部网络部分添加全局注意力机制(global attention mechanism, GAM)模块,强化特征中语义信息和位置信息,提高模型特征融合能力;然后,引入轻量级通用上采样内容感知重组(content-aware reassembly of features,CARAFE)模块,提高模型对重要特征的提取能力;最后,使用Wise-IoU(weighted interpolation of sequential evidence for intersection over union)边界损失函数代替原损失函数,提升网络边界框回归性能和对小目标病害的检测效果。试验结果表明,对于大田环境下所采集的小麦病害数据集,改进后模型的参数量及...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号