首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
李韬  任玲  胡斌  王双  赵明  张玉泉  杨苗 《农业工程学报》2023,39(23):174-184
为了提高番茄穴盘苗分级检测精度,该研究提出了改进YOLOv5s目标检测模型,并通过迁移学习对番茄穴盘病苗识别精度进行优化。采用轻量级网络EfficientNetv2的Backbone部分作为特征提取网络,保留YOLOv5s中的SPPF空间金字塔池化模块,压缩模型参数数量以减少计算量;更改模型Neck部分原始上采样模块为CARAFE轻量级上采样模块,在引入很少参数量的情况下提高模型精度;同时将PANet替换为BiFPN,引入特征权重信息,增强不同尺度特征融合能力;引入有效多尺度注意力机制(efficient multi-scale attention,EMA),提高对番茄苗的关注,减少背景干扰;替换CIoU损失函数为SIoU损失函数,考虑真实框与预测框之间的方向匹配,提高模型收敛效果。试验结果表明,改进的YOLOv5s目标检测模型经过迁移学习训练后,平均精度均值达到95.6%,较迁移学习前提高了0.7个百分点;与原YOLOv5s模型相比,改进YOLOv5s模型平均精度均值提升2.6个百分点;改进YOLOv5s模型的参数量、计算量和权重大小分别为原YOLOv5s模型的53.1%、20.0%...  相似文献   

2.
快速精准识别棚内草莓的改进YOLOv4-Tiny模型   总被引:5,自引:5,他引:0  
为了实现棚内草莓果实的快速精准识别,该研究提出一种基于改进YOLOv4-Tiny的草莓检测模型。首先,为了大幅度减少模型计算量,采用轻量型网络GhostNet作为特征提取网络,并在GhostBottleneck结构中嵌入卷积注意力模块以加强网络的特征提取能力;其次,在颈部网络中添加空间金字塔池化模块和特征金字塔网络结构,融合多尺度特征提升小目标草莓的检测效果;最后,采用高效交并比损失作为边界框回归损失函数,加速网络收敛并提高模型的检测准确率。结果表明,改进YOLOv4-Tiny模型权重大小仅为4.68 MB,平均每幅图片的检测时间为5.63 ms,在测试集上的平均精度均值达到92.62%,相较于原YOLOv4-Tiny模型提升了5.77个百分点。与主流的目标检测模型SSD、CenterNet、YOLOv3、YOLOv4和YOLOv5s相比,改进YOLOv4-Tiny模型平均精度均值分别高出9.11、4.80、2.26、1.22、1.91个百分点,并且模型权重大小和检测速度方面均具有绝对优势,该研究可为后续果实智能化采摘提供技术支撑。  相似文献   

3.
为提高金银花采摘机器人的工作效率和采摘精度,实现将模型方便快速部署到移动端,该研究提出一种基于改进YOLOv5s的轻量化金银花识别方法。用EfficientNet的主干网络替换YOLOv5s的Backbone层,并在改进之后的Backbone层加入原YOLOv5s的SPPF特征融合模块,减少了模型的参数量和计算量,同时降低模型权重的大小,便于之后移动端的部署;其次,为提高模型对于金银花的识别效果,该研究在Neck层中用CARAFE上采样模块替换原始模型中的上采样模块,在略微提高参数量的前提下提高了模型识别金银花的精确度和平均精度,提高了采摘效率。试验结果显示,改进后的轻量化模型参数量仅为3.89 × 106 M,为原始YOLOv5s模型的55.5%;计算量仅为7.8 GFLOPs,为原始模型的49.4%;权重仅为7.8 MB,为原始模型的57.4%,并且精确度和平均精度达到了90.7%和91.8%,相比原始YOLOv5s模型分别提高1.9和0.6个百分点。改进后的轻量化模型与当前主流的Faster-RCNN、SSD、YOLO系列目标检测模型相比,不但提高了检测精度,还大幅减少了模型的参数量、计算量和权重大小,研究结果为后续金银花采摘机器人的识别和移动端的部署提供了参考和依据。  相似文献   

4.
为提高自然环境下生姜叶片病虫害的识别精确率,提出一种基于改进YOLOv5s的生姜叶片病虫害识别模型。建立了田间不同自然环境条件下的生姜叶片病虫害数据集,为保证模型在田间移动设备上流畅运行,实现网络模型的轻量化,在YOLOv5s中引入GhostNet网络中的Ghost模块和Ghost BottleNeck结构。同时,为避免生姜叶片病虫害图像小目标特征丢失的情况,增强图像特征提取,加入CA注意力机制模块,提升生姜叶片病虫害的识别准确率和定位精确度。改进后的模型参数量、计算量和权重文件大小分别为YOLOv5s模型的52.0%、50.6%和55.2%,对生姜叶片病虫害识别平均精度均值达到了83.8%。与Faster-RCNN、SSD、YOLOv4、YOLOv5s、Tea-YOLOv5s等算法相比,平均精度均值分别提高37.6、39.1、22.5、1.5、0.7个百分点,将改进后的目标检测模型部署在Jetson Orin NX开发板上,并使用TensorRT、Int8量化和CUDA等方法对检测模型加速,加速后的模型检测速度为74.3帧/s,满足实时检测的要求,测试结果显示,改进后的模型减少了漏检、误检的情况,并且对目标定位更加精准,适用于自然环境下生姜叶片病虫害的精准识别,为后续生姜机械自动化施药作业提供技术理论支持。  相似文献   

5.
为实现自然环境下桃树缩叶病的检测,该研究提出了一种基于YOLOv5su的桃树缩叶病识别改进模型DLL-YOLOv5su。首先,针对桃树缩叶病目标特征变化较大的问题,在骨干网络最后一层C3模块中加入可变形自注意力模块(deformable attention,DA),使模型更加关注目标区域,降低背景对模型的影响,提高模型在复杂背景下的拟合能力。其次在SPPF(fast spatial pyramid pooling)模块中引入LSKA(large separable kernel attention)结构,大核卷积增大了模型的感受野,使模型能够关注更多信息。最后,提出了LAWD(lightweight adaptive weighted downsampling)模块,使用轻量化的下采样结构替换卷积模块,减少计算开销。在桃树缩叶病数据集上进行试验,结果显示,DLL-YOLOv5su模型权重大小为17.6MB,检测速度为83帧/s。识别准确率P、召回率R和平均精度均值mAP50分别达到了80.7%、73.1%和80.4%,相较于原始YOLOv5su分别提高了4.2、2.4和4.3个百分点。与YOLOv3-tiny、Faster R-CNN、YOLOv7和YOLOv8相比mAP50分别高出了28.5、11.8、2.1和4.1个百分点。改进模型识别精度高,误检、漏检率低,检测速度满足实时检测的要求,可以为桃树缩叶病的实时监测和预警提供参考。  相似文献   

6.
采用改进YOLOv4-tiny的复杂环境下番茄实时识别   总被引:7,自引:7,他引:0  
实时识别番茄的成熟度是番茄自主采摘车的关键功能。现有目标识别算法速度慢、对遮挡番茄和小番茄识别准确率低。因此,该研究提出一种基于改进YOLOv4-tiny模型的番茄成熟度识别方法。在头部网络(Head network)部分增加一个76×76的检测头(y3)来提高小番茄的识别准确率。为了提高被遮挡番茄的识别准确率,将卷积注意力模块(Convolution Block Attention Module,CBAM)集成到YOLOv4-tiny模型的骨干网络(Backbone network)部分。在深层卷积中使用Mish激活函数替代ReLU激活函数以保证提取特征的准确性。使用密集连接的卷积网络(Densely Connected Convolution Networks, DCCN)来加强全局特征融合,并建立红风铃番茄成熟度识别的数据集。试验结果表明,与YOLOv3、YOLOv4、YOLOv4-tiny、YOLOv5m和YOLOv5l模型相比,改进YOLOv4-tiny-X模型的平均精度均值(mean Average Precision, mAP)分别提高了30.9、0.2、0.7、5.4和4.9个百分点,在Nvidia GTX 2060 GPU 上达到111帧/s的速度,平均精度均值达到97.9%。不同模型的实时测试可视化结果表明,改进模型能够有效解决遮挡和小番茄识别准确率低的问题,可为番茄采摘车研制提供参考。  相似文献   

7.
为实现黄花成熟度的快速、高精度识别,针对其相似特征识别精确度低以及相互遮挡检测困难的问题,提出一种基于YOLOv8-ABW的黄花成熟度检测方法。该研究在特征提取网络中加入结合注意力机制的尺度特征交互机制(attention based intra-scale feature interaction, AIFI),更好地提取黄花特征信息,提高检测的精确度。在特征融合网络中,进一步采用加权的双向特征金字塔特征融合网络(bidirectional feature pyramid network, Bi FPN),实现更高层次的跨通道特征融合,有效减少通道中的特征冗余。此外使用WIoUv3作为损失函数,聚焦普通质量的锚框,提高模型的定位性能。试验结果表明:YOLOv8-ABW模型检测精确度为82.32%,召回率为83.71%,平均精度均值mAP@0.5和mAP@0.5:0.95分别为88.44%和74.84%,调和均值提升至0.86,实时检测速度为214.5帧/s。与YOLOv8相比,YOLOv8-ABW的精确度提高1.41个百分点,召回率提高0.75个百分点,mAP@0.5和mAP@0.5:0.95分别提升1.54个百分点和1.42个百分点。对比RT-DETR、YOLOv3、YOLOv5、YOLOv7模型,YOLOv8-ABW参数量最少,仅为3.65×106,且模型浮点运算量比YOLOv7少96.3 G。体现出YOLOv8-ABW 模型能够在黄花成熟度检测中平衡检测精确度和检测速度,综合性能最佳,为黄花智能化实时采摘研究提供技术支持。  相似文献   

8.
为了实现种薯芽眼的精准检测,方便后续实现马铃薯种薯的智能化切块,该研究提出一种基于深度学习一阶段目标检测算法YOLO的种薯芽眼检测改进模型。改进后的模型在YOLOv5检测模型基础上引入C3 Faster,降低参数量的同时加强了芽眼特征的提取能力;引入GOLD-YOLO中信息聚集-分发结构,提高模型检测芽眼的准确性;使用WIoU Loss代替CIoU Loss作为边界框损失函数,加快网络模型收敛的同时提高检测精度;使用遗传算法对超参数进行优化;最后使用剪枝与蒸馏技术,降低模型运行参数量与运行内存。优化后的模型大小为8.7 MB,仅为原始模型的61.3%,模型参数量约为原始模型的57.1%,最终的检测平均精确度在自制的种薯数据集中的测试集与验证集上分别为90.5%以及90.1%,该改进模型于自制种薯数据集的测试集上相较同类型的轻量级网络YOLOv7-tiny、YOLOv8n、YOLOv5n、YOLOv5s,平均精度均值分别高出0.5、1.3、2.8、1.1个百分点,在验证集上平均精度均值分别高出2.9、1.9、3.2、1.6个百分点,在本地计算机上检测速度达到了27.5帧/s,该研究结果可为后续种薯芽眼识别及实时切块技术提供参考。  相似文献   

9.
针对现有目标检测模型对自然环境下茶叶病害识别易受复杂背景干扰、早期病斑难以检测等问题,该研究提出了YOLOv5-CBM茶叶病害识别模型。YOLOv5-CBM以YOLOv5s模型为基础,在主干特征提取阶段,将一个带有Transformer的C3模块和一个CA(coordinate attention)注意力机制融入特征提取网络中,实现对病害特征的提取。其次,利用加权双向特征金字塔(BiFPN)作为网络的Neck,通过自适应调节每个尺度特征的权重,使网络在获得不同尺寸特征时更好地将其融合,提高识别的准确率。最后,在检测端新增一个小目标检测头,解决了茶叶病害初期病斑较小容易出现漏检的问题。在包含有3种常见茶叶病害的数据集上进行试验,结果表明,YOLOv5-CBM对自然环境下的初期病斑检测效果有明显提高,与原始YOLOv5s模型相比,对早期茶饼病和早期茶轮斑病识别的平均精度分别提高了1.9和0.9个百分点,对不同病害检测的平均精度均值达到了97.3%,检测速度为8ms/幅,均优于其他目标检测算法。该模型具有较高的识别准确率与较强的鲁棒性,可为茶叶病害的智能诊断提供参考。  相似文献   

10.
为解决自然环境中苹果叶片病害检测场景复杂、小目标病害检测难度高以及模型参数大无法在移动端和嵌入式设备部署等问题,提出一种基于YOLOv5s的苹果叶片小目标病害轻量化检测方法。该方法将YOLOv5s的骨干网络更改为ShuffleNet v2轻量化网络,引入CBAM(convolutional block attention module)注意力模块使模型关注苹果叶片小目标病害,添加改进RFB-s(receptive field block-s)支路获取多尺度特征,提高苹果叶片病害检测精度,并更改边界框回归损失函数为SIoU(scylla-intersection over union),增强病斑定位能力。试验表明改进后的YOLOv5s模型在IoU大于0.5时的平均精度均值(mean average precision,mAP0.5)和每秒传输帧数(frame per second,FPS)分别达到90.6%和175帧/s,对小目标的平均检测准确率为38.2%,与基准模型YOLOv5s相比,其mAP0.5提升了0.8个百分点,参数量减少了6.17 MB,计算量减少了13.8 G,对小目标的检测准确率提高了3个百分点。改进后的YOLOv5s目标检测模型与Faster R-CNN、SSD、YOLOv5m、YOLOv7、YOLOv8和YOLOv5s目标检测模型相比,具有最小的参数量和计算量,对小目标病害叶斑病和锈病的检测准确率分别提高了1.4、4.1、0.5、5.7、3.5、3.9和1.5、4.3、1.2、2.1、4、2.6个百分点,该方法为真实自然环境下苹果叶片病害尤其是小目标病害的轻量化检测提供参考依据。  相似文献   

11.
随着食用菌行业由自动化向智能化、信息化发展的趋势越来越明显,为了实现现代化菇房中平菇的准确检测,解决工厂化平菇栽培中收获阶段平菇之间相互遮挡等问题,帮助平菇采收机器人进行准确的自动化采收,该文提出了一种基于YOLOv5(you only look once version 5)模型的OMM-YOLO(ostreatus measure modle-YOLO)平菇目标检测与分类模型。通过在YOLOv5模型的Backbone层添加注意力模块,对输入的平菇图像特征进行动态加权,以获得更详细的特征信息,并在Neck层采用加权双向特征金字塔网络,通过与不同的特征层融合,提高算法的平菇目标检测的精度。此外,为了改善算法的准确性和边界框纵横比的收敛速度,该文采用了EIoU(enhanced intersection over union)损失函数替代了原有的损失函数。试验结果表明,与原始模型相比,改进模型OMM-YOLO对成熟平菇、未成熟平菇和未生长平菇的平均精度均值分别提高了0.4个百分点、4.5个百分点和1.1个百分点。与当前主流模型Resnet50、VGG16、YOLOv3、YOLOv4、YOLOv5m和YOLOv7相比,该模型的精确率、召回率和检测精度均处于优势,适用于收集现代化菇房中的平菇信息,有效避免了平菇之间因相互遮挡而产生的误检测现象。菇房平菇目标检测可以自动化地检测平菇的数量、生长状态等信息,帮助菇房工作人员掌握菇房内的菇况,及时调整温湿度等环境条件,提高生产效率,并且对可以对平菇进行质量控制,确保平菇产品的统一性和品质稳定性。同时可以减少对人工的依赖,降低人力成本,实现可持续发展,对智能化现代菇房建设具有积极作用。  相似文献   

12.
Influence of ammonium nitrate on the growth and straw decomposition of higher fungi 1. Nine species of higher fungi were investigated in order to study the influence of increasing NH4NO3 amounts on mycelial growth, the decomposition of straw substrates, the induction of fruiting bodies and the pH value of the substrates. 2. Increasing ammonium nitrate concentrations in the substrate clearly inhibited mycelial growth of two species (Stropharia rugosoannulata and Flammulina velutipes) whereas the others were not visibly affected. 3. Ammonium nitrate in the substrate led to different substrate decomposition patterns, depending on the fungal species used. The decomposition rates of Pleurotus salmoneo stramineus and Pleurotus eryngii decreased at all N-concentration levels. The decomposition rates of Lentinus edodes and Pleurotus sp. ?Florida”? were stimulated only at the lowest N-concentration level. Flammulina velutipes, Stropharia rugosoannula ta, Agrocybe aegerita, Kuehneromyces mutabilis and Ganoderma applanatum showed enhanced decomposition rates over the whole N-concentration range. 4. The induction and yield of fruiting bodies were also influenced by addition of ammonium nitrate. Low levels of ammonium nitrate stimulated fruiting body formation and yield of Agrocybe aegerita. Fructification of Lentinus edodes was delayed and the yield of fruiting bodies decreased at all N-concentration levels. At the given experimental conditions most of the investigated fungi did not fructify o r developed only primordia. 5. Addition of ammonium nitrate to the sterile substrate caused a decrease in pH. A further decrease in pH was observed after colonization of the substrate by fungi.  相似文献   

13.
基于优选YOLOv7模型的采摘机器人多姿态火龙果检测系统   总被引:3,自引:3,他引:0  
为了检测复杂自然环境下多种生长姿态的火龙果,该研究基于优选YOLOv7模型提出一种多姿态火龙果检测方法,构建了能区分不同姿态火龙果的视觉系统。首先比较了不同模型的检测效果,并给出不同设备的建议模型。经测试,YOLOv7系列模型优于YOLOv4、YOLOv5和YOLOX的同量级模型。适用于移动设备的YOLOv7-tiny模型的检测准确率为83.6%,召回率为79.9%,平均精度均值(mean average precision,mAP)为88.3%,正视角和侧视角火龙果的分类准确率为80.4%,推理一张图像仅需1.8 ms,与YOLOv3-tiny、YOLOv4-tiny和YOLOX-tiny相比准确率分别提高了16.8、4.3和4.8个百分点,mAP分别提高了7.3、21和3.9个百分点,与EfficientDet、SSD、Faster-RCNN和CenterNet相比mAP分别提高了8.2、5.8、4.0和42.4个百分点。然后,该研究对不同光照条件下的火龙果进行检测,结果表明在强光、弱光、人工补光条件下均保持着较高的精度。最后将基于YOLOv7-tiny的火龙果检测模型部署到Jetson Xavier NX上并针对正视角火龙果进行了验证性采摘试验,结果表明检测系统的推理分类时间占完整采摘动作总时间的比例约为22.6%,正视角火龙果采摘成功率为90%,验证了基于优选YOLOv7的火龙果多姿态检测系统的性能。  相似文献   

14.
为解决新梅在树干树叶遮挡、果实重叠情况下难以准确检测的问题,该研究建立了新梅目标检测模型SFF-YOLOv5s。在真实果园环境下构建新梅数据集,以YOLOv5s模型作为基础网络,首先在Backbone骨干网络C3模块中引入CA(coordinate attention)注意力机制以增强模型对新梅关键特征信息的提取能力并减少模型的参数量;其次在Neck层中引入加权双向特征金字塔网络,增强模型不同特征层之间的融合能力,从而提高模型的平均精度均值;最后使用SIoU损失函数替换原模型中的CIoU损失函数提高模型的检测准确率。试验结果表明,SSF-YOLOv5s模型对新梅检测准确率为93.4%,召回率为92.9%,平均精度均值为97.7%,模型权重仅为13.6MB,单幅图像平均检测时间12.1ms,与Faster R-CNN、YOLOv3、YOLOv4、YOLOv5s、YOLOv7、YOLOv8s检测模型相比平均精度均值分别提升了3.6、6.8、13.1、0.6、0.4、0.5个百分点,能够满足果园复杂环境下对新梅进行实时检测的需求,为后续新梅采摘机器人的视觉感知环节提供了技术支持。  相似文献   

15.
为快速获取单分蘖水稻植株的形态结构和表型参数,该研究提出了一种基于目标检测和关键点检测模型相结合的骨架提取和表型参数获取方法。该方法基于目标检测模型生成穗、茎秆、叶片的边界框和类别,将所得数据分别输入到关键点检测模型检测各部位关键点,按照语义信息依次连接关键点形成植株骨架,依据关键点坐标计算穗长度、茎秆长度、叶片长度、叶片-茎秆夹角4种表型参数。首先,构建单分蘖水稻的关键点检测和目标检测数据集;其次,训练Faster R-CNN、YOLOv3、YOLOv5s、YOLOv5m目标检测模型,经过对比,YOLOv5m的检测效果最好,平均精度均值(mean average precision,mAP)达到91.17%;然后,应用人体姿态估计的级联金字塔网络(cascaded pyramid network,CPN)提取植株骨架,并引入注意力机制CBAM(convolutional block attention module)进行改进,与沙漏网络(hourglass networks,HN)、堆叠沙漏网络模型(stacked hourglass networks,SHN)和CPN模型相比,CBAM-CPN模型的预测准确率分别提高了9.68、8.83和0.5个百分点,达到94.75%,4种表型参数的均方根误差分别为1.06、0.81、1.25 cm和2.94°。最后,结合YOLOv5m和CBAM-CPN进行预测,4种表型参数的均方根误差分别为1.48 、1.05 、1.74 cm和2.39°,与SHN模型相比,误差分别减小1.65、3.43、2.65 cm和4.75°,生成的骨架基本能够拟合单分蘖水稻植株的形态结构。所提方法可以提高单分蘖水稻植株的关键点检测准确率,更准确地获取植株骨架和表型参数,有助于加快水稻的育种和改良。  相似文献   

16.
为解决自然环境中番茄叶片病虫害检测场景复杂、检测精度较低,计算复杂度高等问题,提出一种SLP-YOLOv7-tiny的深度学习算法。首先,将主干特征提取网络中部分3×3的卷积Conv2D(2D convolution)改为分布偏移卷积DSConv2D(2D Depthwise Separable Convolution),以减少网络的计算量,并且使计算速度更快,占用内存更少;其次,将无参数注意力机制(parameter-free attention module, SimAM)融合到骨干特征提取网络中,加强模型对病虫害特征的有效提取能力和特征整合能力;最后,将原始YOLOv7-tiny的CIOU损失函数,更替为Focal-EIOU损失函数,加快模型收敛并降低损失值。试验结果表明,SLP-YOLOv7-tiny模型整体识别精准度、召回率、平均精度均值mAP0.5(IOU阈值为0.5时的平均精度)、mAP0.5~0.95(IOU阈值从0.5到0.95之间的所有值进行平均计算的平均精度)分别为95.9%、94.6%、98.0%、91.4%,与改进前YOLOv7-tiny相比,分别提升14.7、29.2、20.2、30个百分点,同时,计算量降低了62.6%,检测速度提升了13.2%。与YOLOv5n、YOLOv5s、YOLOv5m、YOLOv7、YOLOv7-tiny、Faster-RCNN、SSD目标检测模型相比,mAP0.5分别提升了2.0、1.6、2.0、2.2、20.2、6.1和5.3个百分点,而计算量大小仅为YOLOv5s、YOLOv5m、YOLOv7、Faster-RCNN、SSD的31.5%、10.6%、4.9%、4.3%、3.8%。结果表明SLP-YOLOv7-tiny可以准确快速地实现番茄叶片病虫害的检测,且模型较小,可为番茄叶片病虫害的快速精准检测的发展提供一定的技术支持。  相似文献   

17.
为提高橙果采摘定位精度和作业速度,提出一种便于迁移至移动终端的改进YOLOv4模型,可从RealSense深度相机所成彩色图像中获取果实质心二维坐标,经配准提取对应深度图中质心点深度值,实现果实的三维空间定位。改进YOLOv4模型以MobileNet v2为主干网络,在颈部结构中使用深度可分离卷积替换普通卷积,实现模型轻量化并提高检测速度。训练后的改进模型对513张独立橙果测试集数据的识别平均精度达97.24%,与原始YOLOv4模型相比,平均检测时间减少11.39 ms,模型大小减少197.5 M。与经典Faster RCNN、SSD模型相比,检测平均精度分别提高了2.85和3.30个百分点,模型大小分别减少了474.5和44.1 M。与轻量化模型YOLOv4-tiny相比,召回率提升了4.79个百分点,较Ghostnet-YOLOv4,检测速度提升了27.64个百分点。为验证该改进算法实用性,应用改进模型获取果园中78个橙果的位置信息,结果表明:果实二维识别成功率达98.72%,水平方向及垂直方向的平均绝对百分比误差均在1%以内。果实三维定位成功率达96.15%,深度信息平均绝对百分比误差为2.72%,满足采摘机械手精准定位需求。该方法为复杂场景下采摘作业实现提供了鲁棒性强、实时性好、精准度高的目标定位途径。  相似文献   

18.
现有的目标检测算法检测茶叶嫩芽的精度较低,为提高茶叶嫩芽的检测精度,该研究提出一种基于改进YOLOv5s网络模型的茶叶嫩芽检测算法。该算法将骨干特征提取网络中的空间金字塔池化结构(spatial pyramid pooling-fast,SPPF)替换为空洞空间卷积池化金字塔结构(atrous spatial pyramid pooling,ASPP),增强模型对不同分辨率下目标的识别能力;针对茶叶嫩芽的小目标特征,在颈部网络中引入可加权重的双向特征金字塔网络(bidirectional feature pyramid network,BiFPN),提高特征融合的效率,同时在颈部网络中的每个集中综合卷积模块(concentrated-comprehensive convolution block,C3)后添加卷积注意力模块(convolutional block attention module,CBAM)来提高模型关注小目标特征的能力。试验结果表明,改进后获得的Tea-YOLOv5s比原模型的准确率(precision,P)、召回率(recall,R)和平均精度值(mean average precision,mAP)分别高出4.4、0.5和4个百分点,且模型鲁棒性强,在多个场景下茶叶嫩芽的检测中具有更高的置信度分数。改进后的模型可为茶叶的产量估计和茶叶采摘机器人的嫩芽识别奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号