首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Do learning and retrieval of a memory activate the same neurons? Does the number of reactivated neurons correlate with memory strength? We developed a transgenic mouse that enables the long-lasting genetic tagging of c-fos-active neurons. We found neurons in the basolateral amygdala that are activated during Pavlovian fear conditioning and are reactivated during memory retrieval. The number of reactivated neurons correlated positively with the behavioral expression of the fear memory, indicating a stable neural correlate of associative memory. The ability to manipulate these neurons genetically should allow a more precise dissection of the molecular mechanisms of memory encoding within a distributed neuronal network.  相似文献   

2.
The stabilization of long-term memories requires de novo protein synthesis. How can proteins, synthesized in the soma, act on specific synapses that participate in a given memory? We studied the dynamics of newly synthesized AMPA-type glutamate receptors (AMPARs) induced with learning using transgenic mice expressing the GluR1 subunit fused to green fluorescent protein (GFP-GluR1) under control of the c-fos promoter. We found learning-associated recruitment of newly synthesized GFP-GluR1 selectively to mushroom-type spines in adult hippocampal CA1 neurons 24 hours after fear conditioning. Our results are consistent with a "synaptic tagging" model to allow activated synapses to subsequently capture newly synthesized receptor and also demonstrate a critical functional distinction in the mushroom spines with learning.  相似文献   

3.
To elucidate molecular, cellular, and circuit changes that occur in the brain during learning, we investigated the role of a glutamate receptor subtype in fear conditioning. In this form of learning, animals associate two stimuli, such as a tone and a shock. Here we report that fear conditioning drives AMPA-type glutamate receptors into the synapse of a large fraction of postsynaptic neurons in the lateral amygdala, a brain structure essential for this learning process. Furthermore, memory was reduced if AMPA receptor synaptic incorporation was blocked in as few as 10 to 20% of lateral amygdala neurons. Thus, the encoding of memories in the lateral amygdala is mediated by AMPA receptor trafficking, is widely distributed, and displays little redundancy.  相似文献   

4.
Environmental temperature is thought to be directly sensed by neurons through their projections in the skin. A subset of the mammalian transient receptor potential (TRP) family of ion channels has been implicated in this process. These "thermoTRPs" are activated at distinct temperature thresholds and are typically expressed in sensory neurons. TRPV3 is activated by heat (>33 degrees C) and, unlike most thermoTRPs, is expressed in mouse keratinocytes. We found that TRPV3 null mice have strong deficits in responses to innocuous and noxious heat but not in other sensory modalities; hence, TRPV3 has a specific role in thermosensation. The natural compound camphor, which modulates sensations of warmth in humans, proved to be a specific activator of TRPV3. Camphor activated cultured primary keratinocytes but not sensory neurons, and this activity was abolished in TRPV3 null mice. Therefore, heat-activated receptors in keratinocytes are important for mammalian thermosensation.  相似文献   

5.
Cholinergic neurons are widespread, and pharmacological modulation of acetylcholine receptors affects numerous brain processes, but such modulation entails side effects due to limitations in specificity for receptor type and target cell. As a result, causal roles of cholinergic neurons in circuits have been unclear. We integrated optogenetics, freely moving mammalian behavior, in vivo electrophysiology, and slice physiology to probe the cholinergic interneurons of the nucleus accumbens by direct excitation or inhibition. Despite representing less than 1% of local neurons, these cholinergic cells have dominant control roles, exerting powerful modulation of circuit activity. Furthermore, these neurons could be activated by cocaine, and silencing this drug-induced activity during cocaine exposure (despite the fact that the manipulation of the cholinergic interneurons was not aversive by itself) blocked cocaine conditioning in freely moving mammals.  相似文献   

6.
Sleep is believed to play an important role in memory consolidation. We induced sleep on demand by expressing the temperature-gated nonspecific cation channel Transient receptor potential cation channel (UAS-TrpA1) in neurons, including those with projections to the dorsal fan-shaped body (FB). When the temperature was raised to 31°C, flies entered a quiescent state that meets the criteria for identifying sleep. When sleep was induced for 4 hours after a massed-training protocol for courtship conditioning that is not capable of inducing long-term memory (LTM) by itself, flies develop an LTM. Activating the dorsal FB in the absence of sleep did not result in the formation of LTM after massed training.  相似文献   

7.
Although the molecular, cellular, and systems mechanisms required for initial memory processing have been intensively investigated, those underlying permanent memory storage remain elusive. We present neuroanatomical, pharmacological, and genetic results demonstrating that the anterior cingulate cortex plays a critical role in remote memory for contextual fear conditioning. Imaging of activity-dependent genes shows that the anterior cingulate is activated by remote memory and that this activation is impaired by a null alpha-CaMKII mutation that blocks remote memory. Accordingly, reversible inactivation of this structure in normal mice disrupts remote memory without affecting recent memory.  相似文献   

8.
【目的】明确印楝素是否能诱导果蝇产生厌恶性味觉记忆,并探讨多巴胺信号在这种记忆形成中的调控作用。【方法】利用印楝素诱导果蝇产生短期厌恶性味觉记忆,并通过昆虫口器伸展反应测试诱导结果;采用压力注射给药方式及果蝇全脑膜片钳记录,研究印楝素对果蝇脑内不同亚群多巴胺能神经元兴奋性及受体电流的影响。【结果】印楝素A及印楝素干粉均能显著抑制果蝇口器伸展的概率,口器伸展反应(PER)分别为60.34%和17.24%,(P0.007),并且干粉的效果更加明显;印楝素对不同亚群的多巴胺能神经元的兴奋性有不同的作用,PPL1、PAM和PPM2亚群兴奋性呈现增加趋势,其中PPL1亚群兴奋性改变最为显著;印楝素对多巴胺D1受体具有激动效应,这种激动效应可被D1受体特异性拮抗剂抑制。【结论】印楝素可以诱导果蝇产生厌恶性味觉记忆,这种记忆受果蝇脑内多巴胺能信号的调控。  相似文献   

9.
Memory processes are modulated by the biological clock, although the mechanisms are unknown. Here, we report that in the diurnal zebrafish both learning and memory formation of an operant conditioning paradigm occur better during the day than during the night. Melatonin treatment during the day mimics the nighttime suppression of memory formation. Training in constant light improves nighttime memory formation while reducing endogenous melatonin concentrations. Treatment with melatonin receptor antagonists at night dramatically improves memory. Pinealectomy also significantly improves nighttime memory formation. We adduce that melatonin is both sufficient and necessary for poor memory formation during the night.  相似文献   

10.
Competition between neurons is necessary for refining neural circuits during development and may be important for selecting the neurons that participate in encoding memories in the adult brain. To examine neuronal competition during memory formation, we conducted experiments with mice in which we manipulated the function of CREB (adenosine 3',5'-monophosphate response element-binding protein) in subsets of neurons. Changes in CREB function influenced the probability that individual lateral amygdala neurons were recruited into a fear memory trace. Our results suggest a competitive model underlying memory formation, in which eligible neurons are selected to participate in amemorytrace as a function of their relative CREB activity at the time of learning.  相似文献   

11.
12.
A goal in visual neuroscience is to reveal how the visual system reconstructs the three-dimensional (3D) representation of the world from two-dimensional retinal images. Although the importance of texture gradient cues in the process of 3D vision has been pointed out, most studies concentrate on the neural process based on binocular disparity. We report the neural correlates of depth perception from texture gradient in the cortex. In the caudal part of the lateral bank of intraparietal sulcus, many neurons were selective to 3D surface orientation defined by texture gradient, and their response was invariant over different types of texture pattern. Most of these neurons were also sensitive to a disparity gradient, suggesting that they integrate texture and disparity gradient signals to construct a generalized representation of 3D surface orientation.  相似文献   

13.
Forming distinct representations of multiple contexts, places, and episodes is a crucial function of the hippocampus. The dentate gyrus subregion has been suggested to fulfill this role. We have tested this hypothesis by generating and analyzing a mouse strain that lacks the gene encoding the essential subunit of the N-methyl-d-aspartate (NMDA) receptor NR1, specifically in dentate gyrus granule cells. The mutant mice performed normally in contextual fear conditioning, but were impaired in the ability to distinguish two similar contexts. A significant reduction in the context-specific modulation of firing rate was observed in the CA3 pyramidal cells when the mutant mice were transferred from one context to another. These results provide evidence that NMDA receptors in the granule cells of the dentate gyrus play a crucial role in the process of pattern separation.  相似文献   

14.
The amygdalohippocampal circuit plays a pivotal role in Pavlovian fear memory. We simultaneously recorded electrical activity in the lateral amygdala (LA) and the CA1 area of the hippocampus in freely behaving fear-conditioned mice. Patterns of activity were related to fear behavior evoked by conditioned and indifferent sensory stimuli and contexts. Rhythmically synchronized activity at theta frequencies increased between the LA and the CA1 after fear conditioning and became significant during confrontation with conditioned fear stimuli and expression of freezing behavior. Synchronization of theta activities in the amygdalohippocampal network represents a neuronal correlate of conditioned fear, apt to improve neuronal communication during memory retrieval.  相似文献   

15.
16.
Pattern completion, the ability to retrieve complete memories on the basis of incomplete sets of cues, is a crucial function of biological memory systems. The extensive recurrent connectivity of the CA3 area of hippocampus has led to suggestions that it might provide this function. We have tested this hypothesis by generating and analyzing a genetically engineered mouse strain in which the N-methyl-D-asparate (NMDA) receptor gene is ablated specifically in the CA3 pyramidal cells of adult mice. The mutant mice normally acquired and retrieved spatial reference memory in the Morris water maze, but they were impaired in retrieving this memory when presented with a fraction of the original cues. Similarly, hippocampal CA1 pyramidal cells in mutant mice displayed normal place-related activity in a full-cue environment but showed a reduction in activity upon partial cue removal. These results provide direct evidence for CA3 NMDA receptor involvement in associative memory recall.  相似文献   

17.
Carbon dioxide (CO2) is an important environmental cue for many organisms but is odorless to humans. It remains unclear whether the mammalian olfactory system can detect CO2 at concentrations around the average atmospheric level (0.038%). We demonstrated the expression of carbonic anhydrase type II (CAII), an enzyme that catabolizes CO2, in a subset of mouse olfactory neurons that express guanylyl cyclase D (GC-D+ neurons) and project axons to necklace glomeruli in the olfactory bulb. Exposure to CO2 activated these GC-D+ neurons, and exposure of a mouse to CO2 activated bulbar neurons associated with necklace glomeruli. Behavioral tests revealed CO2 detection thresholds of approximately 0.066%, and this sensitive CO2 detection required CAII activity. We conclude that mice detect CO2 at near-atmospheric concentrations through the olfactory subsystem of GC-D+ neurons.  相似文献   

18.
Prefrontal neurons engaged by working memory tasks express a sequence of phasic and tonic activations linked to a train of sensory, mnemonic, and response-related events. Here, we report that the dopamine D2 receptor selectively modulates the neural activities associated with memory-guided saccades in oculomotor delayed-response tasks yet has little or no effect on the persistent mnemonic-related activity, which is instead modulated by D1 receptors. This associates the D2 receptor with a specific component of working memory circuitry and fractionates the modulatory effects of D1 and D2 receptors on the neural machinery of a cognitive process.  相似文献   

19.
Updating of working memory has been associated with striato-frontal brain regions and phasic dopaminergic neurotransmission. We assessed raclopride binding to striatal dopamine (DA) D2 receptors during a letter-updating task and a control condition before and after 5 weeks of updating training. Results showed that updating affected DA activity before training and that training further increased striatal DA release during updating. These findings highlight the pivotal role of transient neural processes associated with D2 receptor activity in working memory.  相似文献   

20.
S Löffler  J Körber  U Nubbemeyer  K Fehsel 《Science (New York, N.Y.)》2012,337(6095):646; author reply 646
Ray et al. (Reports, 29 July 2011, p. 637) assume that clozapine-N4-oxide (CNO) represents a "biologically inert synthetic ligand" that selectively activates the M4 muscarinic receptor-based DREADD (designer receptor exclusively activated by a designer drug). In contrast, due to the redox cycling of CNO with clozapine and to their cell membrane permeability, CNO is biologically active and its conversion products are capable of undermining DREADD effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号