首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A dairy cow system simulator, Dairy_sim , designed for assessing the interaction of climate and management on dairy cow production, based on rotational grass grazing, was further developed by integrating a soil water model. The soil water model was based on the concept of soil water deficits, and influenced the growth of grass herbage in the simulator when there was an excess of water over field capacity and when water content in the soil was approaching wilting point. The soil water model was tested using baseline meteorological data (1961–1990) and then the system simulation was parameterized and tested for poorly drained soils using data from a research farm in the west of Ireland. After testing, the effects of regional differences in climate on system management on well- and poorly drained soils were compared. Down-scaled Global Climate Model (GCM) data for the baseline years (1961–1990) were used for this purpose. These data resulted in slightly more favourable weather than that recorded. It was found that the simulator was capable of generating results in good agreement with published data for dairy production on poorly drained soils. The regional analysis showed dairy farms on well-drained soils out-performed their equivalents on poorly drained soils and, in general, were able to sustain higher stocking rates by 0·6–0·9 cows ha−1. Dry matter production was around 1·5–3 t ha−1 greater per annum on well-drained soils compared to poorly drained soils. The simulator, Dairy_sim , also captured a large difference in the requirement for housing and forage between the well and poorly drained soils. The simulation model can now be used to evaluate interactions between soils, systems and weather, and is thus a more useful tool for developing practical advice and for evaluating the impacts of possible climate change.  相似文献   

2.
GrazeIn is a model for predicting herbage intake and milk production of grazing dairy cows. The objectives of this paper are to test its robustness according to a planned arrangement of grazing and feeding scenarios using a simulation procedure, and to investigate the precision of the predictions from an external validation procedure with independent data. Simulations show that the predicted effects of herbage allowance, herbage mass, herbage digestibility, concentrate supplementation, forage supplementation and daily time at pasture are consistent with current knowledge. The external validation of GrazeIn is investigated from a large dataset of twenty experiments representing 206 grazing herds, from five research centres within Western Europe. On average, mean actual and predicted values are 14·4 and 14·2 kg DM d?1 for herbage intake and 22·7 and 24·7 kg d?1 for milk production, respectively. The overall precision of the predictions, estimated by the mean prediction error, are 16% (i.e. 2·3 kg DM d?1) and 14% (i.e. 3·1 kg d?1) for herbage intake and milk production, respectively. It is concluded that the GrazeIn model is able to predict variations in herbage intake and milk production of grazing dairy cows in a realistic manner over a wide range of grazing management practices, rendering it suitable as a basis for decision support systems.  相似文献   

3.
The objective of this study was to investigate the effects of an early (February; F) or delayed (April; A) primary spring grazing date and two stocking rates, high (H) and medium (M), on the grazing management, dry matter (DM) intake of grass herbage and milk production of spring‐calving dairy cows grazing a perennial ryegrass sward in the subsequent summer. Sixty‐four Holstein‐Friesian dairy cows (mean of 58 d in milk) were assigned to one of four grazing treatments (n = 16) which were imposed from 12 April to 3 July 2004. Cows on the early spring‐grazing treatment were grazed at 5·5 cows ha?1 (treatment FH) and 4·5 cows ha?1 (treatment FM) while cows on the late‐grazing treatment were grazed at 6·4 cows ha?1 (treatment AH) and 5·5 cows ha?1 (treatment AM). The organic matter digestibility and crude protein concentration of the grass herbage were higher on the early‐grazing treatment than on the late‐grazing treatment. The cows on the FM treatment had significantly (P < 0·001) higher milk (24·5 kg), solids‐corrected milk (22·5 kg), fat (P < 0·01, 918 g) and protein (831 g) yields than the other three treatments. Cows on the FM treatment had a higher (P < 0·001) DM intake of grass herbage by 2·3 kg DM per cow per day than cows on the AH treatment, which had a DM intake significantly lower than all other treatments (15·2 kg DM per cow per day). The results of the present study showed that grazing in early spring has a positive effect on herbage quality in subsequent grazing rotations. The study also concluded that early spring‐grazed swards stocked at a medium stocking rate (4·5 cows ha?1; FM) resulted in the highest DM intake of grass herbage and milk production.  相似文献   

4.
This study examined productivity, nitrogen (N) flows and N balances in grassland‐based systems of dairy production in Ireland. There were four stocking densities of dairy cows on grass/white clover pastures and four inputs of N as fertilizers, concentrates and biological fixation over 2 years; 2001 and 2002. Annual stocking densities were 1·75, 2·10, 2·50 and 2·50 cows ha?1. Associated N inputs were 205, 230, 300 and 400 kg ha?1 respectively. There were eighteen cows per system. Cows calved within a 12‐week interval in spring with a mean calving date of 28 February and lactation extended until mid‐December in each year. There were no differences in annual milk yield (6337 kg cow?1; s.e.m. 106·1), live weight or body condition score. Pre‐grazing N concentrations in herbage increased (P < 0·001) with increasing N input, whereas there were no differences in N concentrations in silage reflecting optimum N inputs for silage production. Grazed herbage accounted for 0·64, silage 0·26 and concentrates 0·10 of annual dry matter consumed by the cows. Annual intakes of N ranged from 144 to 158 kg cow?1 and were mostly influenced by N concentration in grazed herbage. Annual output of N in milk and liveweight change was 38 kg cow?1 and was not different between systems. Annual N surpluses increased with increasing N inputs from 137 to 307 kg ha?1, whereas the proportion of N inputs recovered in products declined from 0·34 to 0·24. More efficient N use was associated with lower N inputs and in particular lower N concentrations in grazed herbage.  相似文献   

5.
The objective of this study, which was part of a larger grazing‐systems experiment, was to investigate the cumulative impact of three levels of grazing intensity on sward production, utilization and structural characteristics. Pastures were grazed by rotational stocking with Holstein–Friesian dairy cows from 10 February to 18 November 2009. Target post‐grazing heights were 4·5 to 5 cm (high; H), 4 to 4·5 cm (intermediate; I) and 3·5 to 4 cm (low; L). Detailed sward measurement were undertaken on 0·08 of each farmlet area. There were no significant treatment differences in herbage accumulated or in herbage harvested [mean 11·3 and 11·2 t dry matter (DM) ha?1 respectively]. Above the 3·5 cm horizon, H, I and L swards had 0·56, 0·62 and 0·67 of DM as leaf and 0·30, 0·23 and 0·21 of DM as stem respectively. As grazing severity increased, tiller density of grass species other than perennial ryegrass (PRG) decreased (from 3,350 to 2,780 and to 1771 tillers m?2 for H, I and L paddocks respectively) and the rejected area decreased (from 0·27 to 0·20 and to 0·10 for H, I and L paddocks respectively). These results indicate the importance of grazing management practice on sward structure and quality and endorse the concept of increased grazing severity as a strategy to maintain high‐quality grass throughout the grazing season. The findings are presented in the context of the need for intensive dairy production systems to provide greater quantities of high‐quality pasture over an extended grazing season, in response to policy changes with the abolition of EU milk quotas.  相似文献   

6.
A comparative study of grazing behaviour, herbage intake and milk production of three strains of Holstein‐Friesian dairy cow was conducted using three grass‐based feeding systems over two years. The three strains of Holstein‐Friesian cows were: high production North American (HP), high durability North American (HD) and New Zealand (NZ). The three grass‐based feeding systems were: high grass allowance (MP), high concentrate (HC) and high stocking rate (HS). In each year seventy‐two pluriparous cows, divided equally between strains of Holstein‐Friesian and feeding systems were used. Strain of Holstein‐Friesian cow and feeding system had significant effects on grazing behaviour, dry matter (DM) intake and milk production. The NZ strain had the longest grazing time while the HD strain had the shortest. The grazing time of cows in the HC system was shorter than those in both the HS and MP systems. There was a significant strain of Holstein‐Friesian cow by feeding system interaction for DM intake of grass herbage and milk production. The NZ strain had the highest substitution rate with the HP strain having the lowest. Hence, response in milk production to concentrate was much greater with the HP than the NZ strain. Reduction in milk yield as a consequence of a higher stocking rate (MP vs. HS system) was, however, greater for the HP and HD strains compared with the NZ strain. The results suggest that differences in grazing behaviour are important in influencing DM intake and milk production.  相似文献   

7.
An experiment was undertaken to examine the effect of supplement type on herbage intake, total dry matter (DM) intake, animal performance and nitrogen utilization with grazing dairy cows. Twenty‐four spring‐calving dairy cows were allocated to one of six treatments in a partially balanced changeover design with five periods of four weeks. The six treatments were no supplement (NONE), or supplementation with either grass silage (GS), whole‐crop wheat silage (WS), maize silage (MS), rapidly degradable concentrate (RC) or slowly degradable concentrate (SC). Cows were rotationally grazed with a mean herbage allowance of 20·5 kg DM per cow per day, measured above 4 cm. Forage supplements were offered for approximately 2 h immediately after each morning milking, with cows on NONE, RC and SC treatments returning to the grazing paddock immediately after milking. Cows on treatment MS had a significantly higher supplement DM intake than the other treatments but a significantly lower grass DM intake than the other treatments, resulting in no significant difference in total DM intake when compared with cows on treatments WS, RC and SC. Concentrate type had no significant effect on herbage intake, milk yield, milk composition or yield of milk components. The yield of milk fat and milk protein was significantly higher on treatments MS, RC and SC compared with treatments NONE, GS and WS. The results indicate that despite a relatively high substitution rate, maize silage can be a useful supplement for the grazing dairy cow.  相似文献   

8.
The effect of pre‐grazing herbage mass (HM) on herbage intake and milk production of strip‐grazing dairy cows is usually studied at the same herbage allowance (HA). In the literature, the effect of HM seems to be affected by the cutting height above which HA is estimated. The aim of this 2 × 3 factorial study was to determine whether the effect of HM (low vs high HM) on herbage intake, milk production and grazing behaviour of dairy cows is affected by the HA estimation height (ground level vs 2·5 vs 5 cm). Two HMs were compared in three different ways: at same HA above ground level (SHA0), at same HA above 2·5 cm (SHA2) and at same HA above 5 cm (SHA5). During two consecutive years, twenty‐four Holstein‐Friesian dairy cows in mid‐lactation were assigned to one estimation height in an incomplete switchback design, with two 14‐d periods. There was an interaction between HM and estimation height for herbage intake and milk production. The effect of HM on herbage intake was positive, null and negative when HMs were compared at SHA0, SHA2 and SHA5, respectively. This study may have practical implications on future research for studying, directly or indirectly, the effect of pre‐grazing HM under strip‐ or rotational‐grazing management, and on modelling herbage intake at grazing.  相似文献   

9.
The difficulty in matching the herbage requirements of grazing dairy cows to herbage production, due mainly to the unpredictability of the latter., causes stocking rates to be too low for maximum per hectare production and, thus, cows to be underfed at certain times in the grazing season. Conserved forage may be used as a supplement for grazing dairy cows in order to reduce variation in forage intake by the cow, to allow pasture stocking rates to be increased and to increase the efficiency of land use. The effect of offering conserved forage with herbage on intakes and production is reviewed in comparison to both ad libitum and restricted herbage. Total nutrient intakes and milk fat + protein yields are reduced for cows offered herbage and supplementary forage compared with cows offered ad libitum herbage, but increased compared with cows offered a restricted herbage level. Increasing pasture stocking rates may allow increases in utilized metabolizable energy levels from grassland but further research is needed in this area. Both grass and maize silage supplements offer potential for increasing the efficiency of land use, but in the case of grass silage this is only achieved in the best management practices.  相似文献   

10.
A 2‐year whole‐farm system study compared the accumulation, utilization and nutritive value of grass in spring‐calving grass‐based systems differing in stocking rate (SR) and calving date (CD). Six treatments (systems) were compared over two complete grazing seasons. Stocking rates used in the study were low (2·5 cows ha?1), medium (2·9 cows ha?1) and high (3·3 cows ha?1), respectively, and mean CDs were 12 February (early) and 25 February (late). Each system had its own farmlet of eighteen paddocks and one herd that remained on the same farmlet area for the duration of the study. Stocking rate had a small effect on total herbage accumulation (11 860 kg DM ha?1 year?1), but had no effect on total herbage utilization (11 700 kg DM ha?1 year?1). Milk and milk solids (MS; fat + protein) production per ha increased by 2580 and 196 kg ha?1 as SR increased from 2·5 to 3·3 cows ha?1. Milk production per ha and net herbage accumulation and utilization were unaffected by CD. Winter feed production was reduced as SR increased. Increased SR, associated with increased grazing severity, resulted in swards of increased leaf content and nutritive value. The results indicate that, although associated with increased milk production per ha, grazed grass utilization and improved sward nutritive value, the potential benefits of increased SR on Irish dairy farms can only be realized if the average level of herbage production and utilization is increased.  相似文献   

11.
Milk fatty acids (FA) were compared in mid‐lactation dairy cows in four feeding systems combining grazing management and supplementation. The four treatments were factorial combinations of compressed herbage grazed to 3·7 or 4·6 cm post‐grazing height, with or without concentrate feeding (3·6 kg cow?1 d?1). Milk yield and composition were measured for four groups of eight Friesian × Jersey dairy cows over 3 weeks in mid‐lactation for cows that had grazed treatments for 64 d from early spring. Milk yield was higher in cows fed concentrate plus herbage (23·9 kg d?1 cow?1) than cows fed herbage only (20·3 kg d?1 cow?1). Milk fat percentage was higher in cows fed herbage only (5·5%) than that fed herbage plus concentrate (5·1%). Milk protein percentage was higher in cows fed herbage plus concentrate (4·0%) than that fed herbage only (3·7%). The concentrations of conjugated linoleic acids c9, t11, C18:0, C18:1 t11 and C18:2 t9, c12 FA were lower where concentrate was fed. The concentrations of C18:1 t10, C18:1 t5, t8 and C18:2 c9, c12 FA were higher where concentrate was fed. The concentrations of C18:1 c6, C18:1 c9, C18:1 t9 and C18:3 c6,9,15 were unaffected by concentrate feeding. Post‐grazing herbage height had no significant effect on milk yield or concentration of milk FA. Provided dairy cows are harvesting leafy material of similar nutrient and FA concentration, post‐grazing herbage height does not appear to alter milk FA and the supply of high energy concentrates is more influential on milk FA profiles.  相似文献   

12.
The effect of offering a total mixed ration of silage and concentrate (proportionately 0·44 silage) system [indoor feeding system (IF)] was compared with grazing at a high daily herbage allowance with a low level of concentrate supplementation [early grazing system (EG)] in early spring on the performance of spring‐calving dairy cows in Ireland. Sixty‐four spring‐calving Holstein–Friesian dairy cows (mean calving date, 2 February) were allocated to one of two systems between 16 February and 4 April 2004. An equal number of primiparous and multiparous cows were assigned to each system. The dairy cows on the IF system were housed for a 7‐week period and offered a diet of 10·9 kg DM cow?1 d?1 (s.d. 2·3) of concentrate, the remainder of the diet was 8·6 kg DM cow?1 d?1 (s.d. 1·9) of grass silage. The dairy cows on the EG system were offered a mean daily herbage allowance of 15·1 kg DM cow?1 d?1 (s.d. 3·7) and were supplemented with 3·0 kg DM cow?1 d?1 (s.d. 1·0) of concentrate. There was no difference in milk yield between the two systems but the cows in the EG system had a higher milk protein concentration (2·9 g kg?1) and a higher milk protein yield than in the IF system. Milk fat concentration was higher for cows in the IF than EG system (3·0 g kg?1). There was no difference in total daily dry‐matter intake between the systems, measured in week 6 of the study. Mean live weight of the cows in the IF system was greater than in the EG system. The results of the study suggest that a slightly greater performance can be achieved by a system offering a high daily herbage allowance to spring‐calving dairy cows in early lactation compared with a system offering a total mixed ration containing a high proportion of concentrate with grass silage.  相似文献   

13.
Eighty winter‐calving dairy cows of mixed parity were managed in four grassland‐based systems of milk production (F‐F, F‐C, C‐F and C‐C) over a full lactation (year 1) and during the winter period of the subsequent lactation (year 2). During the winter periods cows on systems F‐F and F‐C were offered silages of high feeding value, supplemented with 6·0 kg d?1 of concentrate [crude protein (CP), 307 g kg?1 dry matter (DM)] through an out‐of‐parlour feeding system, while cows on systems C‐F and C‐C were offered silages of medium feeding value, supplemented with c. 12·8 kg d?1 of concentrate (CP, 204 g kg?1 DM), in the form of a complete diet. After 25 February in year 1, cows on systems F‐F and C‐F were given access to grazing for periods of increasing duration, achieving full turnout on 17 April. Thereafter, until 21 October, these cows were offered a high daily allowance of herbage within a flexible grazing system (23·0 kg DM per cow, measured above a height of 4·0 cm), supplemented with 0·5 kg d?1 of a ‘high magnesium’ concentrate. Cows on systems F‐C and C‐C (year 1) commenced grazing on 1 April, achieving full turnout on 17 April. Thereafter, until 20 October, these cows were managed on a restricted allowance of herbage in a rotational paddock grazing system, with concentrates (average allocation, 3·9 kg d?1) being offered according to yield. In year 2, cows on systems F‐F and C‐F were given access to grazing for periods of increasing duration, from 11 March to 8 April, at which point the study was terminated. With systems F‐F, F‐C, C‐F and C‐C, mean feed inputs and milk outputs (per animal) during year 1 of the study were as follows: total concentrate DM intakes [881, 1272, 1729 and 2171 kg (s.e.m. 96·1)]; total silage DM intakes [1722, 1713, 1047 and 1154 kg (s.e.m. 70·7)], total grass DM intakes (3245, 2479, 3057 and 2481 kg) and total milk outputs [7541, 7527, 7459 and 7825 kg (s.e.m. 305·8)] respectively. Stocking rates associated with each of the four systems were 2·2, 2·5, 2·6 and 2·9 cows per hectare respectively. Performance of dairy cows on the systems during the winter of year 2 was similar to that recorded during year 1. The results of this study indicate that similar levels of milk output, DM intakes, tissue changes and plasma metabolite profiles can be achieved from grassland‐based systems involving very different combinations of grass silage, grazed grass and concentrate feeds.  相似文献   

14.
Two experiments are described in which two levels of winter feeding and three levels of herbage allowance during the grazing season were imposed upon March/April calving British Friesian dairy cows. The winter treatments resulted in differences in live weight and milk yield at turnout of 35 and 53 kg and 3·4 and 3·2 kg d-1 for the two trials. Subsequently, when grazed at generous herbage allowances, the cows were able to compensate for much of this difference but when herbage was restricted the milk yield differences were accentuated. Groups of cows from each winter treatment were offered 25, 50 or 75 (Experiment 1) and 30, 50 or 70 (Experiment 2) g herbage DM per kg LW daily during the grazing season. Daily herbage intakes on the three allowances in each trial were 14·1, 13·3, 10·7 and 12·5, 12·1, 11·5 kg OM and milk yields were 16·0, 15·3, 12·5 and 15·2, 14·3, 11·8 kg SCM respectively. Both intake and milk production were depressed once the cows were forced to consume more than 50% of herbage on offer or to graze the sward down to a mean height of less than 8–10 cm. Grazing behaviour observations indicated that under rotational managements the cows did not compensate for restrictions in available herbage by grazing longer. Highest levels of milk production per unit area were observed in both trials when production per cow was depressed by 20–25%.  相似文献   

15.
An experiment was conducted to test the hypothesis that for cows with high levels of milk yield, rotational grazing produces higher milk yields than continuous grazing. The comparison of grazing systems was made at two levels of milk yield (initially 20·3 and 32·5 kg d?1), and interactions with sward height and concentrate level were also examined. The study used 48 multiparous Holstein Friesian cows over a period of 62 d. Mean milk yield, its persistency and composition, live weight, body condition score and liveweight gain were not significantly affected by grazing system at either level of milk yield. There were no significant interactions between grazing system and sward height or concentrate level for any milk production measurement. Mean estimated herbage and total dry matter (DM) intake (P < 0·01), grazing time (P < 0·05) and ruminating time (P < 0·01) were significantly greater on the continuous grazing system. The cows in the higher milk yield group and those grazed at the higher sward height had a significantly (P < 0·05) higher estimated daily herbage DM intake and rate of herbage intake on the continuous grazing system than those on the rotational grazing system. There was no evidence to support the hypothesis that rotational grazing systems support higher levels of milk production than continuous grazing for cows of high milk yield. The shorter grazing time on the rotational grazing system indicated that cows may anticipate the timing of the daily movement of the electric fence, and this reduces their time spent grazing residual herbage.  相似文献   

16.
A 50-animal herd of dairy cows was pastured throughout one year on fertilized Pangola grass pastures in the humid tropical environment of Turrialba, Costa Rica. Information was collected on monthly grazing pressure, forage consumption and digestibility and milk production. The average number of animal units (375 kg) over the year was 2.57/ha. Total milk produced was 6014 kg/ha. Forage consumption varied from 1.81–3.60 kg DM per 100 kg liveweight, with two periods of low consumption coinciding with the flowering period of Pangola grass and with a drier season. Digestibility fluctuated from 50.3–65.7% and followed the same pattern. Calculations were made of the efficiency of DM conversion, which was around 12%, with two higher values for the periods of stress, interpreted as utilization of body reserves. Calculations of the nitrogen balance of Pangola pastures are also presented.  相似文献   

17.
A full lactation study compared the performance of autumn‐calving dairy cows of high genetic merit under two contrasting systems of milk production: high forage (HF) and high concentrate (HC). During the winter, animals on system HF were offered a silage with a high feeding value characteristics, supplemented with 5·5 kg of concentrate [crude protein content of 280 g kg?1 dry matter (DM)] through an out‐of‐parlour feeding system. From 14 March, these animals were given increasing access to grazing, achieving 24‐h turnout on 15 April. Thereafter, until day 305 of lactation, these animals were offered a large daily herbage allowance (23·0 kg grass DM cow?1, measured above a height of 4·0 cm), supplemented with 0·5 kg d?1 of a ‘high‐magnesium’ concentrate. During the winter, animals on system HC were offered a silage of medium feeding value, mixed with ≈14·0 kg of concentrate d?1 (crude protein content of 202 g kg?1 DM) in the form of a complete diet. These animals commenced grazing on 9 April, achieving 24‐h turnout on 18 April. From 18 April until 9 June, daily herbage allowances and concentrate feed levels were 17·0 kg DM and 5·0 kg respectively; thereafter, and until day 305 of lactation, these daily allowances were reduced to 15·0 kg of herbage DM and 4·0 kg of concentrate. Animal performance during the first 305 days of lactation for systems HF and HC, respectively, were as follows: total concentrate DM inputs, 842 and 2456 kg; total silage DM intakes, 2205 and 1527 kg; total grass DM intakes, 3019 and 2044 kg; total feed DM intake, 6061 and 6032 kg and total milk output, 7854 and 8640 kg. Total milk output per cow with system HF was 786 kg lower than for system HC, despite similar total DM intakes, suggesting a greater total nutrient requirement with the former to support a given milk production. However, the study confirms that relatively similar levels of animal performance can be achieved from systems based on very different sources of nutrient supply.  相似文献   

18.
Developing sustainable grazing management systems based on perennial species is critical to preventing land degradation in marginal land classes. A field study was conducted from 2002 to 2006 to identify the impacts of deferred grazing (no defoliation of pastures for a period generally from spring to autumn) and fertilizer application on herbage accumulation, soil seed reserve and nutritive value in a hill pasture in western Victoria, Australia. Three deferred grazing strategies were used: short‐term deferred grazing (no defoliation between October and January), long‐term deferred grazing (no defoliation from October to the autumn break) and optimized deferred grazing (withholding time from grazing commenced between annual grass stem elongation and seed head emergence and concluded in February/March). These treatments were applied with two fertilizer levels (with or without fertilizer at 50 kg phosphorus ha?1 and 2000 kg lime ha?1 applied in year 1 only) in a factorial arrangement and two additional treatments: continuous grazing (CG) and no grazing (NG) in year 1. The deferred grazing treatments on average produced herbage dry matter of 4773 kg ha?1, the NG produced 4583 kg ha?1 and the CG produced 3183 kg ha?1 in year 4 (2005–06) of the experiment. Deferred grazing treatments with and without fertilizer application produced an average of 5135 and 4411 kg DM ha?1 respectively. Averaged over 4 years, deferred grazing increased the germinable seed pool of perennial grasses by 200% and annual grasses by 50% (except optimized deferred grazing that considerably decreased the annual grass seed pool) compared with the CG. The best of the deferred grazing strategies increased the digestibility of pastures by 7% compared with the CG. The results demonstrated that deferred grazing from spring to autumn followed by rotational grazing could be an effective tool to increase herbage production and soil seed pool and improve the digestibility of native pastures in the steep hill country of southern Australia.  相似文献   

19.
Animal production from intensively managed pasture (240 units N/ac or 300 kg N/ha applied annually) should in theory reach 11,000 Ib/ac (12,500 kg/ha) of milk or 1550 lb/ac (1750 kg/ha) of liveweight gain per year. The figure for theoretical milk production is achieved in experiments, although rarely approached in commercial practice; the figure for liveweight gain is never approached, either experimentally or commercially. On commereial farms in Britain, the average stocking rate for grazed lowland pasture in 1971 was about 0·74 cow equivalents/ac (l±82/ha), compared with a theoretical target of 1·9/ac; in 1969 fertilizer N application was about 48 units/ae (60 kg/ha). The main purpose of this paper is to suggest reasons for the differences between practical, experimental and theoretical levels of production. Economic factors may deter farmers from intensifying their grassland management, but the deterrent to high stocking rates may be the fear of running out of grass. In practice, ungrazed herbage is used as a buffer, but other feeds might be used for this purpose. Concentrates, pelleted roughages and even long dried grass and silage are too attractive to grazing beef cattle to be offered to appetite; but silage might be used as a long-term buffer. Fouling of pasture reduces efficiency of harvesting, but attempts to overcome this effect, by conditioning of grazing animals, spreading excreta or by alternation of grazing and cutting, have largely been unsuccessful. High production per unit area cannot be achieved without high production per animal. Legumes have often been found to increase production per animal, and a technique has been developed for growing red-clover and grass in adjoining areas and grazing them together. The clover was grazed satisfactorily by dairy cows (and caused no bloat) but failed to increase milk yield per animal. Recent calorimetric studies of grass have shown that the net energy value of digestible organic matter is variable, and in particular is low for late-season herbage.  相似文献   

20.
The potential for producing beef in savanna grassland areas is discussed in relation to the results obtained from grazing trials on sown pastures at Serere Research Station, Uganda. Liveweight gains from small East African Zebu stock are used to illustrate the progress that has been made in the selection of improved pasture species and mixtures grown at various levels of fertilizer application. The utilization of herbage from selected pastures is shown to vary under different grazing management systems, grazing pressure having the greatest effect upon animal production. The need for further investigations and the integration of existing research findings into farming practice is stressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号