首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
By competition with lactate dehydrogenase (LDH) for nicotinamide adenine dinucleotide (NAD), commonly occurring intracellular proteins, such as glyceraldehyde-3-phosphate dehydrogenase, malate dehydrogenase, and albumin, can protect LDH-1 and LDH-5 from inhibition and ternary complex formation with NAD and pyruvate. The existence of intracellular proteins that compete with LDH for NAD renders unphysiological a model for estimating the extent of intracellular LDH inhibition based on incubations of only LDH, NAD, and pyruvate.  相似文献   

3.
Eukaryotic microorganisms, as well as higher animals and plants, display many autonomous physiological and biochemical rhythmicities having periods approximating 24 hours. In an attempt to determine the nature of the timing mechanisms that are responsible for these circadian periodicities, two primary operational assumptions were postulated. Both the perturbation of a putative element of a circadian clock within its normal oscillatory range and the direct activation as well as the inhibition of such an element should yield a phase shift of an overt rhythm generated by the underlying oscillator. Results of experiments conducted in the flagellate Euglena suggest that nicotinamide adenine dinucleotide (NAD+), the mitochondrial Ca2+-transport system, Ca2+, calmodulin, NAD+ kinase, and NADP+ phosphatase represent clock "gears" that, in ensemble, might constitute a self-sustained circadian oscillating loop in this and other organisms.  相似文献   

4.
X-ray analysis of the free-acid crystal form of the coenzyme nicotinamide adenine dinucleotide (NAD+) revealed a conformational difference between the free NAD+ molecule and one bound in enzymes or complexed to Li+ ions. The pyrophosphate group showed asymmetry in the phosphate-oxygen bonds of the phosphate-oxygen-phosphate link; this bond at the nicotinamide side of the link is longer than that at the adenosine side by 0.04 angstrom. The crystal structure showed a novel intermolecular stacking of adenine and water molecules on opposite sides of nicotinamide that gives rise to a nicotinamide sandwich.  相似文献   

5.
In thioredoxin reductase (TrxR) from Escherichia coli, cycles of reduction and reoxidation of the flavin adenine dinucleotide (FAD) cofactor depend on rate-limiting rearrangements of the FAD and NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) domains. We describe the structure of the flavin-reducing conformation of E. coli TrxR at a resolution of 3.0 angstroms. The orientation of the two domains permits reduction of FAD by NADPH and oxidation of the enzyme dithiol by the protein substrate, thioredoxin. The alternate conformation, described by Kuriyan and co-workers, permits internal transfer of reducing equivalents from reduced FAD to the active-site disulfide. Comparison of these structures demonstrates that switching between the two conformations involves a "ball-and-socket" motion in which the pyridine nucleotide-binding domain rotates by 67 degrees.  相似文献   

6.
The selective cause of an ancient adaptation   总被引:1,自引:0,他引:1  
Zhu G  Golding GB  Dean AM 《Science (New York, N.Y.)》2005,307(5713):1279-1282
Phylogenetic analysis reveals that the use of nicotinamide adenine dinucleotide phosphate (NADP) by prokaryotic isocitrate dehydrogenase (IDH) arose around the time eukaryotic mitochondria first appeared, about 3.5 billion years ago. We replaced the wild-type gene that encodes the NADP-dependent IDH of Escherichia coli with an engineered gene that possesses the ancestral NAD-dependent phenotype. The engineered enzyme is disfavored during competition for acetate. The selection intensifies in genetic backgrounds where other sources of reduced NADP have been removed. A survey of sequenced prokaryotic genomes reveals that those genomes that encode isocitrate lyase, which is essential for growth on acetate, always have an NADP-dependent IDH. Those with only an NAD-dependent IDH never have isocitrate lyase. Hence, the NADP dependence of prokaryotic IDH is an ancient adaptation to anabolic demand for reduced NADP during growth on acetate.  相似文献   

7.
The three-dimensional structure of spinach ferredoxin-NADP+ reductase (NADP+, nicotinamide adenine dinucleotide phosphate) has been determined by x-ray diffraction at 2.6 angstroms (A) resolution and initially refined to an R factor of 0.226 at 2.2 A resolution. The model includes the flavin-adenine dinucleotide (FAD) prosthetic group and the protein chain from residue 19 through the carboxyl terminus at residue 314 and is composed of two domains. The FAD binding domain (residues 19 to 161) has an antiparallel beta barrel core and a single alpha helix for binding the pyrophosphate of FAD. The NADP binding domain (residues 162 to 314) has a central five-strand parallel beta sheet and six surrounding helices. Binding of the competitive inhibitor 2'-phospho-AMP (AMP, adenosine monophosphate) places the NADP binding site at the carboxyl-terminal edge of the sheet in a manner similar to the nucleotide binding of the dehydrogenase family. The structures reveal the key residues that function in cofactor binding and the catalytic center. With these key residues as a guide, conclusive evidence is presented that the ferredoxin reductase structure is a prototype for the nicotinamide dinucleotide and FAD binding domains of the enzymes NADPH-cytochrome P450 reductase, NADPH-sulfite reductase, NADH-cytochrome b5 reductase, and NADH-nitrate reductase. Thus this structure provides a structural framework for the NADH- or NADPH-dependent flavoenzyme parts of five distinct enzymes involved in photosynthesis, in the assimilation of inorganic nitrogen and sulfur, in fatty-acid oxidation, in the reduction of methemoglobin, and in the metabolism of many pesticides, drugs, and carcinogens.  相似文献   

8.
We characterized an activation mechanism of the human LTRPC2 protein, a member of the transient receptor potential family of ion channels, and demonstrated that LTRPC2 mediates Ca2+ influx into immunocytes. Intracellular pyrimidine nucleotides, adenosine 5'-diphosphoribose (ADPR), and nicotinamide adenine dinucleotide (NAD), directly activated LTRPC2, which functioned as a Ca2+-permeable nonselective cation channel and enabled Ca2+ influx into cells. This activation was suppressed by intracellular adenosine triphosphate. These results reveal that ADPR and NAD act as intracellular messengers and may have an important role in Ca2+ influx by activating LTRPC2 in immunocytes.  相似文献   

9.
10.
A nitroreductase, reducing parathion to aminoparathion, was found in the soluble fraction that was obtained from abdomens of female houseflies. The reaction required reduced nicotinamide adenine dinucleotide phosphate (NADPH), but was not affected by the presence or absence of oxygen. Further degradation of aminoparathion into water-soluble compounds occurred in NADPH-fortified incubation mixtures over prolonged incubation periods. The effect of sesamex or SKF 525-A on these reactions is described.  相似文献   

11.
Irradiation of the electron transport particles of Mycobacterium phlei with light at a wavelength of 360 manometers resulted in a loss of oxidase activities of succinate and the reduced form of nicotinamide adenine dinucleotide. The lesion in the two pathways caused by irradiation of the particles differs. The succinoxidase pathway was more labile to irradiation than the pathway linked to nicotinamide adenine dinucleotide. Restoration of succinoxidase activity (up to 50 to 60 percent) occurred on addition of a thermostable, water-soluble material obtained from Mycobacterium phlei cells or with an extract of mitochondria from boiled rat liver. Other known cofactors, such as flavine adenine dinucleotide, flavine mononucleotide, benzo- and naphthoquinones, as well as sulfhydryl agents, failed to restore succinoxidase activity after irradiation. Water-soluble material from Mycobacterium phlei appears to function between the flavoprotein and cytochrome b on the succinoxidase pathway. In contrast to the requirements for restoration of the pathway linked to nicotinamide adenine dinucleotide, restoration of succinoxidase does not occur with quinones or other cofactors such as flavine adenine dinucleotide.  相似文献   

12.
Voltage-gated proton (H+) channels are found in many human and animal tissues and play an important role in cellular defense against acidic stress. However, a molecular identification of these unique ion conductances has so far not been achieved. A 191-amino acid protein is described that, upon heterologous expression, has properties indistinguishable from those of native H+ channels. This protein is generated through alternative splicing of messenger RNA derived from the gene NOH-1 (NADPH oxidase homolog 1, where NADPH is the reduced form of nicotinamide adenine dinucleotide phosphate).  相似文献   

13.
Experiments are presented that confirm earlier predictions that the mode of supply of reactants to a nonlinear (bio)chemical reaction determines or controls concentrations at steady states far from equilibrium. The oxidation of nicotinamide adenine dinucleotide (NADH) catalyzed by the enzyme horseradish peroxidase with continuous input of oxygen was studied; NAD+ is continuously recycled to NADH through a glucose-6-phosphate dehydrogenase system. A comparison of steady-state concentrations is made with an oscillatory oxygen input and a constant input at the same average oxygen input for both modes. By varying the frequency and amplitude of the perturbation (O2 influx), the following may be changed: the average concentration of NADH; the Gibbs free energy difference delta G of the reactants and products at steady state; the average rate of the reaction; the phase relation between the oscillatory rate and delta G; and the dissipation. These results confirm the possibility of an "alternating current chemistry," of control and optimization of thermodynamic efficiency and dissipation by means of external variation of constraints in classes of nonlinear reactions and biological pumps, and of improvements of the yield in such reactions (heterogeneous catalysis, for example).  相似文献   

14.
Neutrophils kill microorganisms with oxygen radicals generated by an oxidase that uses the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) as substrate. This system requires both membrane and cytosolic components and is defective in patients with chronic granulomatous disease. A cytosolic complex capable of activating latent membrane oxidase was eluted from guanosine triphosphate-agarose and was used to raise polyclonal antiserum that recognized 47- and 67-kilodalton proteins. These proteins were restricted to the cytosol of myeloid cells. Both proteins were associated with NADPH oxidase-activating capacity when neutrophil cytosol was purified on nucleotide affinity matrices or molecular sizing columns. Neutrophils from patients with two different forms of autosomal chronic granulomatous disease lacked either the 47- or 67-kilodalton protein.  相似文献   

15.
Three variations to the structure of the nicotinamide adenine dinucleotide (NAD)-dependent L-lactate dehydrogenase from Bacillus stearothermophilus were made to try to change the substrate specificity from lactate to malate: Asp197----Asn, Thr246----Gly, and Gln102----Arg). Each modification shifts the specificity from lactate to malate, although only the last (Gln102----Arg) provides an effective and highly specific catalyst for the new substrate. This synthetic enzyme has a ratio of catalytic rate (kcat) to Michaelis constant (Km) for oxaloacetate of 4.2 x 10(6)M-1 s-1, equal to that of native lactate dehydrogenase for its natural substrate, pyruvate, and a maximum velocity (250 s-1), which is double that reported for a natural malate dehydrogenase from B. stearothermophilus.  相似文献   

16.
A 47-kilodalton neutrophil cytosol factor (NCF-47k), required for activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase superoxide (O2-.) production, is absent in most patients with autosomal recessive chronic granulomatous disease (AR-CGD). NCF-47k cDNAs were cloned from an expression library. The largest clone predicted a 41.9-kD protein that contained an arginine and serine-rich COOH-terminal domain with potential protein kinase C phosphorylation sites. A 33-amino acid segment of NCF-47k shared 49% identity with ras p21 guanosine triphosphatase activating protein. Recombinant NCF-47k restored O2-. -producing activity to AR-CGD neutrophil cytosol in a cell-free assay. Production of active recombinant NCF-47k will enable functional regions of this molecule to be mapped.  相似文献   

17.
Calorie restriction extends life-span in a wide variety of organisms. Although it has been suggested that calorie restriction may work by reducing the levels of reactive oxygen species produced during respiration, the mechanism by which this regimen slows aging is uncertain. Here, we mimicked calorie restriction in yeast by physiological or genetic means and showed a substantial extension in life-span. This extension was not observed in strains mutant for SIR2 (which encodes the silencing protein Sir2p) or NPT1 (a gene in a pathway in the synthesis of NAD, the oxidized form of nicotinamide adenine dinucleotide). These findings suggest that the increased longevity induced by calorie restriction requires the activation of Sir2p by NAD.  相似文献   

18.
Axonal degeneration is an active program of self-destruction that is observed in many physiological and pathological settings. In Wallerian degeneration slow (wlds) mice, Wallerian degeneration in response to axonal injury is delayed because of a mutation that results in overexpression of a chimeric protein (Wlds) composed of the ubiquitin assembly protein Ufd2a and the nicotinamide adenine dinucleotide (NAD) biosynthetic enzyme Nmnat1. We demonstrate that increased Nmnat activity is responsible for the axon-sparing activity of the Wlds protein. Furthermore, we demonstrate that SIRT1, a mammalian ortholog of Sir2, is the downstream effector of increased Nmnat activity that leads to axonal protection. These findings suggest that novel therapeutic strategies directed at increasing the supply of NAD and/or Sir2 activation may be effective for treatment of diseases characterized by axonopathy and neurodegeneration.  相似文献   

19.
A cotton leaf microsomal oxidase system that N-demethylates 3-(4'-chlorophenyl)-1,1-dimethylurea (monuron) to 3-(4'-chlorophenyl)-1-methylurea has been partially characterized. The enzyme system is associated with a microsomal fraction separated by differential centrifugation and requires molecular oxygen as well as either the reduced form of nicotinamide adenine dinucleotide phosphate or the reduced form of nicotinamide adenine dinucleotide as cofactors.  相似文献   

20.
The specification and maintenance of growth sites are tightly regulated during cell morphogenesis in all organisms. ROOT HAIR DEFECTIVE 2 reduced nicotinamide adenine dinucleotide phosphate (RHD2 NADPH) oxidase-derived reactive oxygen species (ROS) stimulate a Ca2+ influx into the cytoplasm that is required for root hair growth in Arabidopsis thaliana. We found that Ca2+, in turn, activated the RHD2 NADPH oxidase to produce ROS at the growing point in the root hair. Together, these components could establish a means of positive feedback regulation that maintains an active growth site in expanding root hair cells. Because the location and stability of growth sites predict the ultimate form of a plant cell, our findings demonstrate how a positive feedback mechanism involving RHD2, ROS, and Ca2+ can determine cell shape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号