首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dissolved organic nitrogen (DON) plays a key role in the N cycle of many ecosystems, as DON availability and biodegradation are important for plant growth, microbial metabolism and N transport in soils. However, biodegradation of DON (defined as the sum of mineralization and microbial immobilization) is only poorly understood. In laboratory incubations, biodegradation of DON and dissolved organic carbon (DOC) from Oi and Oa horizons of spruce, beech and cypress forests ranged from 6 to 72%. Biodegradation of DON and DOC was similar in most samples, and mineralization of DON was more important than microbial immobilization. Nitrate additions (0-10 mg N L−1) never influenced either DON immobilization by microorganisms or mineralization. We conclude that soil microorganisms do not necessarily prefer mineral N over DON for meeting their N demand, and that biodegradation of DON seems to be driven by the microbial demand for C rather than N. Quantifying the dynamics of DON in soils should include consideration of both C and N demands by microbes.  相似文献   

2.
To clarify how litter decomposition processes affect soil dissolved organic carbon (DOC) and soil dissolved nitrogen (DN) dynamics, we conducted a field experiment on leaf litter and collected DOC and DN from the underlying soil in a tropical rainforest in Xishuangbanna, southwest China. Principal components analysis (PCA) showed the first PCA axis (corresponding to degraded litter quantity and quality) explained 61.3% and 71.2% of variation in DOC and DN concentrations, respectively. Stepwise linear regression analysis indicated that litter carbon mass controlled DOC and hemicellulose mass controlled DN concentrations. Litter decomposition was the predominant factor controlling surface-soil DOC and DN dynamics in this tropical rainforest.  相似文献   

3.
Dissolved organic nitrogen (DON) substantially contributes to N leaching from forest ecosystems. However, little is known about the role of DON for N leaching from agricultural soils. Therefore, the aim of our study was to quantify the contribution of DON to total N leaching from four agricultural soils. Concentrations and fluxes of DON and mineral N were monitored at two cropped sites (Plaggic Anthrosols) and two fallow plots (Plaggic Anthrosol and Gleyic Podzol) from November 1999 till May 2001 by means of glass suction plates. The experimental sites were located near the city of Münster, NW Germany. Median DON concentrations in 90 cm depth were 2.3 mg l—1 and 2.0 mg l—1 at the cropped sites and 1.6 mg l—1 and 1.3 mg l—1 at the fallow sites. There was only a slight (Anthrosols) or no (Gleyic Podzol) decrease in median DON concentrations with increasing depth. Total N seepage was between 19 kg N ha—1 yr—1 and 46 kg N ha—1 yr—1 at the fallow sites and 16—159 kg N ha—1 yr—1 at the cropped sites. For the fallow plots, DON seepage contributed 10—21 % to the total N flux (4—5 kg DON ha—1 yr—1), at the cropped sites DON seepage was 6—21 % of the total N flux (6—10 kg DON ha—1 yr—1). Thus, even in highly fertilized agricultural soils, DON is a considerable N carrier in seepage that should be considered in detailed soil N budgets.  相似文献   

4.
Litter is one of the main sources of dissolved organic carbon (DOC) in forest soils and litter decomposition is an important control of carbon storage and DOC dynamics. The aim of our study was to evaluate (i) effects of tree species on DOC production and (ii) relationships between litter decomposition and the amount and quality of DOC. Five different types of leaves and needles were exposed in litterbags at two neighboring forest sites. Within 12 months we sampled the litterbags five times and leached aliquots of field moist litter in the laboratory. In the collected litter percolates we measured DOC concentrations and recorded UV and fluorescence spectra in order to estimate the aromaticity and complexity of the organic molecules. Furthermore, we investigated the biodegradability of DOC from fresh and decomposed litter during 6 weeks incubations. Fresh sycamore maple litter released the largest amounts of DOC reaching about 6.2% of litter C after applying precipitation of 94 mm. We leached 3.9, 1.6, 1.0 and 3.3% carbon from fresh mountain ash, beech, spruce and pine litter, respectively. In the initial phase of litter decomposition significantly decreasing DOC amounts were released with increasing litter mass loss. However, after mass loss exceeds 20% DOC production from needle litter tended to increase. UV and fluorescence spectra of percolates from pine and spruce litter indicated an increasing degree of aromaticity and complexity with increasing mass loss as often described for decomposing litter. However, for deciduous litter the relationship was less obvious. We assume that during litter decomposition the source of produced DOC in coniferous litter tended toward a larger contribution from lignin-derived compounds. Biodegradability of DOC from fresh litter was very high, ranging from 30 to 95% mineralized C. DOC from degraded litter was on average 34% less mineralizable than DOC from fresh litter. Taking into account the large DOC production from decomposed needles we can assume there is an important role for DOC in the accumulation of organic matter in soils during litter decomposition particularly in coniferous forests.  相似文献   

5.
Various biologically mediated processes are involved in the turnover of dissolved organic matter (DOM) in soil; however, relatively little is known about the dynamics of either the microbial community or the individual classes of organic molecules during the decomposition of DOM. We examined the net loss of DOC, the mineralisation of C to CO2 and the degradation of DOC from six different soils by soil microorganisms. We also quantified the changes in the concentrations of protein, carbohydrate and amino acid C during microbial biodegradation. Over a 70-day incubation period at 20°C, the mineralisation of DOC to CO2 was described by a double exponential model with a labile pool (half-life, 3–8 days) and a stable pool (half-life, 0.4–6 years). However, in nearly all cases, the mass loss of DOC exceeded the C released as CO2 with significant deviations from the double exponential model. Comparison of mass DOC loss, CO2 production and microbial cell counts, determined by epifluorescence microscopy, showed that a proportion of the lost DOC mass could be accounted for by microbial assimilation. Carbohydrate and protein C concentrations fluctuated throughout the incubation with a net change of between 3 to 13 and −30 to 22.4% initial DOC, respectively. No amino acid C was detected during the incubation period (level of detection, 0.01 mg C l−1).  相似文献   

6.
Dissolved organic matter (DOM) is often considered the most labile portion of organic matter in soil and to be negligible with respect to the accumulation of soil C. In this short review, we present recent evidence that this view is invalid. The stability of DOM from forest floor horizons, peats, and topsoils against microbial degradation increases with advanced decomposition of the parent organic matter (OM). Aromatic compounds, deriving from lignin, likely are the most stable components of DOM while plant‐derived carbohydrates seem easily degradable. Carbohydrates and N‐rich compounds of microbial origin produced during the degradation of DOM can be relatively stable. Such components contribute much to DOM in the mineral subsoil. Sorption of DOM to soil minerals and (co‐)precipitation with Al (and probably also with Fe), especially of the inherently stable aromatic moieties, result in distinct stabilization. In laboratory incubation experiments, the mean residence time of DOM from the Oa horizon of a Haplic Podzol increased from <30 y in solution to >90 y after sorption to a subsoil. We combined DOM fluxes and mineralization rate constants for DOM sorbed to minerals and a subsoil horizon, and (co‐)precipitated with Al to estimate the potential contribution of DOM to total C in the mineral soil of a Haplic Podzol in Germany. The contribution of roots to DOM was not considered because of lack of data. The DOM‐derived soil C ranges from 20 to 55 Mg ha–1 in the mineral soil, which represents 19%–50% of the total soil C. The variation of the estimate reflects the variation in mineralization rate constants obtained for sorbed and (co‐)precipitated DOM. Nevertheless, the estimates indicate that DOM contributes significantly to the accumulation of stable OM in soil. A more precise estimation of DOM‐derived C in soils requires mineralization rate constants for DOM sorbed to all relevant minerals or (co‐)precipitated with Fe. Additionally, we need information on the contribution of sorption to distinct minerals as well as of (co‐)precipitation with Al and Fe to DOM retention.  相似文献   

7.
A study of the downward movement of 137Cs in an undisturbed forest soil is presented. Seasonal variations and depth profiles of 137Cs activities were measured in seepage water, which is the transport medium for the downward movement of anthropogenic substances in soils. Furthermore the correlation of 137Cs mobilization and production of dissolved organic carbon (DOC) was investigated. Seasonal variations of both 137Cs and DOC fluxes in the seepage water in a depth of 5 cm depth were observed, where the maximum fluxes in the summer months were about one order of magnitude higher than the minimum fluxes in the winter months. 137Cs fluxes are found to be correlated with DOC fluxes with a correlation coefficient of r = 0.63, and both are highly correlated with soil temperature. This indicates that cesium is bound to soil organic material. The production of DOC is controlled by microbial decomposition of soil organic matter and we assume that this holds true for the 137Cs release as well. The actual transport velocity (0.2 ± 0.14 mm/a) of 137Cs (calculated by the weighed mean of 137Cs concentration in the seepage water and the total 137Cs content of the soil) is about one order of magnitude less than the mean transport velocity (1.2 ± 0.3 mm/a) over the past 25 years (calculated from the 137Cs depth profile). It is possible that the transport velocity of 137Cs in undisturbed soils decreases with time as it binds to aged organic material which is less easily decomposable than fresh organic material.  相似文献   

8.
Leaching of dissolved inorganic N (DIN) and dissolved organic N (DON) is a considerable loss pathway in grassland soils. We investigated the white clover (Trifolium repens) contribution to N transport and temporal N dynamics in soil solution under a pure stand of white clover and white clover-ryegrass (Lolium perenne) mixed stand. The temporal white clover contribution to N leaching was analysed by 15N incorporation into DIN and DON in percolating soil solution collected at 25-cm depth following white clover 15N leaf labelling that was applied at different times during the growing season. The white clover contribution to N transport in the soil profile was investigated over 2 years by analysing 15N in DIN and DON in percolating soil solution collected at 25-, 45- and 80-cm depth following 15N leaf labelling of white clover. The results showed that clover was a source of both DIN and DON. White clover autumn deposition contributed the most to N leaching. The leaching of DIN from the white clover in pure stand exceeded that of the mixed stand and confirmed that leaching of DIN is a function of N loadings and N demand. The DON leaching was unaffected by the presence of a companion grass, suggesting that the DON leaching from our grassland derived from the lysis of soil microbial biomass living on recent white clover deposits. White clover contributed to the leaching of DIN and DON at all depths, and the fact that the contents of DI 15N and DO 15N did not change with depth indicated that surplus of DIN and DON, formed in the uppermost soil layer, was transported in the soil profile.  相似文献   

9.
A significant proportion of the total nutrient in soil solution can be bound to organic molecules and these often constitute a major loss from soil to freshwater. Our purpose was to determine whether chemical extractants used for measuring inorganic N could also be used to quantify dissolved organic nitrogen (DON) and carbon (DOC) in soil. In a range of soils, DOC and DON were extracted with either distilled water or 2 M KCl and the amount recovered compared with that present in soil solution recovered by centrifugal-drainage. The recovery of DON and DOC from soil was highly dependent upon the method of extraction. Factors such as soil sampling strategy (number of samples over space and time), sample preparation (sieving and drying), soil storage, extraction temperature, shaking time, and soil-to-extractant volume ratio all significantly affected the amount of DOC and DON extracted from soil. To allow direct comparison between independent studies we therefore propose the introduction of a standardized extraction procedure: Replicate samples of unsieved, field-moist soil extracted as soon as possible after collection with distilled water, 0.5 M K2SO4 or 2 M KCl at a 1:5 w/v ratio for 1 h at 20 °C.  相似文献   

10.
Dissolved organic carbon (DOC) constitutes an important carbon input flux to forested mineral soils. Seepage from mineral subsoils contains only small amounts of DOC because of mineralization, sorption or the formation of particulate organic matter (POM). However, the relation between these processes is largely unknown. Therefore, the objective of this study was to quantify the mineralization of DOC from different depths of forest soils, and to determine degradation rate constants for rapidly and slowly degradable DOC pools. Mineralization of DOC and formation of POM in mineral soil solution from two forested sites in northern Bavaria (Germany) were quantified in a 97 days laboratory incubation experiment. Furthermore, spectroscopic properties such as specific UV absorption and a humification index derived from fluorescence emission spectrometry were measured before and after incubation. DOC in all samples turned out to belong mainly to the stable DOC pool (> 95 %) with half‐lives ranging from years to decades. Spectroscopic properties were not suitable to predict the mineralization of DOC from mineral soils. However, together with data on DOC from the forest floor and long‐term data on DOC concentrations in the field they helped to identify the processes involved in C sequestration in mineral subsoils. Mineralization, formation of POM, and probably sorption seem all to be responsible for maintaining low concentrations of DOC in the upper mineral soil. DOC below the upper mineral soil is highly resistant to mineralization, and thus the further decrease of DOC concentrations in the subsoil as observed under field conditions cannot be attributed to mineralization. Our results suggest that sorption and to some minor extent the formation of POM may be responsible for C sequestration in the subsoil.  相似文献   

11.
Labile ester sulphate in organic matter extracted from podzolic soils   总被引:1,自引:0,他引:1  
Summary We studied the effect of soil pretreatment, molecular-weight fractionation, and K2SO4 addition on the concentration and biochemical stability of ester sulphate in soil organic matter. A labile ester sulphate fraction (8.1 g S g–1 soil) was detected in the organic matter extracted from a sulphate-rich podzolic sandy loam. This fraction was susceptible to loss during soil pretreatment with water and KCl solution and subsequent extraction of organic matter from the soil. The low-sulphate loam was low in labile ester sulphate (0.6 g S g–1 soil) and the pretreatments had little effect. The addition of K2SO4 to the organic matter extracted from the low-sulphate soil resulted in the formation of appreciable amounts of labile ester sulphate. Newly formed ester sulphate tends to be biochemically less stable than indigenous ester sulphate in soil humic polymers and the ester sulphate associated with the low molecular-weight fractoin of soil organic matter appears to be more susceptible to loss by enzymatic hydroylsis. The results were interpreted in terms of steric effect. Ester sulphate groups bound to external surfaces of soil humic polymers may be easily accessible to sulphatase enzyme and thus readily mineralizable during incubation or extraction of soil organic matter at low soluble-sulphate levels. Sulphate groups on inner surfaces of the organic polymers are shielded from the enzyme due to size exclusion and hence more stable.  相似文献   

12.
Extraction of organic N by chemical solutions has been used to assess the amount of available N in soil. We tested the efficiency of several solutions in extracting organic N from tropical, subtropical and temperate soils. A conventional 0.067 M phosphate buffer successfully extracted organic N from all 23 soils examined. High-performance size exclusion chromatograms showed a single peak at about 7,800 Da for all phosphate buffer extracts irrespective of soil types. The peak area correlated with the organic N concentration of extracts. Tropical soils had lower retention of organic N than other soils according to the conventional and sequential extraction with phosphate buffer. Organic N extracted with sulfuric acid was significantly (P < 0.001) correlated with the amount of extracted Fe, suggesting that Fe might play a role in the retention of organic N in soil.  相似文献   

13.
Isotopic fractionation of dissolved organic carbon percolating through the soil is often interpreted as due to microbial transformation. We investigated the potential effects of sorption on the δ13C of dissolved organic C in field and laboratory experiments. We sampled the organic C in soil water at two forested sites and measured sorption with intact mineral soil and individual minerals (dolomite, ferrihydrite, goethite, and quartz). The dissolved organic C was separated into hydrophilic and hydrophobic fractions using a resin approach. The δ13C values of bulk soils, alkaline‐extractable organic C, and dissolved organic C and its fractions were measured. Hydrophilic and hydrophobic fractions in forest floor seepage water were characterized by 13C‐NMR spectroscopy. At both sites, δ13C of dissolved organic C increased with increasing depth, suggesting that decomposition contributes to the loss of the dissolved organic C. However, there was an enrichment of hydrophilic organic C in the soil solution as the water moved down the soil. The δ13C values of hydrophilic fractions were less negative than those of hydrophobic fractions. The smaller δ13C in the hydrophobic fraction was due to the large contribution of compounds derived from lignin that are depleted in 13C. As the isotope composition of both fractions of dissolved organic C did not change throughout the profile, changes in δ13C of total organic C reflected changes in the relative proportions of its hydrophilic and hydrophobic fractions. The sorption experiments with minerals and soil cores gave similar results. When dissolved organic C came into contact with mineral material, the δ13C of that remaining in solution increased due to preferential sorption of the 13C‐depleted hydrophobic fractions. Moreover, the soils released hydrophilic organic C with large δ13C values, increasing the δ13C of organic C in effluents from soil compared with that in the inflow. Thus, selective sorption of organic C fractions changes δ13C in a way that mimics metabolic transformation and decomposition.  相似文献   

14.
The water-soluble organic C in composted manure contains a portion of labile C which can stimulate soil microbial activity. The objective of this experiment was to evaluate the effects of water-soluble organic C extracted from composted dairy manure on C mineralization in soil with different textures. Three soils with textures varying from 3 to 54% clay were amended with 0 to 80 mg water-soluble organic C kg–1 soil extracted from a composted dairy manure and incubated for 16 weeks at 23°C. The total amount of C mineralized was greater than the amount of C added in the three soils. Differences in mineralizable C with and without added water-soluble organic C were approximately 13–16 times, 4.8–8 times, and 7.5–8 times greater than the amount of C added to clay, loam, and sand soils, respectively. The results of this experiment suggest that immediately following composted manure applications, C mineralization rates increase, and that most of the C mineralized comes mainly from the indigenous soil organic C pool.CLBRR contribution No. 94-71  相似文献   

15.
The acid-insoluble organic P in hayed-off phalaris was extracted at pH 7.0 using a detergent, and a macromolecular fraction (G50 phosphorus) was separated by gel filtration. Approximate amounts of nucleic acid P in this fraction were calculated from the purine base content of the fraction. Changes in the above organic P fractions were then monitored during plant decomposition. Acid-insoluble P increased as a result of decomposition whereas changes in G50 P and nucleic acid P were less pronounced.The neutral detergent extracted only a portion of the soil organic P from unimproved and improved pasture soils. The higher total organic P content of the improved soil was reflected in the G50 P content of the extract but not in its nucleic acid content.Microbial assimilation of the G50 P isolated from undecomposed and decomposed phalaris was rapid and virtually complete, and so most of the organic P in this fraction could not be expected to accumulate in soil. The assimilation of that portion of the G50 P which was eluted off ion exchange cellulose was much slower for soil samples than plant samples. The unassimilated portion from the soil samples was found to be free of nucleic acid bases and warrants further chemical examination.  相似文献   

16.
For elucidating the atmospheric deposition contribution of dissolved organic nitrogen (DON) to the total dissolved nitrogen (TDN) deposition rate, dissolved inorganic nitrogen (DIN: NH4 + + NO3 ) and DON deposition rates were annually and monthly estimated during 4 and half-yr monitoring period in an experimental multi-farm under intensive agricultural activities of N fertilizer use and animal husbandry in Central Japan. Annual NH4 +, DON and NO3 deposition rates in bulk and wet deposition data accounted for 48%, 32% and 20% of TDN deposition, respectively, which indicated that this area is strongly affected by the intensive agricultural activities. The DIN and DON deposition rates were respectively estimated at 21.6 and 10.1 kg N ha?1 yr?1, which ranked high in a worldwide regional data set. Consequently, this area has been exposed to a large amount of N deposition including DON with N fertilizer input. The difference between bulk and wet deposition rates (NH4 + and DON) is one of important factors controlling the N deposition in this area. Monthly DON deposition showed positive correlations with DIN and NH4 + deposition rates, respectively, with a significant linear regression curve. The linear regression curve of our monthly data (n = 127) indicates the same trend as the worldwide annual data set (n = 31).  相似文献   

17.
This study aimed to gain insight into the generation and fate of dissolved organic carbon (DOC) in organic layers. In a Free Air CO2 Enrichment Experiment at the alpine treeline, we estimated the contribution of 13C-depleted recent plant C to DOC of mor-type organic layers. In an additional laboratory soil column study with 40 leaching cycles, we traced the fate of 13C-labelled litter-DOC (22 and 45 mg l−1) in intact Oa horizons at 2 and 15 °C. Results of the field study showed that DOC in the Oa horizon at 5 cm depth contained only 20 ± 3% of less than six-year-old C, indicating minor contributions of throughfall, root exudates, and fresh litter to leached DOC. In the soil column experiment, there was a sustained DOC leaching from native soil organic matter. Less than 10% of totally added litter-DOC was leached despite a rapid breakthrough of a bromide tracer (50 ± 7% within two days). Biodegradation contributed only partly to the DOC removal with 18-30% of added litter-DOC being mineralized in the Oa horizons at 2 and 15 °C, respectively. This was substantially less than the potential 70%-biodegradability of the litter-DOC itself, which indicates a stabilization of litter-DOC in the Oa horizon. In summary, our results give evidence on an apparent ‘exchange’ of DOC in thick organic layers with litter-DOC being retained and ‘replaced’ by ‘older’ DOC leached from the large pool of indigenous soil organic matter.  相似文献   

18.
ABSTRACT

The Brazilian dry forest occupies an area of about 1 million km2 approximately 46% of which has been deforested. Many studies have been done on the effects of this on productivity and soil chemical attributes. However, little is known about soil enzymatic activity, which is sensitive to environmental changes. The objective of this study was to evaluate the effects of deforestation using different levels of human disturbance on soil enzyme activities, organic carbon content, microbial biomass, and microbial community. We studied areas covered with forest (TDF), old grass (OG), or new grass (NG). Soils from NG had increased microorganisms, which restored important processes related to carbon, sulfur, and nitrogen cycling, so that they resembled those in the forested area. The results of this study showed that the conversion of forest to pasture with a high level of human disturbance could decrease the activities of β-glucosidase, urease, alkaline phosphatase, and fluorescein diacetate in the soil by up to 87%, 66%, 62%, and 58%, respectively. These findings suggest that human disturbance can cause substantial changes in the enzymatic activity and microbial community in the soil. We suggest that maintaining grass pasture with low human disturbance should have fewer impacts on soil quality.  相似文献   

19.
20.
Microbial biomass and mineralization of atrazine [2-chloro-4(ethylamino)-6(isopropylamino)s-triazine] and 2,4-D (2,4-dichlorphenoxyacetic acid) were examined in the top 10 cm of riparian pasture soils and in the litter layer and top 10 cm of mineral soils of riparian forest ecosystems. The riparian forest litter had higher levels of active and total fungal biomass than forest or pasture mineral soils in winter, spring, and fall. Active bacterial biomass was higher in forest litter than in forest and pasture mineral soils in spring and autumn, and higher in forest mineral soils than in pasture soils in summer. Total bacterial biomass was higher in forest mineral soils than in pasture soils during all seasons. In spring, it was also higher in forest litter than in pasture soils. Atrazie and 2,4-D mineralization in pasture soils was exceeded by that in forest litter in spring and autumn and by that in forest mineral soils in summer and autumn. There was no correlation between either active or total fungal and bacterial biomass with pesticide degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号