首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The continuous airflow enclosures with an acid trap method was widely used to investigate ammonia (NH3) volatilization in field; however, it could be time-consuming for the estimation of NH3 volatilization in field with the application of controlled-release urea (CRU) because NH3 volatilization with CRU application could occur during the entire crop growth period. An NH3 volatilization estimation method based on the modified Jayaweera–Mikkelsen (J-M) model combined with the Sherlock–Goh model was used to simulate NH3 volatilization in a paddy field after 255 kg N ha?1 as CRU (polymer-coated urea with the concentration of 43% nitrogen, 100% for basal) and urea (70% for basal, 30% for topdressing) during the rice growth period including flooded and non-flooded periods in Wuxi, China. Results indicated that NH3 volatilization can be modeled with the proposed measure because no significant difference (P< 0.001) was observed between the simulated values and the observed values; the correlation coefficient (r2) was 0.615 for CRU and 0.840 for urea during the flooded period, and 0.991 for CRU and 0.946 for urea during the non-flooded period. Compared with urea, NH3 volatilization was minimized by 43.2% with the application of CRU based on simulated value within the rice growth period, which was 40.40 kg N ha?1 for CRU and 78.62 kg N ha?1 for urea during the flooded period, and 5.52 kg N ha?1 for CRU and 2.33 kg N ha?1 for urea during the non-flooded period. Therefore, CRU could be a promising nitrogen fertilizer to prevent NH3 losses in the rice paddies at the investigated area.  相似文献   

2.
Controlled-release urea (CRU) and its placement method in rice production were investigated during 2007 and 2008 seasons. Controlled-release urea was applied at 62.5, 125, and 187.5 kg nitrogen (N) ha?1, and the urea was 187.5 kg N ha?1. All the CRU treatments were applied to the nursery beds once, and they were brought into the paddy field during transplanting, while the urea treatment was split into three applications from the plowing to the harvest. The results showed that rice seedlings with CRUs germinated and grow well and there was no salt damage at the nursery stage. The CRU treatment with 125 kg N ha?1 had 33% less N than urea treatment (187.50 kg N ha?1), but it produced significantly higher grain and straw yields, higher total N uptake and total apparent N uptake efficiency. In addition, all the CRU treatments effectively decreased floodwater ammonium (NH4 +)-N and nitrate (NO3 ?)-N concentrations, pH, and N runoff.  相似文献   

3.
Ammonia fluxes from application of anaerobically-digested slurry (ADS) and chemical fertilizer (CF) to flooded forage rice (Oryza sativa L.) in Japan were measured using a dynamic flow-through chamber method in lysimeters. The CF was applied at a rate of 300 N ha?1 (three times) as ammoniacal-N fertilizer, and the ADS was applied to the lysimeters at total rates equivalent to 75, 100 and 150 kg N ha?1, by broadcasting uniformly into the floodwater at three or six times (equal splits) between 17th June and 17th November, 2005. The emission fluxes for the first 2 days after application were very high from ADS, the highest values being 679 compared with a maximum of 156 mg N m?2 d?1 from CF. Most (61–93%) of the ammonia loss occurred during the first 5 days after each application of fertilizer. The total N loss as ammonia from ADS (29.6–51.7%) was much higher than from CF (12.2%). The highest fluxes were observed in August (2005) when air temperature was highest. More ammonia was lost from the ADS applied at the early stages (i.e. root taking, tiller stages) than at later stages (i.e. elongation, fruiting stages) of rice growth.  相似文献   

4.
Biochar application can reduce global warming via carbon (C) sequestration in soils. However, there are few studies investigating its effects on greenhouse gases in rice (Oryza sativa L.) paddy fields throughout the year. In this study, a year-round field experiment was performed in rice paddy fields to investigate the effects of biochar application on methane (CH4) and nitrous oxide (N2O) emissions and C budget. The study was conducted on three rice paddy fields in Ehime prefecture, Japan, for 2 years. Control (Co) and biochar (B) treatments, in which 2-cm size bamboo biochar (2 Mg ha?1) was applied, were set up in the first year. CH4 and N2O emissions and heterotrophic respiration (Rh) were measured using a closed-chamber method. In the fallow season, the mean N2O emission during the experimental period was significantly lower in B (67 g N ha?1) than Co (147 g N ha?1). However, the mean CH4 emission was slightly higher in B (2.3 kg C ha?1) than Co (1.2 kg C ha?1) in fallow season. The water-filled pore space increased more during the fallow season in B than Co. In B, soil was reduced more than in Co due to increasing soil moisture, which decreased N2O and increased CH4 emissions in the fallow season. In the rice-growing season, the mean N2O emission tended to be lower in B (?104 g N ha?1) than Co (?13 g N ha?1), while mean CH4 emission was similar between B (183 kg C ha?1) and Co (173 kg C ha?1). Due to the C release from applied biochar and soil organic C in the first year, Rh in B was higher than that in Co. The net greenhouse gas emission for 2 years considering biochar C, plant residue C, CH4 and N2O emissions, and Rh was lower in B (5.53 Mg CO2eq ha?1) than Co (11.1 Mg CO2eq ha?1). Biochar application worked for C accumulation, increasing plant residue C input, and mitigating N2O emission by improving soil environmental conditions. This suggests that bamboo biochar application in paddy fields could aid in mitigating global warming.  相似文献   

5.
A field study was conducted in the sub-humid tropical region of India to examine the effect of different nitrogen (N) management strategies on nitrate leaching, nitrous oxide (N2O) emission and N use efficiency in aerobic rice. Treatments were: control (no N), 120 kg N ha?1 applied as prilled urea (PU) in conventional method, 120 kg N ha?1 applied as neem coated urea (NCU) in conventional method, N applied as PU on the basis of leaf colour chart (LCC) reading, N applied as NCU on the basis of LCC reading, and 120 kg N ha?1 applied as PU and farm yard manure (FYM) in 1:1 ratio. Results showed that 3.4–16.1 kg NO3-N ha?1 was leached below 45 cm depth and 0.61–1.12 kg N2O-N ha?1 was emitted from aerobic rice during the growing season. NCU when applied conventionally reduced nitrate-nitrogen (NO3-N) leaching and N2O emission by 18.6% and 21.4%, respectively However when applied on the basis of LCC reading NCU reduced NO3-N leaching by 39.8% as compared to PU applied in conventional method. NCU when applied on the basis of LCC reading synchronized N supply with demand and reduced N loss, which resulted in higher yield and N use efficiency.  相似文献   

6.
ABSTRACT

Reducing nitrogen (N) leaching from croplands is important to protect environmental quality and improve recovery of applied N. To contribute to this broader goal of nutrient management, a simple pot experiment evaluated the potential differences among urea (250 kg N ha?1), urea+compost (125 kg N ha?1 from urea + 125 kg N from 8 Mg ha?1 of compost), compost (250 kg N from 16 Mg ha?1 of compost) and a zero control (Ctrl), in terms of their effects on apparent N recovery (ANR), mineral N (Nmin) leaching and soil retention of applied N. Cabbage (Brassica oleraceae L.) and corn (Zea mays L.) were grown in rotation where compost application was not repeated in the 2nd year. Nmin leaching was monitored by adding 83 mm and 62 mm of water fortnightly to cabbage and corn crops, respectively for a total of 28 times in a two-year period. Combined (urea+compost) and independent (compost) treatment application retained 1.5 to 2 times higher N, and lowered 2.1 to 4.6 times Nmin leaching, relative to independent (urea) application. We conclude that farmers’ practice of fertilization that has an inherent problem of N leaching for high rainfall areas in Taiwan could be improved by proper compost and urea combinations within agronomically recommended rates of N application.  相似文献   

7.
Denitrification has long been considered a major mechanism of N loss when N fertilizer is applied to flooded rice paddies. However, the direct determination of denitrification in soils is almost impossible because of the high atmospheric background of dinitrogen (N2). Dissolved N2 in a small water sample can be rapidly and precisely measured through membrane inlet mass spectrometry (MIMS). This study is the first to directly measure N2 flux through MIMS in flooded rice paddy plots that received different amounts of urea. Ammonia (NH3) volatilization was measured simultaneously to verify whether NH3 volatilization and denitrification are complementary loss mechanisms. The average cumulative N2–N loss measured by MIMS 21 days after fertilization was 4.7?±?1.7 % of the applied N, which was within the range of the reported values obtained by cumulative recovery of (N2 + N2O)–15N and 15N-balance technique. Underestimation or overestimation of denitrification can be prevented in MIMS given that N2 can be measured directly without 15N-labeled fertilizer. A good positive correlation was found between the dissolved in situ N2 concentrations of floodwater and the denitrification rates of intact soil cores. Urea incorporation reduced NH3 volatilization unlike surface broadcasting. However, urea incorporation significantly increased cumulative N2–N loss during the 21 days after fertilization. Correlation analysis showed that nitrate (NO3 ?–N) concentration in floodwater could be the primary restricting factor for soil denitrification in the experimental field. Results suggest that MIMS is a promising technique for the measurement of denitrification in a flooded rice paddy.  相似文献   

8.
Applications of dairy farm effluents to land may lead to ammonia (NH3) volatilization and nitrous oxide (N2O) emissions. Nitrogen (N) transformation process inhibitors, such as urease inhibitors (UIs) and nitrification inhibitors (NIs), have been used to reduce NH3 and N2O losses derived from agricultural N sources. The objective of this study was to examine the effects of amending dairy effluents with UI (N-(n-butyl) thiophosphoric triamide (NBTPT)) and NI (dicyandiamide (DCD)) on NH3 and N2O emissions. Treatments included either fresh or stored manure and either fresh or stored farm dairy effluent (FDE), with and without NBTPT (0.25 g kg?1 N) or DCD (10 kg ha?1), applied to a pasture on a free-draining volcanic parent material soil. The nutrient loading rate of FDE and manure, which had different dry matter contents (about 2 and 11 %, respectively) was 100 kg N ha?1. Application of manure and FDE led to NH3 volatilization (15, 1, 17 and 0.4 % of applied N in fresh manure, fresh FDE, stored manure and stored FDE, respectively). With UI (NBTPT), NH3 volatilization from fresh manure was significantly (P?<?0.05) decreased to 8 % from 15 % of applied N, but the UI did not significantly reduce NH3 volatilization from fresh FDE. The N2O emission factors (amount of N2O–N emitted as a percentage of applied N) for fresh manure, fresh FDE and stored FDE were 0.13?±?0.02, 0.14?±?0.03 and 0.03?±?0.01 %, respectively. The NI (DCD) was effective in decreasing N2O emissions from stored FDE, fresh FDE and fresh manure by 90, 51 and 46 % (P?<?0.05), respectively. All types of effluent increased pasture production over the first 21 days after application (P?<?0.05). The addition of DCD resulted in an increase in pasture production at first harvest on day 21 (P?<?0.05). This study illustrates that UIs and NIs can be effective in mitigating NH3 and N2O emissions from land-applied dairy effluents.  相似文献   

9.
Agricultural soil is a major source of nitrous oxide (N2O), and the application of nitrogen and soil drainage are important factors affecting N2O emissions. This study tested the use of polymer-coated urea (PCU) and polymer-coated urea with the nitrification inhibitor dicyandiamide (PCUD) as potential mitigation options for N2O emissions in an imperfectly drained, upland converted paddy field. Fluxes of N2O and methane (CH4), ammonia oxidation potential, and ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) abundances were monitored after the application of PCU, PCUD, and urea to upland soil. The results showed that urea application increased the ammonia oxidation potential and AOB and AOA abundances; however, the increase rate of AOB (4.6 times) was much greater than that of AOA (1.8 times). These results suggested that both AOB and AOA contributed to ammonia oxidation after fertilizer application, but the response of AOB was greater than AOA. Although PCU and PCUD had lower ammonia oxidation potential compared to urea treatment, they were not effective in reducing N2O emissions. Large episodic N2O emissions (up to 1.59 kg N ha?1 day?1) were observed following heavy rainfall 2 months after basal fertilizer application. The episodic N2O emissions accounted for 55–80 % of total N2O emissions over the entire monitoring period. The episodic N2O emissions following heavy rainfall would be a major source of N2O in poorly drained agricultural fields. Cumulative CH4 emissions ranged from ?0.017 to ?0.07 kg CH4 ha?1, and fertilizer and nitrification inhibitor application did not affect CH4 oxidation.  相似文献   

10.
Acetylene blockage was evaluated as a method for measuring losses of N2O + N2 from two Denchworth series clay soils. The denitrification potential in anaerobic, dark incubations at 20°C with nitrate (equivalent to 100 kg N ha?1 0–20 cm depth), maximum water holding capacity, and acetylene (1%), was equivalent to 32 ± 11 and 39 ± 6 kg N ha?1 per day for the two 0–20 cm soils and was positively correlated with carbon content (r= 0.98). After 4 days N2O was reduced to N2 in the presence of C2H2. In April 1980 following irrigation (24 mm) and applications of ammonium nitrate (70 kg N ha?1) and acetylene, the mean nitrous oxide flux from soil under permanent grass was 0.05 ± 0.01 kg N2O-N ha?1 per day for 8 days. In June 1980, the losses of nitrogen from cultivated soils under winter wheat after irrigation (36 mm) and acetylene treatment were 0.006 ± 0.002 and 0.04–0.07 ± 0.01 kg N ha?1 per day respectively before and after fertilizer application (70 kg N ha?1). The nitrous oxide flux in the presence of acetylene decreased briefly, indicating that nitrification was rate determining in drying soil.  相似文献   

11.
太湖地区稻麦轮作条件下施用包膜尿素的氮素循环和损失   总被引:8,自引:0,他引:8  
A field experiment was conducted to investigate the fate of ^15N-labeled urea and its residual effect under the winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) rotation system on the North China Plain. Compared to a conventional application rate of 360 kg N ha^-1 (N360), a reduced rate of 120 kg N ha^-1 (N120) led to a significant increase (P 〈 0.05) in wheat yield and no significant differences were found for maize. However, in the 0-100 cm soil profile at harvest, compared with N360, N120 led to significant decreases (P 〈 0.05) of percent residual N and percent unaccounted-for N, which possibly reflected losses from the managed system. Of the residual fertilizer N in the soil profile, 25.6%-44.7% and 20.7%-38.2% for N120 and N360, respectively, were in the organic N pool, whereas 0.3%-3.0% and 11.2%-24.4%, correspondingly, were in the nitrate pool, indicating a higher potential for leaching loss associated with application at the conventional rate. Recovery of residual N in the soil profile by succeeding crops was less than 7.5% of the applied N. For N120, total soil N balance was negative; however, there was still considerable mineral N (NH4^+-N and NO3^--N) in the soil profile after harvest. Therefore, N120 could be considered ngronomically acceptable in the short run, but for long-term sustainability, the N rate should be recommended based on a soil mineral N test and a plant tissue nitrate test to maintain the soil fertility.  相似文献   

12.
Relative control of soil moisture [30, 60, and 80 percent water-holding capacity (WHC)] on nitrous oxide (N2O) emissions from Fargo-Ryan soil, treated with urea at 0, 150, and 250 kg N ha?1 with and without nitrapyrin [2-chloro-(6-trichloromethyl) pyridine] (NP), was measured under laboratory condition for 140 days. Soil N2O emissions significantly increased with increasing nitrogen (N) rates and WHC levels. Urea applied at 250 kg N ha?1 produced the greatest cumulative N2O emissions and averaged 560, 3919, and 15894 µg kg?1 at 30, 60, and 80 percent WHC, respectively. At WHC ≤ 60 percent, addition of NP to urea significantly reduced N2O losses by 2.6- to 4.8-fold. Additions of NP to urea reduced N2O emission at rates similar to the control (0 N) until 48 days for 30 percent WHC and 35 days for 60 and 80 percent WHC. These results can help devise urea-N fertilizer management strategies in reducing N2O emissions from silty-clay soils.  相似文献   

13.
The agronomic benefits of manure application to increase rice production have been recognized, but the impact on global change has always been a controversial topic. This study was designed to determine the separate and combined effects of cattle manure (CM) and nitrogen (N) fertilizer on rice yield, N efficiency, and methane (CH4) emissions from rice cultivation. A pot-scale experiment was conducted with four levels (0, 60, 120, and 180 kg ha?1) of N from urea and two levels (120 and 180 kg ha?1) of N from combination of urea and CM (Urea:CM = 60:60 and 60:120). Rice yield and physiological N efficiency were obtained using agronomic measurements. To determine the global warming potential (GWP) of each treatment, CH4 emissions were measured throughout the rice-growing period. Grain yield (GY) was not significantly different between the treatments of 120 and 180 kg ha?1 regardless of N source. However, both rates of CM treatments enhanced CH4 emission and differences in GWP were significant. In conclusion, urea applied at 120 kg N ha?1 was optimal for rice productivity and environmental impact (EI) despite CM played a crucial role in improving the N efficiency and total N in the soil after harvest.  相似文献   

14.
The combined seeding and cropping of non-leguminous and leguminous cover crops during the cold fallow season is recommended as an important agronomic practice to improve total biomass productivity and soil fertility in mono-rice (Oryza sativa L.) cultivation system. However, application of plant residues as green manure can increase methane (CH4) emission during rice cultivation and affect rice quality and productivity, but its effects are not well examined. In this field study, the mixture of barley (Hordeum vulgare R.) and hairy vetch (Vicia villosa R., hereafter, vetch) seeds with 75 % recommended dose (RD 140 kg ha?1) and 25 % RD (90 kg ha?1), respectively, were seeded after rice harvesting in late November, 2010, and harvested before rice transplanting in early June 2011. Total aboveground biomass was 36 Mg ha?1 (fresh weight basis with 68 % moisture content), which was composed with 12 Mg ha?1 of barley and 24 Mg ha?1 of vetch. In order to determine the optimum recycling ratio of biomass application that can minimize CH4 emission without affecting rice productivity, different recycling ratios of 0, 25, 50, 75, and 100 % of the total harvested biomass were incorporated as green manure 1 week before rice transplanting in a typical temperate paddy soil. The same rates of chemical fertilizers (N–P2O5–K2O?=?90–45–58 kg ha?1) were applied in all treatments. Daily mean CH4 emission rates and total CH4 fluxes were significantly (p?<?0.05) increased with increasing application rates of cover crop biomass. Rice productivity also significantly (p?<?0.05) increased with biomass application, but the highest grain yield (53 % increase over the control) was observed for 25 % recycling. However, grain quality significantly (p?<?0.05) decreased with increasing cover crop application rates above 25 % recycling ratio, mainly due to extended vegetative growth periods of rice plants. Total CH4 flux per unit grain yield, an indicator used to simultaneously compare CH4 emission impact with rice production, was not statistically different between 25 % biomass recycling ratio and the control but significantly increased with increasing application rates. Conclusively, the biomass recycling ratio at 25 % of combined barley and vetch cover crops as green manure might be suitable to sustain rice productivity without increasing CH4 emission impact in mono-rice cultivation system.  相似文献   

15.
Abstract

Field experiments were designed to quantify N2O emissions from corn fields after the application of different types of nitrogen fertilizers. Plots were established in South Kalimantan, Indonesia, and given either urea (200 kg ha?1), urea (170 kg ha?1) + dicyandiamide ([DCD] 20 kg ha?1) or controlled-release fertilizer LP-30 (214 kg ha?1) prior to the plantation of corn seeds (variety BISI 2). Each fertilizer treatment was equivalent to 90 kg N ha?1. Plots without chemical N fertilizer were also prepared as a control. The field was designed to have three replicates for each treatment with a randomized block design. Nitrous oxide fluxes were measured at 4, 8, 12, 21, 31, 41, 51, 72 and 92 days after fertilizer application (DAFA). Total N2O emission was the highest from the urea plots, followed by the LP-30 plots. The emissions from the urea + DCD plots did not differ from those from the control plots. The N2O emission from the urea + DCD plots was approximately one thirtieth of that from the urea treatment. However, fertilizer type had no effect on grain yield. Thus, the use of urea + DCD is considered to be the best mitigation option among the tested fertilizer applications for N2O emission from corn fields in Kalimantan, Indonesia.  相似文献   

16.
Cereal grain and nitrogen (N) fertilizer prices have varied greatly in recent years. The aim of this study was to determine the optimum dose of N fertilizer needed to maximize revenues of soft red winter wheat in Alava (northern Spain). Economically optimum rates of N application (Nyield) ranged from 142 to 174 kg N ha?1 depending on the price of both N fertilizer and wheat. Growers received an extra income of 0.006 [euro] kg?1 if the grain protein content was greater than 12.5%, with the minimum required N dose to obtain this value (Nprot) being 176 kg ha?1. The extra amount of N fertilizer required over Nyield to reach Nprot ranged from 2 to 34 kg N ha?1, and the extra benefits associated varied from 24 to 36 [euro] ha?1.  相似文献   

17.
Agricultural soils are a primary source of anthropogenic trace gas emissions, and the subtropics contribute greatly, particularly since 51% of world soils are in these climate zones. A field experiment was carried out in an ephemeral wetland in central Zimbabwe in order to determine the effect of cattle manure (1.36% N) and mineral N fertilizer (ammonium nitrate, 34.5% N) application on N2O fluxes from soil. Combined applications of 0 kg N fertilizer + 0 Mg cattle manure ha?1 (control), 100 kg N fertilizer + 15 Mg manure ha?1 and 200 kg N fertilizer + 30 Mg manure ha?1 constituted the three treatments arranged in a randomized complete block design with four replications. Tomato and rape crops were grown in rotation over a period of two seasons. Emissions of N2O were sampled using the static chamber technique. Increasing N fertilizer and manure application rates from low to high rates increased the N2O fluxes by 37–106%. When low and high rates were applied to the tomato and rape crops, 0.51%, 0.40%, and 0.93%, 0.64% of applied N was lost as N2O, respectively. This implies that rape production has a greater N2O emitting potential than the production of tomatoes in wetlands.  相似文献   

18.
Abstract

The dramatic increases in rice productivity and cultivation intensity through the implementation of green revolution (GR) technology using high yielding varieties (HYVs) of rice and chemical fertilizers were not long lasting in Indonesia. The stagnancy of rice productivity in recent years without any scientific reasons presents a challenge for agronomists and soil scientists in Indonesia. This study describes the effects of long-term intensive rice cultivation on the change in available silica (Si) in sawah soil. The term sawah refers to a leveled and bounded rice field with an inlet and an outlet for irrigation and drainage. Soil samples collected by Kawaguchi and Kyuma in 1970 and new samples taken in 2003 from the same sites or sites close to the 1970 sites were analyzed and compared. From 1970 to 2003, the average content of available Si decreased from 1,512 ± 634 kg SiO2 ha?1 to 1,230 ± 556 kg SiO2 ha?1 and from 6,676 ± 3,569 kg SiO2 ha?1 to 5,894 ± 3,372 kg SiO2 ha?1 in the 0–20 cm and 0–100 cm soil layers, respectively. Cultivation intensity differences between seedfarms planted with rice three times a year and non-seedfarms rotating rice and upland crops appeared to affect the changing rates of available Si within the study period. In the 0–20 cm soil layer, the average content of available Si decreased from 1,646 ± 581 kg SiO2 ha?1 to 1,283 ± 533 kg SiO2 ha?1 (?22%) and from 1,440 ± 645 kg SiO2 ha?1 to 1,202 ± 563 kg SiO2 ha?1 (?17%) in seedfarms and non-seedfarms, respectively. Differences in topographical position also influenced the decreasing rate of available Si in this study. Using similar management practices and cultivation intensity, upland sampling sites lost more Si compared with lowland sites. Planted rice under a rain fed system with no Si addition from rain water in an upland position may be a reason for the higher loss of Si, particularly in non-seedfarms. The Si supply from irrigation water might have contributed to the slowdown in the decreasing rate of available Si in Java sawah soils.  相似文献   

19.
Nitrous oxide emission (N2O) from applied fertilizer across the different agricultural landscapes especially those of rainfed area is extremely variable (both spatially and temporally), thus posing the greatest challenge to researchers, modelers, and policy makers to accurately predict N2O emissions. Nitrous oxide emissions from a rainfed, maize-planted, black soil (Udic Mollisols) were monitored in the Harbin State Key Agroecological Experimental Station (Harbin, Heilongjiang Province, China). The four treatments were: a bare soil amended with no N (C0) or with 225?kg?N ha?1 (CN), and maize (Zea mays L.)-planted soils fertilized with no N (P0) or with 225?kg?N ha?1 (PN). Nitrous oxide emissions significantly (P?<?0.05) increased from 141?±?5?g N2O-N?ha?1 (C0) to 570?±?33?g N2O-N?ha?1 (CN) in unplanted soil, and from 209?±?29?g N2O-N?ha?1 (P0) to 884?±?45?g N2O-N?ha?1 (PN) in planted soil. Approximately 75?% of N2O emissions were from fertilizer N applied and the emission factor (EF) of applied fertilizer N as N2O in unplanted and planted soils was 0.19 and 0.30?%, respectively. The presence of maize crop significantly (P?<?0.05) increased the N2O emission by 55?% in the N-fertilized soil but not in the N-unfertilized soil. There was a significant (P?<?0.05) interaction effect of fertilization?×?maize on N2O emissions. Nitrous oxide fluxes were significantly affected by soil moisture and soil temperature (P?<?0.05), with the temperature sensitivity of 1.73–2.24, which together explained 62–76?% of seasonal variation in N2O fluxes. Our results demonstrated that N2O emissions from rainfed arable black soils in Northeast China primarily depended on the application of fertilizer N; however, the EF of fertilizer N as N2O was low, probably due to low precipitation and soil moisture.  相似文献   

20.
ABSTRACT

Identification of the combination of tillage and N fertilization practices that reduce agricultural Nitrous oxide (N2O) emissions while maintaining productivity is strongly required in the Indian subcontinent. This study investigated the effects of tillage in combination with different levels of nitrogen fertilizer on N2O emissions from a rice paddy for two consecutive seasons (2013–2014 and 2014–2015). The experiment consisted of two tillage practices, i.e., conventional (CT) and reduced tillage (RT), and four levels of nitrogen fertilizer, i.e., 0 kg N ha–1 (F1), 45 kg N ha–1 (F2), 60 kg N ha–1 (F3) and 75 kg N ha–1 (F4). Both tillage and fertilizer rate significantly affected cumulative N2O emissions (p < 0.05). Fertilizer at 45 and 60 kg N ha–1 in RT resulted in higher N2O emissions over than did the CT. Compared with the recommended level of 60 kg N ha?1, a 25% reduction in the fertilizer to 45 kg N ha?1 in both CT and RT increased nitrogen use efficiency (NUE) and maintained grain yield, resulting in the lowest yield-scaled N2O-N emission. The application of 45 kg N ha?1 reduced the cumulative emission by 6.08% and 6% in CT and RT practices, respectively, without compromising productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号