首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Energy recovery from a crossflow ultrafiltration (UF) membraneunit employed in order to improve the performance of an anaerobic contact digester for the treatment of brewery wastewater was assessed. The performance of the pilot-scale anaerobic UF membrane system was studied for over 15 months. At steady-state conditions, an organic loading rate of 28.5 kg COD m-3 d-1, a hydraulic retention time of 4.2 days and overall COD and BOD removal efficiencies of 99% and almost 100% were achieved, respectively. Percent methane in biogas was found to be in a range of 67–79% with the corresponding methane yield of 0.28–0.35 m3 CH4 kg-1 CODremoved. The potential energy recovery from the system treating brewery wastewater at an OLR of 28.5 kg COD m-3 d-1 was 87 MJ d-1 which would enable to maintain all energy requirements of the feed pump, mixing and heating of the reactor contents. In addition to this, 71% of the energy requirement for recirculating the reactor content through the membranes would also be recovered.  相似文献   

2.
Biological treatment systems such as biofilters offer a potential alternative to the existing physicochemical techniques for the removal of volatile organic compounds from gaseous emissions. In this experimental work, continuous phase biofiltration of xylene vapors were performed in a laboratory scale compost biofilter that was inoculated with a xylene-acclimatized consortium. The performance was assessed by continuously monitoring the removal efficiency (RE) and elimination capacity (EC) of the biofilter at loading rates varying between 2–220 g?m?3?h?1. The steady-state removal efficiencies were maintained between 60% and 90% up to a loading rate of 80 g?m?3?h?1. The removal efficiency decreased significantly at loading rates higher than 100 g?m?3?h?1. The pressure drop values were consistently less and insignificant in affecting the performance of the system. The present study also focuses in evaluating the stability of biofilter during shut down, restart, and shock-loading operations. An immediate restoration of biological activity after few days of starvation indicated their capability to handle discontinuous treatment situations which is more common to industrial biofilters. The sensitiveness of the biofilm to withstand shock loads was tested by abruptly increasing/decreasing the loading rates between 9–55 g?m?3?h?1, where, removal efficiencies between 60–90% were achieved. These results prove the resilience of the biomass and the stability of the compost biofilter. Anew, results from kinetic analysis reveal that, steady-state xylene removal in the biofilter can be adequately represented by Michaelis–Menten type kinetics, and the kinetic constants namely, ECmax (120.4 g?m?3?h?1) and K s (2.21 g?m?3) were obtained.  相似文献   

3.
The biofilter system containing tire-derived rubber particle (TDRP) filter media was utilized to treat the odorous gas contaminant, hydrogen sulfide, in consideration of the economic advantage of reusing discarded tire materials and the high potential of TDRP media for biofilm attachment. The pilot-scale system having 0.38 m3 of bed volume operated with synthetic hydrogen sulfide gas on continuous basis from a range of 0.34 to 1.15 m3/min. This bioreactor system achieved over 94% removal efficiency at 20?C90 ppm of inlet H2S concentration while operating in 20?C67 s of empty bed retention time, indicating that overall effective operation was performed at mass loading rates of H2S ranging from 19.6 to 28.5 g H2S/(m3?h). It was apparent by the effectiveness of the system??s performance that this system had the capability to effectively remove hydrogen sulfide with high efficiency over a range of concentrations. A maximum elimination capacity was not found for the biofilter during this study, which tested loading rates between 0 and 30 g H2S/(m3?h).  相似文献   

4.
Precise measurement of soil organic carbon (SOC) is essential for constructing regional inventories, developing best agricultural management practices, and modeling purposes. Currently, the automated dry combustion method is considered standard, but the method is both costly and time-consuming. There is a need for a simple, easy to use and cost-effective method of organic C determination in soil. A simple method of total organic carbon (TOC) determination in soil that involved wet digestion of K2Cr2O7-H2SO4-soil mixture in a commercial microwave oven followed by spectrophotomteric measurement of Cr (III) was evaluated. The method was compared with automated dry combustion and two other wet digestion methods. The method showed close agreement with dry combustion method (R2 = 0.90; root mean square error = 0.70) and the TOC measured with the two methods did not differ for a range of soils drawn from lowland and upland land-uses and varying in pH (6.2–9.3), TOC (2.8–14 g kg?1), and calcium carbonate content (0–6.7%). The recovery of the added organic C by the microwave method was 98.6 ± 4.2%. The results suggested that microwave-spectrophotometric method could be easily adopted in routine soil analysis as it is not only precise, rapid, and cost-effective but also produced small volume of reagent waste.  相似文献   

5.
In order to study the potential use of microfauna as an indicator of effluent quality and operational parameters in an activated sludge system for treating piggery wastewater, an experimental sequencing batch reactor was set up and evaluated by biological and physical–chemical analyses for 12 months. Results show that microfauna (and specifically ciliate protozoa) are a good parameter for assessing effluent quality in terms of both chemical oxygen demand (COD) and ammonia and for assessing the organic and nitrogen load of the system. Specifically, the abundance of ciliates decreases from 20,000 individuals·mL?1 to ca. 2,500 individuals·mL?1 and from ca. 10,000 individuals mL?1 to ca. 200 individuals mL?1 when effluent concentration is between 550 and 750 mg L?1 and above 100 mg L?1 to the COD and ammonia concentrations, respectively. Furthermore, microfauna abundance is reduced from ca. 18,000 individuals mL?1 (organic load between 0.1 and 0.2 mg COD mg total suspended solids (TSS)?1 day?1) to ca. 500 individuals mL?1 (organic load between 0.3 and 04 mg COD mg TSS?1 day?1). Microfauna abundance also decreases as nitrogen loading increases. Nitrogen loading in the range of 5–60 mg NH4–N g TSS?1 day?1 does not have any significant effect on microfauna abundance. However, ammonia loading from 60 to 120 mg NH4–N g TSS?1 day?1 reduces microfauna abundance ca. 6-fold. Ciliate protozoa were the largest microfauna group during the whole period of study, representing ca. 75% of the total microfauna abundance. The largest group in the ciliate community was that of the free-swimming ciliates. This was followed by the group of attached and crawling ciliates. Specifically, the dominant ciliate species during the whole study period were Uronema nigricans, Vorticella microstoma-complex, Epistylis coronata, and Acineria uncinata.  相似文献   

6.
This study evaluates the treatment efficacy and biogas yield of an integrated system composed of a plug-flow biodigester (with sludge recirculation) followed by polishing in a stabilization pond. The system was operated in real scale for 12 months at ambient temperature and under continuous flow. The volumetric yields of biogas varied according to the organic loads applied, between 114 and 294 Kg COD day?1, reaching levels of 0.026 to 0.173 m3 m?3 day?1, with concentrations of CH4 between 56 and 70%. The monthly biogas productions were between 378.5 and 2186.1 m3 month?1 equal to an energy potential of approximately 2070 to 19,168 KWh month?1.The average yearly removals of BOD5,20 and COD by the integrated treatment system were 70 and 86%, respectively. The average annual removals of NH4 and TKN were 88.5 and 85.5%, respectively. The pH values were always near neutral, and the alkalinity was in ranges propitious for anaerobic digestion. The results of this study indicate good efficacy in terms of removal of organic matter and nitrogen compounds, with the added benefits of generation of energy and use of the treated effluent as biofertilizer, enabling significant cost reductions to cattle farmers.  相似文献   

7.
Two identical experimental subsurface-flow constructed wetlands were operated at relatively high organic loading rates (23 g COD m?2 day?1) for 4 months to evaluate their relative ability to remove either dissolved organic carbon (glucose, considered to be a readily biodegradable substrate) or particulate organic carbon (starch, considered to be a slowly biodegradable substrate). The systems were built using plastic containers (0.93 m long, 0.59 m wide and 0.52 m high) that were filled with an 0.35 m layer of wetted gravel (D60?=?3.5 mm, uniformity coefficient Cu?=?D60/D10?=?1.7) and the water level was maintained at 0.05 m under the gravel surface to give a water depth of 0.30 m. The results indicated that there was no significant difference in COD removal between the two systems. Both systems generally had COD removal rates of over 90%, which is quite high if the heavy load applied is taken into account. The removal of ammonium was greater in the glucose-fed system (57%) in comparison with the starch-fed system (43%). Based on mass balance calculations and stoichiometric relationships, it was estimated that denitrification and sulphate reduction were minor pathways for the removal of organic matter. Indirect observations allowed to assume that methanogenesis made a highly significant contribution to the removal of organic matter.  相似文献   

8.
Several fog episodes occurred in California’s San Joaquin Valley during winter 2000/2001. Measurements revealed the fogs to generally be less than 50 m deep, but to contain high liquid water contents (frequently exceeding 200 mg/m3) and large droplets. The composition of the fog water was dominated by ammonium (median concentration?=?608 μN), nitrate (304 μN), and organic carbon (6.9 ppmC), with significant contributions also from nitrite (18 μN) and sulfate (56 μN). Principal organic species included formate (median concentration?=?32 μN), acetate (31 μN), and formaldehyde (21 μM). High concentrations of ammonia resulted in high fog pH values, ranging between 5.8 and 8.0 at the core measurement site. At this high pH aqueous phase oxidation of dissolved sulfur dioxide and reaction of S(IV) with formaldehyde to form hydroxymethanesulfonate are both important processes. The fogs are also effective at scavenging and removal of airborne particulate matter. Deposition velocities for key solutes in the fog are typically of the order of 1–2 cm/s, much higher than deposition velocities of precursor accumulation mode aerosol particles. Variations were observed in deposition velocities for individual constituents in the order NO2 ??>?fogwater?>?NH4 +?>?TOC ~ SO4 2??>?NO3 ?. Nitrite, observed to be enriched in large fog drops, had a deposition velocity higher than the average fogwater deposition velocity, due to the increase in drop settling velocity with size. Species enriched in small fog drops (NH4 +, TOC, SO4 2?, and NO3 ?) all had deposition velocities smaller than observed for fogwater. Typical boundary layer removal rates for major fog solute species were estimated to be approximately 0.5–1 μg m?3 h?1, indicating the important role regional fogs can play in reducing airborne pollutant concentrations.  相似文献   

9.
Though engineered covers have been suggested for reducing landfill methane emissions via microbial methane oxidation, little is known about the covers' function at low temperature. This study aimed to determine the methane consumption rates of engineered soil columns at low temperature (4–12°C) and to identify soil characteristics that may enhance methane oxidation in the field. Engineered soils (30 cm thick) were mixtures of sewage sludge compost and de-inking waste, amended with sand (SDS soil) or bark chips (SDB soil). At 4–6°C, we achieved rates of 0.09 gCH4 kgTS?1d?1 (0.02 m3 m?2d?1) and 0.06 gCH4 kgTS?1d?1 (0.009 m3 m?2d?1) with SDS and SDB soils, respectively. With SDS, good movement and exchange of oxygen in porous soil moderated the slowdown of microbial activity so that the rate dropped only by half as temperature declined from 21–23°C to 4–6°C. In SDB, wet bark chips reduced the soil's air-filled porosity and intensified non-methanotrophic microbial activity, thus reducing the methane consumption rate at 4–6°C to one fourth of that at 21–23°C. In conclusion, soil characteristics such as air-filled porosity, water holding capacity, quantity and stabilization of organic amendments that affect the movement and exchange of oxygen are important variables in designing engineered covers for high methane oxidation at low temperature.  相似文献   

10.
Static granular bed reactor (SGBR) and upflow anaerobic sludge blanket (UASB) reactor were demonstrated at mesophilic condition for the treatment of pulp and paper mill wastewater. The hydraulic retention times (HRTs) were varied from 4 to 24 h following 29-day start-up period. The overall chemical oxygen demand (COD) removal efficiency of the SGBR was higher than the UASB during this study. At 4 h HRT, the COD removal was greater than 70 % for the SGBR and 60 % for the UASB. Biomass yield and volatile fatty acids concentration of SGBR were slightly less than UASB at organic loading rates ranging from 1.2 to 5.1 kg/m3/day. The results indicated that the SGBR system can be considered a viable alternative system for anaerobic treatment for pulp and paper wastewater.  相似文献   

11.
Anaerobic ammonium oxidation (anammox process) widely occurs in paddy soil and may substantially contribute to permanent N removal; however, little is known about the factors controlling this process. Here, effects of temperature, pH, organic C, and substrates on potential rate of anammox and the relative contribution of anammox to total N2 production in a paddy soil were investigated via slurry incubation combined with 15N tracer technique. Anammox occurred over a temperature range from 5 to 35 °C with an optimum rate at 25 °C (1.7 nmol N g?1 h?1) and a pH range from 4.8 to 10.1 with an optimum rate at pH 7.3 (1.7 nmol N g?1 h?1). The presence of glucose and acetate (5–100 mg C L?1) significantly inhibited anammox activities and the ratio of anammox to total N2 production. The response of potential rates of anammox to ammonium concentrations fitted well with Michaelis-Menten relationship showing a maximum rate (Vmax) of 4.4 nmol N g?1 h?1 and an affinity constant (Km) of 6.3 mg NH4+-N L?1. Whereas, nitrate addition (5–15 mg 15NO3?-N L?1) significantly inhibited anammox activities and the ratio of anammox to total N2 production. Our results provide useful information on factors controlling anammox process and its contribution to N loss in the paddy soil.  相似文献   

12.
Microbial biomass, respiratory activity, and in‐situ substrate decomposition were studied in soils from humid temperate forest ecosystems in SW Germany. The sites cover a wide range of abiotic soil and climatic properties. Microbial biomass and respiration were related to both soil dry mass in individual horizons and to the soil volume in the top 25 cm. Soil microbial properties covered the following ranges: soil microbial biomass: 20 µg C g–1–8.3 mg C g–1 and 14–249 g C m–2, respectively; microbial C–to–total organic C ratio: 0.1%–3.6%; soil respiration: 109–963 mg CO2‐C m–2 h–1; metabolic quotient (qCO2): 1.4–14.7 mg C (g Cmic)–1 h–1; daily in‐situ substrate decomposition rate: 0.17%–2.3%. The main abiotic properties affecting concentrations of microbial biomass differed between forest‐floor/organic horizons and mineral horizons. Whereas microbial biomass decreased with increasing soil moisture and altitude in the forest‐floor/organic horizons, it increased with increasing Ntot content and pH value in the mineral horizons. Quantities of microbial biomass in forest soils appear to be mainly controlled by the quality of the soil organic matter (SOM), i.e., by its C : N ratio, the quantity of Ntot, the soil pH, and also showed an optimum relationship with increasing soil moisture conditions. The ratio of Cmic to Corg was a good indicator of SOM quality. The quality of the SOM (C : N ratio) and soil pH appear to be crucial for the incorporation of C into microbial tissue. The data and functional relations between microbial and abiotic variables from this study provide the basis for a valuation scheme for the function of soils to serve as a habitat for microorganisms.  相似文献   

13.
Similar to higher plants, microbial autotrophs possess photosynthetic systems that enable them to fix CO2. To measure the activity of microbial autotrophs in assimilating atmospheric CO2, five paddy soils were incubated with 14C-labeled CO2 for 45 days to determine the amount of 14C-labeled organic C being synthesized. The results showed that a significant amount of 14C-labeled CO2 incorporated into microbial biomass was soil specific, accounting for 0.37%–1.18% of soil organic carbon (14C-labeled organic C range: 81.6–156.9 mg C kg?1 of the soil after 45 days). Consequently, high amounts of C-labeled organic C were synthesized (the synthesis rates ranged from 86 to 166 mg C m?2 d?1). The amount of atmospheric 14CO2 incorporated into microbial biomass (14C-labeled microbial biomass) was significantly correlated with organic C components (14C-labeled organic C) in the soil (r = 0.80, p < 0.0001). Our results indicate that the microbial assimilation of atmospheric CO2 is an important process for the sequestration and cycling of terrestrial C. Our results showed that microbial assimilation of atmospheric CO2 has been underestimated by researchers globally, and that it should be accounted for in global terrestrial carbon cycle models.  相似文献   

14.
A strengthened constructed rapid infiltration (SCRI) system is a sewage treatment system derived from a constructed rapid infiltration (CRI) system. The SCRI tank structure primarily includes saturated and non-saturated layers. The degradation of the chemical oxygen demand (COD) and the conversion of ammonia nitrogen (NH4 +-N) are primarily performed in a non-saturated layer. To study the COD and NH4 +-N removal process in a non-saturated layer, two organic glass columns with a radius of 2.5 cm and a height of 70 cm were loaded with layers of soil from the Shunyi district of Beijing. The primary goal of this research is to quantify the removal effect factors and the relationship of the COD and NH4 +-N in the non-saturated layer. The SCRI system functioned successfully under a wetting-drying ratio of 1:5 with hydraulic loading at 1.0 m3/ (m2·d) for over 2 months. Our results show that the removal rate of NH4 +-N is approximately 69.11%, and the removal efficiency of COD is approximately 90.46%. The removal of COD is only slightly affected by pH, while the removal of NH4 +-N is greatly influenced by pH.  相似文献   

15.
Seven experimental pilot-scale subsurface vertical-flow constructed wetlands were designed to assess the effect of plants [Typha latifolia L. (cattail)], intermittent artificial aeration and the use of polyhedron hollow polypropylene balls (PHPB) as part of the wetland substrate on nutrient removal from eutrophic Jinhe River water in Tianjin, China. During the entire running period, observations indicated that plants played a negligible role in chemical oxygen demand (COD) removal but significantly enhanced ammonia–nitrogen (NH4–N), nitrate–nitrogen (NO3–N) total nitrogen (TN), soluble reactive phosphorus (SRP) and total phosphorus (TP) removal. The introduction of intermittent artificial aeration and the presence of PHPB could both improve COD, NH4–N, TN, SRP and TP removal. Furthermore, aerated wetlands containing PHPB performed best; the following improvements were noted: 10.38 g COD/m2 day, 1.34 g NH4–N/m2 day, 1.04 g TN/m2 day, 0.07 g SRP/m2 day and 0.07 g TP/m2 day removal, if compared to non-aerated wetlands without PHPB being presented.  相似文献   

16.
17.
To evaluate the impacts of organic cropping system on global warming potentials (GWPs), field measurements of CH4 and N2O were taken in conventional and organic rice (Oryza sativa L.) cropping systems in southeast China. Rice paddies were under various water regimes, including continuous flooding (F), flooding–midseason drainage–reflooding (F-D-F), and flooding–midseason drainage–reflooding and moisture but without waterlogging (F-D-F-M). Nitrogen was applied at the rate of 100 kg N ha?1, as urea-N or pelletized, dehydrated manure product in conventional or organic rice paddies, respectively. Seasonal fluxes of CH4 averaged 4.44, 2.14, and 1.75 mg m?2 h?1 for the organic paddy plots under the water regimes of F, F-D-F and F-D-F-M, respectively. Relative to conventional rice paddies, organic cropping systems increased seasonal CH4 emissions by 20%, 23%, and 35% for the plots under the water regimes of F, F-D-F, and F-D-F-M, respectively. Under the water regimes of F-D-F and F-D-F-M, seasonal N2O-N emissions averaged 10.85 and 13.66 μg m?2 h?1 in organic rice paddies, respectively, which were significantly lower than those in conventional rice paddies. The net global warming potentials (GWPs) of CH4 and N2O emissions from organic rice paddies relative to conventional rice paddies were significantly higher or comparable under various water regimes. The greenhouse gas intensities were greater, while carbon efficiency ratios were lower in organic relative to conventional rice paddies. The results of this study suggest that organic cropping system might not be an effective option for mitigating the combined climatic impacts from CH4 and N2O in paddy rice production.  相似文献   

18.
Laboratory-scale models consisting of a simple upflow anaerobic sludge blanket reactor (UASBR) and an upflow anaerobic filter (UAF) in series were subjected to organic loadings of 0.19 to 0.55 kg COD m?3 d?1 at 20°C. COD and SS removals were 95 to 98% and 98 to 99%, respectively. Biogas produced by the system amounted to 0.31 to 0.32 m3 CH4 kg?1 COD removed. The UASBR was more stable than the UAF in performance. No sign of deterioration in final effluent quality was observed during 420 days of operation under low loading.  相似文献   

19.
Batch adsorption experiments were conducted to assess the effects of pH and ionic strength (I) on cadmium (Cd) adsorption by two Brazilian Oxisols. Adsorption envelopes were constructed through soil sample reactions with 0.01, 0.1, and 1 mol L?1 calcium nitrate [Ca(NO3)2] solutions containing 5 mg L?1 of Cd, with an increasing pH value from 3 to 8. The adsorption increased drastically with increasing pH, varying from 20 to 90% in a narrow pH range (4–6 in topsoil and 5–6 in subsoil). Gibbs energy (ΔG) for Cd adsorption was negative, and the phenomenon became more thermodynamically spontaneous with an increase in pH. Under the standard 0.01 mol L?1 I and at pH close to natural, the ΔG values ranged from ?796 to ?3427 J mol?1. No effect of I was observed on the ΔG values for Cd adsorption at pH values less than 6. At values greater than pH 6, sharp changes in the Cd adsorption pattern were observed on subsoil samples. The only soil attribute significantly correlated with the spontaneity of Cd adsorption was the effective cation exchange capacity, ECEC (r = 0.97; p < 0.1).  相似文献   

20.
Irrigation with low-quality water may change soil hydraulic properties due to excessive electrical conductivity (ECw) and sodium adsorption ratio (SARw). Field experiments were conducted to determine the effects of water quality (ECw of 0.5–20 dS m?1 and SARw of 0.5–40 mol0.5 l?0.5) on the hydraulic properties of a sandy clay loam soil (containing ~421 g gravel kg?1 soil) at applied tensions of 0–0.2 m. The mean unsaturated hydraulic conductivity [K(ψ)], sorptive number (α) and sorptivity coefficient (S) varied with change in ECw and SARw as quadratic or power equations, whereas macroscopic capillary length, λ, varied as quadratic or logarithmic equations. The maximum value of K(ψ) was obtained with a ECw/SARw of 10 dS m?1/20 mol0.5 l?0.5 at tensions of 0.2 and 0.15 m, and with 10 dS m?1/10 mol0.5 l?0.5 at other tensions. Changes in K(ψ) due to the application of ECw and SARw decreased as applied tension increased. Analysis indicated that 13.7 and 86.3% of water flow corresponded to soil pore diameters <1.5 and >1.5 μm, respectively, confirming that macropores are dominant in the studied soil. The findings indicated that use of saline waters with an EC of <10 dS m?1 can improve soil hydraulic properties in such soils. Irrigation waters with SARw < 20 mol0.5 l?0.5 may not adversely affect hydraulic attributes at early time; although higher SARw may negatively affect them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号