首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The high molecular weight glutenin subunits (HMW‐GS) play an important role in governing the functional properties of wheat dough. To understand the role of HMW‐GS in defining the basic and applied rheological parameters and end‐use quality of wheat dough, it is essential to conduct a systematic study where the effect of different HMW‐GS are determined. This study focuses on the effect of HMW‐GS on basic rheological properties. Eight wheat lines derived from cvs. Olympic and Gabo were used in this study. One line contained HMW‐GS coded by all three loci, three lines were each null at one of the loci, three lines were null at two of the loci and one line null at all three loci. The flour protein level of all samples was adjusted to a constant 9% by adding starch. In another set of experiments, in addition to the flour protein content being held at 9%, the glutenin‐to‐gliadin ratio was maintained at 0.62 by adding gliadin. Rheological properties such as elongational, dynamic, and shear viscometric properties were determined. The presence of Glu‐D1 subunits (5+10) made a significantly larger contribution to dough properties than those encoded by Glu‐B1 (17+18), while subunit 1, encoded by Glu‐A1, made the least contribution to functionality. Results also confirmed that HMW‐GS contributed to strength and stability of dough.  相似文献   

2.
Rheological and structural behavior of dough prepared with two Argentinean flours (FI and FII) of different dough extensibilities were studied. Flours were analyzed by composition and rheological assays. Structural properties of dough prepared at different mixing times were analyzed by scanning electron microscopy, free sulfhydryls quantification, and yield of different protein fractions, as well as their protein surface hydrophobicity. Size of high molecular weight glutelin soluble aggregates was analyzed through multistacking gel electrophoresis. Dynamic viscoelasticity of dough was also studied. Flours FI and FII presented similar physicochemical properties but different rheological properties. Structural properties of both flour components were different. Starch from FI flour generated a more viscous paste than that of FII. FI presented a higher glutenin‐to‐gliadin ratio and a higher content of free sulfhydryls than FII. The resulting dough of FI showed a high development time and was more stable than FII. FI contained a high proportion of soluble HMW glutenins and formed dough with a more depolymerized insoluble protein residue containing a lower amount of gliadin in its matrix than FII. FI also formed a more elastic and stable dough with higher development time than FII. The specific structural characteristic of FI turns this flour into suitable raw material for the preparation of different bakery products in which elasticity of dough would be an important functional property.  相似文献   

3.
The effect of genetic substitution of two to four glutenin and gliadin subunits from a Canada Prairie Spring (CPS) cv. Biggar BSR into Alpha 16, another CPS wheat line, was studied for rheological and baking quality. Results from double substitution showed that the presence of a gliadin component from Biggar BSR (BGGL) and low molecular weight glutenin subunit 45 (LMW 45) contributed to improved dough strength characteristics. Presence of BGGL in combination with high molecular weight glutenin subunit 1 (HMW 1) or 17+18 (HMW 17+18) also showed improved dough strength over control Alpha lines. When three or four protein subunits were substituted, even though improved quality performance was observed, it was associated with the negative effect of lowered flour water absorptions in spite of similar protein contents. The study confirms that LMW glutenins, as well as gliadins, play an important role along with HMW glutenins in wheat flour quality. CPS wheat lines with improved dough strength properties can be selected from the double substitution lines with the combination of BGGL/LMW 45 and BGGL/HMW 1.  相似文献   

4.
Understanding the relationship between basic and applied rheological parameters and the contribution of wheat flour protein content and composition in defining these parameters requires information on the roles of individual flour protein components. The high molecular weight glutenin subunit (HMW‐GS) proteins are major contributors to dough strength and stability. This study focused on eight homozygous wheat lines derived from the bread wheat cvs. Olympic and Gabo with systematic deletions at each of three HMW‐GS encoding gene loci, Glu‐A1, Glu‐B1, and Glu‐D1. Flour protein levels were adjusted to a constant 9% by adding starch. Functionality of the flours was characterized by small‐scale methods (2‐g mixograph, microextension tester). End‐use quality was evaluated by 2‐g microbaking and 10‐g noodle‐making procedures. In this sample set, the Glu‐D1 HMW‐GS (5+10) made a significantly larger contribution to dough properties than HMW‐GS coded by Glu‐B1 (17+18), while subunit 1 coded by Glu‐A1 made the smallest contribution to functionality. These differences remained after removing variations in glutenin‐to‐gliadin ratio. Correlations showed that both basic rheological characteristics and protein size distributions of these flours were good predictors of several applied rheological and end‐use quality tests.  相似文献   

5.
《Cereal Chemistry》2017,94(2):199-206
A set of 32 winter wheat lines and varieties was selected to benchmark Ontario winter wheat as a first step toward improving quality. Protein secondary structure, total and accessible thiols, rheological properties, gluten aggregation kinetics, and network forming capabilities of different polymers were determined for each wheat line. Results revealed that there were statistically significant differences among the lines selected (P < 0.05). The differences between hard and soft wheat classes were not as large as would be expected, however, despite the range of quality parameters measured. Benchmarks revealed that several soft wheat lines outperformed hard wheat lines in standard breadmaking quality measures. Protein conformation changed significantly as the moisture content of the samples increased to mimic different model product systems: flour, dough, and batter. The conformation of the flour samples exhibited different patterns between hard and soft wheat classes, although these differences became narrower in the dough and batter states. Principal component analysis (PCA) factors included most quality parameters measured, with the notable exceptions of solvent retention capacity tests and total thiols. Protein conformation and accessible thiols were significant PCA factors that tended to override the rheological measures of quality they represented, suggesting that protein secondary structure and disulfide bonding patterns are fundamental aspects of rheological quality measures.  相似文献   

6.
A single-chain fragment (scFv) was engineered from a monoclonal antibody to high molecular weight glutenin subunits (HMW-GS), wheat flour polypeptides that play a major role in determining the mixing- and extension strength-related properties of dough and its subsequent baking performance. The scFv was expressed in a thioredoxin mutant Escherichia coli strain that allows disulfide bond formation in the cytoplasm and incorporated into a diagnostic test for wheat quality. Although the scFv lacks the more highly conserved antibody constant regions usually involved with immobilization, it was able to be directly immobilized to a polystyrene microwell solid phase without chemical or covalent modification of the protein or solid phase and utilized as a capture antibody in a double-antibody (two-site) immunoassay. In the sandwich assay, increasing HMW-GS concentrations produced increasing assay color, and highly significant correlations were obtained between optical densities obtained in the ELISA using the scFv and the content of large glutenin polymers in flours as well as measures of dough strength as measured by resistance to dough extension in rheological testing. The assay using the scFv was able to be carried out at lower flour sample extract dilutions than that required for a similar assay utilizing a monoclonal capture antibody. This research shows that engineered antibody fragments can be utilized to provide superior assay performance in two-site ELISAs over monoclonal antibodies and is the first application of an engineered antibody to the analysis of food processing quality.  相似文献   

7.
The uniaxial elongational and shear rheology of doughs varying in either the protein content or glutenin‐to‐gliadin ratio were investigated. Increasing the protein content at constant glutenin‐to‐gliadin ratio increased the strain‐hardening properties of the dough, as shown by increasing elongational rupture viscosity and rupture stress. Glutenin and gliadin had a more complex effect on the elongational properties of the dough. Increased levels of glutenin increased the rupture viscosity but lowered the rupture strain, while elevated gliadin levels lowered the rupture viscosity but increased the rupture strain. These observations provide rheological support for the widely inferred role of gliadin and glutenin in shaping bread dough rheology, namely that gliadin contributes the flow properties, and glutenin contributes the elastic or strength properties. The shear and elongational properties of the doughs were quite different, reflecting the dissimilar natures of these two types of flow. Increasing protein content lowered the maximum shear viscosity, while increasing the glutenin‐to‐gliadin ratio increased maximum shear viscosity. Strong correlations between the results of basic and empirical rheology were found. These basic, or fundamental, rheological measurements confirmed prior empirical studies and supported baking industry experience, highlighting the potential of basic rheology for bread and wheat research.  相似文献   

8.
《Cereal Chemistry》2017,94(6):1037-1044
Spelt grain has high nutritional value, but the rheological properties of dough made from spelt flour remain insufficiently investigated. Most studies have focused on comparing various breeding lines and accessions of spelt with selected conventional varieties. The aim of this study was to analyze the rheological properties of dough made from the flour of 14 winter and one spring spelt varieties cultivated today compared with two reference varieties of common wheat. The analyses were performed by the Mixolab test. In comparison with common wheat, spelt varieties were characterized by significantly lower values of the gluten index (16–42 versus 87%), Zeleny index (23–28 versus 46 cm3), and kernel vitreousness (5–35 versus 51%). Doughs produced from spelt and common wheat flour differed significantly it their rheological properties. Mixolab profiles demonstrated significant variations in the values of the retrogradation index (2–8), amylase index (1–8), water absorption index (0–6), and gluten+ index (1–7) across the tested spelt varieties. Principal component analysis revealed that all six Mixolab indicators strongly discriminated wheat and spelt varieties. The results clearly indicate that some modern varieties of spelt have high breadmaking potential. They are also characterized by relatively high variation in the analyzed technological properties of grain and flour.  相似文献   

9.
The effects of oxido-reductants on the rheological properties of wheat flour dough were evaluated by using a capillary rheometer and an oscillatory rheometer at three temperatures. The oxidants potassium iodate (KIO3) and l -ascorbic acid (l -AA) significantly increased the apparent viscosity and G′ and decreased loss tangent at low temperatures of 30 and 60°C due to enhanced formation of disulfide bonds. The reductant glutathione (GSH) had the opposite effect. Heating caused the gelatinization of starch, which diminished the effects of the oxido-reductants and produced doughs with similar rheological properties at 80°C. The correlation between dough rheology and characteristics of extruded noodles was also studied.  相似文献   

10.
不同种类大豆蛋白粉对面包加工特性的影响   总被引:8,自引:2,他引:6  
为探索大豆蛋白作为营养补充剂在面包中应用时,对面团物理特性和焙烤特性产生的影响,该文考察了不同种类的大豆蛋白制品,包括大豆分离蛋白、灭酶全脂粉、活性全脂粉、活性脱脂粉、灭酶脱脂粉对面团粉质特性、拉伸特性和焙烤特性的影响。结果表明,面粉的吸水率与大豆蛋白粉氮溶解指数显著相关,面团的抗拉阻力受大豆蛋白添加量的影响明显。大豆蛋白粉的加入,对面包比体积产生不利影响,下降趋势与大豆蛋白粉对面团拉伸特性的影响显著相关。大豆蛋白粉有软化面包质地的作用,活性全脂粉表现最为明显。大豆蛋白粉的加入量占面粉质量分数的3%时,对面包口感影响不明显,当加入量超过面粉质量分数的7%时,容易出现发粘和豆腥味等现象。  相似文献   

11.
Relationships between flour functional properties and protein composition were studied using a set of 138 Argentinean wheat samples. Among different protein groups, the incremental increase of gliadin with increasing grain protein content was highest followed by polymeric protein with albumin‐globulin content much lower. Functional properties could be divided into two groups based on dependence on protein composition. Properties such as dough extensibility and bake test loaf volume correlated highly with the percentage of polymeric protein in the grain. Properties such as mixograph dough development time were best correlated with the percentage of polymeric protein in the protein (PPP). Alveograph tenacity showed no significant dependence on PPP. as found previously for extensigraph maximum resistance, but it was correlated with the percentage of unextractable polymeric protein in the protein. Energy (W) appeared to be a more useful alveograph parameter for predicting flour quality.  相似文献   

12.
The rheological properties of dough and gluten are important for end‐use quality of flour but there is a lack of knowledge of the relationships between fundamental and empirical tests and how they relate to flour composition and gluten quality. Dough and gluten from six breadmaking wheat qualities were subjected to a range of rheological tests. Fundamental (small‐deformation) rheological characterizations (dynamic oscillatory shear and creep recovery) were performed on gluten to avoid the nonlinear influence of the starch component, whereas large deformation tests were conducted on both dough and gluten. A number of variables from the various curves were considered and subjected to a principal component analysis (PCA) to get an overview of relationships between the various variables. The first component represented variability in protein quality, associated with elasticity and tenacity in large deformation (large positive loadings for resistance to extension and initial slope of dough and gluten extension curves recorded by the SMS/Kieffer dough and gluten extensibility rig, and the tenacity and strain hardening index of dough measured by the Dobraszczyk/Roberts dough inflation system), the elastic character of the hydrated gluten proteins (large positive loading for elastic modulus [G′], large negative loadings for tan δ and steady state compliance [Je0]), the presence of high molecular weight glutenin subunits (HMW‐GS) 5+10 vs. 2+12, and a size distribution of glutenin polymers shifted toward the high‐end range. The second principal component was associated with flour protein content. Certain rheological data were influenced by protein content in addition to protein quality (area under dough extension curves and dough inflation curves [W]). The approach made it possible to bridge the gap between fundamental rheological properties, empirical measurements of physical properties, protein composition, and size distribution. The interpretation of this study gave indications of the molecular basis for differences in breadmaking performance.  相似文献   

13.
This research investigated the effects of micronization, at different moisture levels, on the chemical and rheological properties of wheat. A set of tests designed to analyze protein fraction characteristics and rheological behaviors were conducted on samples from four wheat cultivars (AC Karma, AC Barrie, Glenlea, and Kanata). After being subjected to infrared radiation at three moisture levels (as‐is, 16%, and 22%), the seeds were milled to produce straight‐grade flour. The protein fractionation test revealed significant decreases (P ≤ 0.01) in both monomeric proteins (from 54% of total protein in the control to 37% in the tempered micronized sample) and soluble glutenins (9.4–2.5%). There was a strong negative correlation (r = ‐0.98) between the percentages of monomeric proteins and insoluble glutenins. Total extractable proteins of micronized samples tempered to 22% moisture decreased 43.5% when compared with nonmicronized control samples using size‐exclusion HPLC (SE‐HPLC). Micronization had a significant effect on gluten properties, as seen from a decrease in water absorption (P ≤ 0.01) and dough development time (P ≤ 0.01). Results showed that micronization at 100 ± 5°C had detrimental effects on wheat flour gluten functionality, including a decrease in protein solubility and impairment of rheological properties. These phenomena could be due to the formation of both hydrophobic and disulfide bonds in wheat during micronization.  相似文献   

14.
The effect of flour type and dough rheology on cookie development during baking was investigated using seven different soft winter wheat cultivars. Electrophoresis was used to determine the hydrolyzing effects of a commercial protease enzyme on gluten protein and to evaluate the relationships between protein composition and baking characteristics. The SDS‐PAGE technique differentiated flour cultivars based on the glutenin subunits pattern. Electrophoresis result showed that the protease degraded the glutenin subunits of flour gluten. Extensional viscosities of cookie dough at all three crosshead speeds were able to discriminate flour cultivar and correlated strongly and negatively to baking performance (P < 0.0001). The cookie doughs exhibited extensional strain hardening behavior and those values significantly correlated to baking characteristics. Of all rheological measurements calculated, dough consistency index exhibited the strongest correlation coefficient with baking parameters. The degradation effects of the protease enzyme resulted in more pronounced improvements on baking characteristics compared with dough rheological properties. Stepwise multiple regression showed that the dough consistency index, the presence or absence of the fourth (44 kDa) subunit in LMW‐GS and the fifth subunit (71 kDa) subunit in HMW‐GS were predominant parameters in predicting cookie baking properties.  相似文献   

15.
Contact of wheat flour with aqueous ethanol may enrich protein by starch displacement or deplete protein by extraction depending on 1) extraction conditions and 2) the form of the substrate. Extraction at subambient temperatures has not been described for specific gliadins for either dry flour with the protein in native configurations or for wet, developed batter or dough. This limits the ability to interpret technologies such as the cold-ethanol method. Here, we describe specific albumin and gliadin composition of flour extracts by capillary zone electrophoresis CZE in 0–100% (v/v) ethanol from –12 to 22°C. Extraction was reduced for albumin and gliadin protein as the temperature was reduced and the concentration range for extraction narrowed. Extraction dropped precipitously between 0 and –7°C for both albumins and gliadins. Electrophoretically defined gliadins extracted in constant proportion at 22°C and 30–80%(v/v) ethanol, but at lower temperature, the α-gliadins were enriched and β-gliadins depleted in the 30–55% (v/v) range. For extracts from wheat flour batter, depletion of α and β and enrichment of γ relative to the dry flour contact suggested that the electrophoretically slow migrating γ- and ω-proteins are less well incorporated to the dough matrix than electrophoretically fast migrating α and β types.  相似文献   

16.
The network‐forming attributes of gluten have been investigated for decades, but no study has comprehensively addressed the differences in gluten network evolution between strong and weak wheat types (hard and soft wheat). This study monitored changes in SDS protein extractability, SDS‐accessible thiols, protein surface hydrophobicity, molecular weight distribution, and secondary structural features of proteins during mixing to bring out the molecular determinants of protein network formation in hard and soft wheat dough. Soft wheat flour and dough exhibited greater protein extractability and more accessible thiols than hard wheat flour and dough. The addition of the thiol‐blocking agent N‐ethylmaleimide (NEM) resulted in similar results for protein extractability and accessible thiols in hard and soft wheat samples. Soft wheat dough had greater protein surface hydrophobicity than hard wheat and exhibited a larger decrease in surface hydrophobicity in the presence of NEM. Formation of high‐molecular‐weight (HMW) protein in soft wheat dough was primarily because of formation of disulfides among low‐molecular‐weight (LMW) proteins, as indicated by the absence of changes in protein distribution when NEM was present, whereas in hard wheat dough the LMW fraction formed disulfide interaction with the HMW fraction. Fourier transform infrared spectroscopy indicated formation of β‐sheets in dough from either wheat type at peak mixing torque. Formation of β‐sheets in soft wheat dough appears to be driven by hydrophobic interactions, whereas disulfide linkages stabilize secondary structure elements in hard wheat dough.  相似文献   

17.
Hydrothermal treatments, which are routine in oat processing, have profound effects on oat flour dough rheological properties. The influence of roasting and steam treatments of oat grain on dough mixing and breadbaking properties was investigated when hydrothermally treated oat flour was blended with wheat flour. Roasting of oat grain (105°C, 2 hr) resulted in oat flours that were highly detrimental to wheat flour dough mixing properties and breadbaking quality. Steaming (105°C, 20 min) or a combination of roasting and steaming of oat grain significantly improved the breadbaking potential of the oat flours. The addition of oat flours increased water absorption and mixing requirements of the wheat flour dough and also decreased bread loaf volume. However, at the 10% substitution level, steamed oat flours exhibited only a gluten dilution effect on bread loaf volume when wheat starch was used as a reference. Oat flour in the breadbaking system decreased the retrogradation rate of bread crumb starch. The results indicate that adequate hydrothermal treatments of oat grain are necessary for oat flour breadbaking applications. Steamed oat flours used at a 10% level retarded bread staling without adversely affecting the loaf volume.  相似文献   

18.
This study evaluated the influence of calcium and magnesium ions on the empirical rheological properties of wheat flour to verify possible effects of these ions on processing because, in addition to their nutritional importance, they are also responsible for water hardness. Calcium (0–1.30 g/100 g) and magnesium (0–0.34 g/100 g) ions from sulfate salts were added to wheat flour, according to a central composite rotatable design. The farinograph and extensigraph properties of wheat flour and its mixtures were evaluated. The results were analyzed by response surface methodology. Calcium ions stood out for increasing water absorption, decreasing mixing stability, and producing a delayed effect on dough extensibility (reduced at 135 min). Magnesium ions influenced most flour rheological properties in a similar manner to oxidizing agents (increased dough stability, increased resistance to extension, and reduced extensibility), thus proving to be a possible replacement agent for these additives. An interaction effect of the combined calcium and magnesium ions was observed on dough development time. The results showed that effects on processing can occur when wheat flour fortification is made, and adaptations on wheat flour specifications, product formulation, and processing parameters may be required.  相似文献   

19.
Barley is rich in nutritionally positive compounds, but the quality of bread made of wheat–barley composite flours is impaired when a high percentage of barley is used in the mixture. A number of enzymes have been reported to be useful additives in breadmaking. However, the effect of β‐glucanase on breadmaking has scarcely been investigated. In this paper, the influence of different levels (0.02, 0.04, 0.06, and 0.08%, based on composite flour) of β‐glucanase (100,000 U/g) on the properties of dough and bread from 70% wheat, 30% barley composite flour were studied. Although dough development time, dough stability, and protein weakening value decreased after β‐glucanase addition, dough properties such as softness and elasticity as well as bread microstructure were improved compared with the control dough. β‐Glucanase also significantly improved the volume, texture, and shelf life of wheat–barley composite breads. The use of an optimal enzyme concentration (0.04%) increased specific volume (57.5%) and springiness (21%), and it reduced crumb firmness (74%) and staling rate. Bread with added β‐glucanase had a better taste, softness, and overall acceptability of sensory characteristics compared with the control bread. Moreover, the quality of wheat–barley composite bread after addition of 0.04% β‐glucanase was nearly equal to the quality of pure wheat bread. These results indicate that dough rheological characteristics and bread quality of wheat–barley composite flour can be improved by adding a distinct level of β‐glucanase.  相似文献   

20.
The effect of genetic variation in the glutenin and gliadin protein alleles of Alpha 16, a Canada Prairie Spring (CPS) wheat line, on the dough mixing, bread, and noodle quality properties were evaluated. The presence of a gliadin component (BGGL) and the low molecular weight glutenin subunit (LMW-GS) 45 found in the selection Biggar BSR were associated with significant increases in dough strength characteristics. The results of the study showed that gliadins, LMW-GS, and high molecular weight glutenin subunits (HMW-GS) can influence bread- and noodle-making properties of wheat flour. Genotype-by-environment interactions were not significant for most of the quality parameters studied, indicating that the differences observed in quality characteristics were mainly due to the effect of genotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号