首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Between the elevations of 1000 and 2000 m in the mid‐hills of Nepal, over 12 million people subsist on land‐holdings of less than 0·5 ha. These farmers have limited access to commercial inputs such as fertilisers and are reliant on organic manures for soil fertility maintenance. Participatory research was conducted with farmers on bari land (upper slope rain‐fed crop terraces) in the hill community of Landruk (bench terraces 0–5° slope, 3000–3500 mm annual rainfall, which aimed to develop soil and water management interventions that controlled erosion without resulting in high leaching, and so were effective in minimising total nutrient losses. Interventions tested were the control of water movement through diversion of run‐on and planting fodder grasses on terrace risers on bench terraces. The interventions were effective in reducing soil loss from the bari land in comparison with existing farmer practices, but no effect was observed on nutrient losses in solution form through runoff and leaching. Losses of NO3‐N in leachate ranged from 17·3 to 99·7 kg ha−1 yr−1, but only 0·7 to 5·6 kg ha−1 yr−1 in runoff. The overall nutrient balance suggests that the system is not sustainable. Fertility is heavily dependent on livestock inputs and if the current trends of declining livestock numbers due to labour constraints continue, further losses in productivity can be expected. However, farmers are interested in interventions that tie ecosystem services with productivity enhancement and farmers' priorities should be used as entry points for promoting interventions that are system compatible and harness niche opportunities. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Conventional tillage practices on steep and fragile landscape of Himalayan hills result in significant loss of topsoil during rainy season. Soil erosion in Nepal mid-hills is the most critical during pre-monsoon season. Many reviews argue that reduced tillage could be an option to tackle this problem. However, very few field experiments to evaluate reduced tillage systems have to date been conducted in this region. Thus, a field experiment was initiated in factorial randomized complete block design on acidic sandy loam soil (Lithic Dystochrept) during the summer season of 2001 at Kathmandu University (1500 masl) to assess the effects of tillage and cropping patterns on soil and nutrient losses, crop yield and soil fertility. Two main treatments viz. conventional and reduced till, and two sub-treatments viz. sole maize (Zea mays) and maize + soybean (Glycine max) were considered. Soil organic carbon (OC), total nitrogen (N), plant available phosphorus (P) and exchangeable potassium (K) were determined for the original soil and eroded sediment using standard methods. Two years of data indicated annual soil and nutrient losses to be significantly lowered by reduced till as compared to conventional till. Total annual soil loss from conventional and reduced till was 16.6 and 11.1 Mg/ha, respectively. Similarly, annual nutrient losses associated with the eroded sediment were 188 kg OC/ha, 18.8 kg N/ha, <1 kg P/ha and 3.8 kg K/ha for conventional till and 126 kg OC/ha, 11.8 kg N/ha, <1 kg P/ha and 2.4 kg K/ha for reduced till. Soil OC and N losses were significantly higher in conventional till and this may be one of the major causes of fertility depletion in the Nepalese hills. Soil chemical properties did not differ due to tillage and cropping systems; however, over years pH, N and P were increased irrespective of treatments. Although treatments were at par for maize grain yield, conventional till + soybean produced highest grain yield (4.0 Mg/ha) followed by reduced till + soybean (3.9 Mg/ha) and conventional till sole maize (3.8 Mg/ha). Mixed cropping of legumes and maize do not help conserve soil and nutrient loss in hills of central Nepal. Thus, reduced till could be a viable option for minimizing soil and nutrient losses without sacrificing economic yields in central hills of Nepal.  相似文献   

3.
Forest degradation, manifested through decline in forest cover, and the resulting soil erosion and organic carbon losses, is a serious problem caused by a complex coupling of bio‐physical, socio‐economic and technological factors in the Himalayan watersheds. Greater understanding of the linkages between these factors requires a systems approach. We have proposed such an approach using a bio‐economic model to explore the system behaviour of forest degradation, soil erosion, and soil C losses in the forest areas. The outcome of the model simulation over a 20‐year period indicates that soil erosion and C loss rates may increase more than four‐fold by the year 2020 under the existing socio‐economic and biophysical regime (the base scenario). Reductions in the population growth rate, introduction of improved agricultural technology and increase in the prices of major agricultural crops can help slow down the rates of forest decline, soil erosion and C loss or even stabilize or reverse them. The results suggest that economic incentives may be highly effective in the reduction of soil loss, as well as C release to the atmosphere. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
中国西南地区坡地钾素平衡及管理措施探讨   总被引:2,自引:0,他引:2  
坡地钾素平衡及管理研究于2000年开始在贵州南部开展。试验分别设条带种植1、条带种植2、工程梯化、横坡种植四个水土保持农艺措施和农民习惯种植(对照)5个处理,探讨坡地钾素的平衡及其管理措施。试验结果表明,坡地的钾素平衡除了与施肥和植物吸收有关,还与降水、地表径流和土壤侵蚀有着密切的联系。在简化了的坡地钾素循环中(不包括地下渗漏的钾素部分),肥料提供给土壤的钾素达89.66.kg/hm2~176.83.kg/hm2,对土壤钾素输入总量的贡献达96%以上。而9.80%~26.26%来源于无机肥的钾素是通过作物吸收而带离土壤。地表径流和侵蚀泥砂中具有较高的有效钾含量,地表径流所含的有效钾是降水的4.28~6.67倍;侵蚀泥砂所含的有效钾是侵蚀前土壤耕层的1.51~1.92倍。它们不但带走降水中有效钾,而且还带走土壤中的有效钾,流失量每年分别达到14.82~23.10.kg/hm2和4.46~9.35.kg/hm2。每年通过作物吸收而造成土壤钾素损失为28.46~90.10kg/hm2。坡地农业活动造成土壤缓效钾水平急剧下降,缓效钾亏缺每年达175.34~306.04.kg/hm2。因此,在坡地钾素平衡中,应重视水土保持、秸秆还田及肥料的有效利用。条带种植措施可减少地表径流40.31%~43.77%、泥砂53.60%~65.63%、提高土壤有效钾12.62%~33.69%,使得无机肥的利用率达到26%,是坡地钾素管理的有效措施。  相似文献   

5.
A wide range of land management practices, including application of fertilizers, contour‐plowing, stone bunds, mulching and agroforestry, have been adopted by farmers in the Jos Plateau to control degradation. This study examined the relative popularity of 13 land management practices based on mainly qualitative primary information collected through a questionnaire survey of 150 farm households and group discussions held during May to August 2007. The results of the analysis revealed four practices, namely, application of chemical fertilizers and farm yard manure, intercropping and crop rotation were highly popular. These practices generally need little technical skills, show positive short‐term benefits and short establishment time, suggesting that the benefits of increased productivity can be obtained quite quickly. Practices like agroforestry, mulching, legume cultivation and crop residue barriers were moderately popular as they take time, sometimes up to 3 years, before some benefits could be manifested. For farmers dependent on the farm income without any financial back‐up, this is too long as many do not have the economic capital to apply a practice that will only start showing benefits after a few years. The least popular practices were stone and earthen bunds, grass strips, alley cropping and contour‐plowing. These prove to be more labour intensive, and with dwindling labour force in the area, the adoption trend favours other practices requiring relative less labour. Farmers could not control land degradation effectively, despite their efforts made to manage land. Broad policy recommendations are made in line with findings of the analysis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
海南橡胶园土壤持续利用措施的研究   总被引:3,自引:0,他引:3  
This research was designed to help solve existing sustainable use problems such as soil nutrient loss and soil fertility decline in natural rubber plantations located in the hilly land of the south central mountainous area of Hainan Island,China. Two different land management practices, sustainable and traditional, were adopted in a four-year experiment.Contour terraced fields and deep ditches for green manure were built in a sustainable way with a balanced, need-based application of complex fertilizer. Results of the four-year experiment showed that these sustainable measures compared to traditional measures improved available P and available K; had a 47.8% less soil erosion (an average of 3663 t km^-2 year^-1) and a 15.9% lower runoff coefficient of 0.53; increased the dry rubber yield by 42.4%; and improved the economic benefit by 2.4 times. The sustainable land management scheme not only improved land utilisation efficiency, hut also helped maintain soil fertility while increasing production in rubber plantations. It thereby offered a reasonable and sustainable use for land resources in the tropical mountainous areas.  相似文献   

7.
红壤坡地果园水土保持效益的研究   总被引:2,自引:0,他引:2  
试验研究红壤坡地果园水平梯田梯壁植草等 8种处理水土保持效益结果表明 ,不同处理间有显著差异 ,与全园裸露 (对照 )相比水平梯田梯壁植草水土保持效果最佳 ,其径流系数平均比对照减少 89.7% ,土壤侵蚀量控制基本达 10 0 % ,其他各处理均有不同程度防治水土流失的效果。生草栽培处理的土壤理化性质均有所改善  相似文献   

8.
Planting patterns have distinctive effects on the soil micro‐ecological environment and soil quality. To explore the effects of film mulch ridge‐furrow (FMRF) cropping on soil microbial properties and potato yield, a study was conducted in 2013 and 2014 in a continuously cropped field under nonfilm‐mulched flat plot (CK), half‐mulched flat plot (T1), fully mulched ridge cropping (T2), fully mulched furrow cropping (T3), half‐mulched ridge cropping (T4) and half‐mulched furrow cropping (T5) planting patterns. Our results indicate that T3 increased the average bacteria/fungi (B/F) ratio by 253% compared to CK. On average, half‐mulched ridge cropping increased the bacteria population and aerobic Azotobacter by 9 and 19%, respectively, compared with CK. On average, T3 had the greatest inhibitory effect on fungi populations. Half‐mulched furrow cropping had the most anaerobic Azotobacter and nitrifying bacteria. The study showed that FMRF increased soil bacteria, especially Azotobacter but reduced fungi and actinomycetes. Treatment T2 gave the greatest potato yield, followed by T4, whereas the greatest biomass yield was recorded in T4. Full‐mulch furrow cropping methods produced the greatest nutrient use efficiency. The findings of this study enhance our understanding of soil microbe and plant responses to plastic mulch and planting patterns under semi‐arid conditions.  相似文献   

9.
ABSTRACT

Soil fertility in many parts of the north?western Himalayan region (NWHR) has declined owing to accelerated nutrient mining under existing crop regime. Therefore, this study aimed to assess effect of the predominant horticulture?based land uses on soil fertility and health in mid and high hills of NWHR. Soil samples (0?20 cm) were collected, analyzed for different soil chemical attributes (pH, electrical conductivity, organic C, available primary-, secondary-, and micro-nutrients), and compared across five key land uses: perennial grass (PG), peach orchard (PO), apple orchard (AO), field vegetable farming (VF), and protected vegetable farming (PV). Soils of the investigated land uses were neutral to near neutral in soil reaction (6.3?6.8) except field vegetable and protected vegetable farming. Amount of soil organic C and labile organic C was significantly higher (p ≤ 0.05) in soils of apple orchards (18.6 g kg?1 and 687.3 mg kg?1, respectively) and peach orchards (20.4 g kg?1 and 731.3 mg kg?1, respectively) over others. An abrupt and significant increase in Olsen-P was recorded in soils of field vegetable farming (17.1 mg kg?1) and protected vegetable farming (13.0 mg kg?1), which shifted their nutrient index (NI) of P in to high category (≥ 2.33). The concentration of mineralizable-N in soil was statistically at par in soils under perennial grass and fruit orchards, while protected vegetable farming showed maximum soil mineralizable-N content (115.5 mg kg?1) and NI of nitrogen (1.83). The NI was in high category (≥ 2.33) for copper, iron, and manganese in majority of the land uses. In view of the results, temperate fruit?tree based land uses are benign in up?keeping soil fertility and soil health, and needs promotion on large scale. Additionally, policies to create incentives for the build-up of soil organic matter and replenishment of the depleted soil macro and micro nutrients in vegetable-farmed lands are warranted.  相似文献   

10.
翻耕与压实对坡地土壤溶质迁移过程的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
采用田间模拟降雨试验方法,研究地表翻耕与压实处理对坡地产流产沙及溶质迁移特征的影响。结果表明:与压实处理比较,翻耕坡地初始产流时间延长近3倍,降雨向土壤水转化率提高10%以上,产沙量增加67%;翻耕处理明显降低溶解态磷(DP)和泥沙浸提态磷(SEP)的流失量,但磷素流失形态(DP与SEP的比值)并未显著变化,始终以颗粒态形式流失为主;翻耕处理显著改变了溴的流失形态,溶解态溴(Br)与泥沙浸提态溴(SBr)流失量比值减少了72%;翻耕处理提高了溴(或硝态氮)的淋失概率,增大污染地下水体的潜在危险。因此,合理配置坡地免耕或翻耕措施,有机结合其他农艺耕作措施,对减少坡地水土及养分流失具有重要实践意义。  相似文献   

11.
不同农业耕作措施下坡耕地填洼量特征与变化   总被引:1,自引:4,他引:1  
洼地蓄水是坡耕地重要的水文要素,由于它与坡耕地产流、土壤入渗能力有关,故也是坡面水土流失研究的重要对象之一。为了进一步认识坡耕地洼地蓄水作用,该研究通过人工模拟降雨试验方法,对3种常用农业耕作措施(人工锄耕、人工掏挖、等高耕作)条件下地表填洼量特征与变化进行了深入研究,以平整坡面为对照措施。研究结果表明,实施农业耕作措施的粗糙坡面平均填洼量较平整坡面提高4~13倍,洼地蓄水量依次为等高耕作人工掏挖人工锄耕平整坡面;坡度对填洼量具有重要影响,洼地蓄水量随着坡度的变化可以用幂函数关系表达(R~20.70)。对于粗糙坡面,当坡度从15°增大到25°过程中,洼地蓄水量逐渐趋于稳定,受坡度的影响变小;在耕作坡面上,由于降雨侵蚀造成地表微地形变化,地表糙度减小,洼地蓄水量减小,地表填洼量变化可以通过地表糙度变化进行计算。  相似文献   

12.
Very few studies have investigated the factors affecting soil displacement and tillage erosion by hoeing tillage. This study adopted a magnetic tracer method to investigate the influences of hoe form and tillage depth on soil translocation over steep hillslopes in Southwest China using a new type of magnetic tracer, i.e., ilmenite powder. Ilmenite powder enhanced the magnetic sensitivity of soil at the end position of tracer distribution, and improved the accuracy and efficiency of tillage translocation measurements. Tillage translocation by wide and perforated hoes was found to be significantly correlated with slope gradient (< 0.01), however, no significant correlation was found for narrow and bidentate hoe tillage (> 0.05). Compared with wide hoes, the tillage erosion rates resulting from the use of narrow, perforated and bidentate hoes were reduced by 12.4%, 11.0%, and 16.3%, respectively, indicating that changes in hoe forms resulted in a marked decrease in downslope soil translocation and tillage erosion. Tillage erosion rate decreased by 64% when the tillage depth was reduced from 0.26 to 0.14 m. These results suggest that innovations in hoe form and reductions in tillage depth are important means to manage tillage erosion due to hoeing.  相似文献   

13.
选取位于丹江口库区的代表性坡耕地,通过野外调查与室内分析,研究种植不同作物(黄姜、红薯、芝麻与玉米)对土壤溅蚀的影响,同时探讨土壤溅蚀与作物株高、覆盖度及其土壤含水量、温度的相关性。结果表明:在作物生长前期,各处理土壤溅蚀差异不显著;在生长盛期,种植作物显著降低土壤溅蚀,其中相对于对照处理,黄姜处理降低幅度最小,芝麻与玉米次之,红薯则最大。相关分析表明,土壤溅蚀与作物覆盖度、土壤含水量及土温呈显著的一元二次曲线相关。因此,种植作物改变了坡耕地局部空间格局,使降雨发生空间再分布。  相似文献   

14.
No‐tillage (NT) cropping systems are becoming increasingly important in the Brazilian savanna. To evaluate their sustainability we compared soil chemical properties in 1‐ to 3‐year‐old NT systems following 9 to 11 years of conventional tillage (CT) with systems where CT was continuously in place for 12 years. In the rainy season 1997/98, NT was cropped with soybean and CT with corn while in the rainy season 1998/99 both systems were cropped with soybean. Soil solid phase samples were taken from the 0—0.15, 0.15—0.3, 0.3—0.8, 0.8—1.2, and 1.2—2 m layers on three spatially separated plots under each of NT and CT. Soil solution samples were collected weekly at 0.15, 0.3, 0.8, 1.2, and 2 m soil depth during two rainy seasons (14 October to 28 April 1997/98 and 1998/99). We determined soil moisture contents, pH, the concentrations of exchangeable cations, the electrical conductivity (EC) of the soil solution, and the concentrations of Al, C, Ca, Cl, K, Mg, Mn, Na, NH4+, NO3, P, S, and Zn in solid soil and soil solution samples. Differences in soil solid phase properties and moisture content between NT and CT were small, few were significant. Under NT, the average solution pH was significantly lower (5.5), Al (26 μg l—1), Mn (17 μg l—1) and total organic C concentrations (TOC, 6.5 mg l—1) were higher than under CT (pH: 6.0, Al: 14μg l −1, Mn: 14μg l −1, TOC: 5.5 mg l −1). Irrespective of the different crops in the first rainy season, under NT, the EC (205 μS cm—1), Ca (17 mg l—1), and Mg (2.9 mg l—1) concentrations at 0—0.3 m depth were lower than under CT (EC: 224 μS cm—1, Ca: 25 mg l—1, Mg: 5.6 mg l—1). At 1.2—2 m depth, the reverse order was observed (EC: 124 μS cm—1 under NT and 84 μS cm—1 under CT, Ca: 11 mg l—1 under NT and 7.5 mg l—1 under CT, Mg: 3.1 mg l—1 under NT and 1.8 mg l—1 under CT). Our results indicate that enhanced soil acidification because of higher rates of organic matter mineralization and a more pronounced nutrient leaching because of increased pore continuity may limit the sustainability of NT.  相似文献   

15.
红壤缓坡花生地不同水土保持措施效果分析   总被引:4,自引:0,他引:4       下载免费PDF全文
采用径流小区试验,以花生常规种植为对照,研究红壤荒坡花生地花生+草篱、花生+覆盖+草篱、花生+覆盖3种种植措施的水土保持效果.试验从4月份花生种植后开始测定,8月底花生收获结束.结果表明:1)3种种值措施地表径流量均随日降雨量的增大而增大;2)3种种植措施地表径流量、土壤侵蚀量均与对照差异显著(P<0.01).表明,花...  相似文献   

16.
 采用多坡段组合模型,通过室内人工模拟降雨实验,初步研究坡沟系统中片蚀、细沟侵蚀、浅沟及切沟侵蚀的水力、泥沙参数变化及其相互间的关系,以雷诺数、弗劳德数及过水断面单位能量为不同侵蚀方式发生的动力临界指标,初步得出不同侵蚀方式发生的水动力临界值,对揭示坡沟系统土壤侵蚀规律和产沙预报具有重要意义。  相似文献   

17.
Field experiments were conducted at two locations in the seleniferous region of northwestern India from 2001 to 2006 to evaluate the efficiency of four cropping systems in removing Se from contaminated soil containing 2843–4345 μg Se per kg in the surface layer (0–15 cm). Rapeseed (Brassica napus) followed by arhar (Cajanus cajan), sunn hemp (Crotalaria juncea) or cotton (Gossypium arboretum) and wheat (Triticum aestivum) followed by rice (Oryza sativa) were the four cropping systems. The total biomass generated by Brassica‐based systems ranged from 16 to 21 t/ha when harvested at maturity. Corresponding values for a wheat–rice sequence were 22–26 t/ha. Among the different crops at both the experimental sites, the highest Se content was recorded in leaves (157–209 mg/kg), grains (64–201 mg/kg) and stems (42–93 mg/kg) of Brassica and the lowest in the shoots (10–27 mg/kg), grains (5–13 mg/kg) and straw (13–20 mg/kg) of the rice crop. Except for S and P, concentrations of other nutrients (Zn, Cu, Mn and Fe) were not significantly affected by variations in the Se content of plants. Significant correlation coefficients were observed between Se and S (r = 0.838, P 0.001), Se and P (r = 0.817, P 0.001) at the peak flowering stage (n = 16), and r = 0.743, P 0.001 and r = 0.498, P 0.05, respectively, at the maturity stage (n = 16). Total Se removal through harvested biomass of rapeseed‐based cropping sequences varied from 716 to 1374 g/ha/yr at peak flowering and 736–949 g/ha/yr at the maturity stage. Corresponding values for a wheat–rice system were 435–492 and 370–517 g/ha/yr, respectively. The amount of Se recycled through leaf senescence ranged from 255 to 500 g/ha/yr for Brassica‐based cropping systems. In the wheat–rice system, Se addition through irrigation varied from 170 to 243 g/ha/yr and was three to four times more than that added in Brassica‐based systems. On completion of the phytoremediation experiments at site I, Se removal through harvested biomass at maturity was 1.7–5.1% of total Se in the soil down to a depth of 120 cm and 4.8–13.2% at site II. Analysis showed that Se losses under different crop rotations were 18.5–24.5% at site I and 21–33% at site II of total soil Se. Thus, at both sites 16–20% of total Se lost from the soil was unexplained. Results show that Brassica‐based cropping systems lead to significant reductions in Se capital of contaminated soil over 2–3 years. Although a long‐term commitment is required, adoption of Brassica‐based systems as a regular agricultural practice must lead to sustainable management of seleniferous soils.  相似文献   

18.
Few studies have demonstrated soil redistribution under upslope tillage (UT) rather than downslope tillage (DT) and its impact on soil organic carbon (SOC) redistribution in long‐term agricultural practices in hillslope landscapes. We selected two neighbouring sites from the Sichuan Basin, China, one under DT and the other under UT, to determine the pattern of soil and SOC redistribution under a long‐term UT practice. DT caused soil loss at upper slope positions and soil accumulation at lower slope positions. However, UT resulted in soil accumulation at upper slope positions and soil loss at lower slope positions. The total erosion rate decreased by 60.5% after 29 years of UT compared with DT. Having the same direction of soil movement by tillage and water exaggerated total soil loss, whereas having the two movements in the contrasting direction of soil for the two reduced it. SOC stocks at positions from summit to downslope were much larger (33.8%) and at toe‐slope positions were only slightly greater (4.5%) in the UT soils than comparable values for the DT site. The accumulation rate of SOC at the UT site increased by 0.26 Mg/ha/year compared with that at the DT site. It is suggested that soil movement by water and tillage erosion occurred in the same direction accelerates the depletion of SOC pools, whereas the opposite direction of soil movement for the two can increase SOC accumulation. Our results suggest that UT has significant impacts on soil redistribution processes and SOC accumulation on steeply sloping land.  相似文献   

19.
Abstract. A methodology is presented that explores soil survey information at the national level (1:1 M), generating sustainability indicators for wheat cultivation in Uruguay. Potential yields were calculated for simplified crop production situations under several constraints, such as limitation of water availability calculated from soil physical properties and climatic conditions, and limitation of nutrient availability calculated from soil fertility and climatic conditions. Land quality sufficiency was examined by comparing these yields with the constraint-free yield conditioned only by solar radiation, temperature and the crop's photosynthetic properties. Crop growth was simulated only for areas suitable for the defined agricultural use. Model runs were repeated with inclusion of a topsoil loss scenario over 20 years as defined from an erosion risk analysis. Comparison between crop growth simulations for the two situations, gives an indication of the changes in land quality status, which supplies an indicator for agroecological sustainability.
On the basis of crop growth simulation it is concluded that wheat production constraints in Uruguay appear to be mainly related to water availability limitations, while nutrient availability is near optimal for the suitable soils. The simulated loss of topsoil impacts most on soil physical properties, expressed in reduced water-limited yields. Soil fertility status, evaluated by change in nutrient-limited yields, was little affected by the scenario.  相似文献   

20.
Soil erosion is a major constraint to crop production on smallholder arable lands in Sub‐Saharan Africa (SSA). Although different agronomic and mechanical measures have been proposed to minimize soil loss in the region and elsewhere, soil management practices involving biochar‐inorganic inputs interactions under common cropping systems within the framework of climate‐smart agriculture, have been little studied. This study aimed to assess the effect of different soil and crop management practices on soil loss characteristics under selected cropping systems, typical of the sub‐region. A two‐factor field experiment was conducted on run‐off plots under different soil amendments over three consecutive cropping seasons in the semi‐deciduous forest zone of Ghana. The treatments, consisting of three soil amendments (inorganic fertilizer, biochar, inorganic fertilizer + biochar and control) and four cropping systems (maize, soyabean, cowpea, maize intercropped with soyabean) constituted the sub‐plot and main plot factors, respectively. A bare plot was included as a soil erosion check. Seasonal soil loss was greater on the bare plots, which ranged from 9.75–14.5 Mg ha?1. For individual crops grown alone, soil loss was 31%–40% less under cowpea than under maize. The soil management options, in addition to their direct role in plant nutrition, contributed to significant (p < 0.05) reductions in soil loss. The least soil loss (1.23–2.66 Mg ha?1) was observed under NPK fertilizer + biochar treatment (NPK + BC) over the three consecutive cropping seasons. Biochar in combination with NPK fertilizer improved soil moisture content under cowpea crops and produced considerably smaller bulk density values than most other treatments. The NPK + BC consistently outperformed the separate mineral fertilizer and biochar treatments in biomass yield under all cropping systems. Biochar associated with inorganic fertilizers gave economic returns with value–cost ratio (VCR) > 2 under soyabean cropping system but had VCR < 2 under all other cropping systems. The study showed that biochar/NPK interactions could be exploited in minimizing soil loss from arable lands in SSA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号