首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cast zein films are brittle at room conditions, so plasticizers are added to make them more flexible. The tensile properties of these films are known to be affected by the relative humidity (RH) of the ambient air. However, little is known about how the plasticizers are affected by RH. Cast zein films were plasticized with either glycerol (GLY), triethylene glycol (TEG), dibutyl tartrate (DBT), levulinic acid (LA), polyethylene glycol 300 (PEG), or oleic acid (OA). Mechanical properties and moisture content (MC) of the films were measured after one week of storage at 3, 20, 50, 70, 81, and 93% RH. The relative humidity of the films' storage had a great effect on the films' tensile properties. All the films' tensile strength and Young's modulus values decreased as RH increased. Films containing DBT, TEG, LA, or PEG showed an increase in the percent elongation with increasing RH. Films containing GLY, OA, or no plasticizer did not show any increase in percent elongation as RH increased. The changes seen in tensile properties with increasing RH are because of zein's hygroscopic nature. The absorbed water will further plasticize the zein. The type of plasticizer used determined the extent of the changes seen in the tensile properties of films stored at different RH values. Depending on the plasticizers used in the film, there were large differences in the amount of water absorbed. Films increasingly absorbed water depending on the plasticizer they contained in the order GLY > TEG > LA > PEG > NONE > DBT > OA. Films containing hygroscopic plasticizers like TEG absorbed too much water at high RH and became weak, but they absorbed enough water at lower RH values to not be brittle. While films containing the more hydrophobic plasticizer DBT were brittle at intermediate RH values, they had good mechanical properties at high RH values.  相似文献   

2.
Homogeneous blends of corn gluten meal (CGM) and "polar" plasticizers (water, glycerol) or "amphiphilic" plasticizers [octanoic and palmitic acids, dibutyl tartrate and phthalate, and diacetyl tartaric acid ester of mono-diglycerides (DATEM)] were obtained by a hot-mixing procedure. The glass transition temperature (T(g)) of the blends was measured by modulated differential scanning calorimetry and dynamic mechanical thermal analysis, as a function of plasticizer type and content (0-30%, dwb). The plasticizing efficiency (i.e., decrease of T(g)) at equal molar content was found to be proportional to the molecular weight and inversely proportional to the percent of hydrophilic groups of the plasticizer. The migration rate of the plasticizers in the polymer was related to their physicochemical characteristics. It was assumed that polar substances interacted with readily accessible polar amino acids, whereas amphiphilic ones interacted with nonpolar zones, which are buried and accessible with difficulty. The temperature at which a thermoplastic resin of plasticized CGM could be formed was closely connected to the T(g) of the blend.  相似文献   

3.
Water sorption, water vapor permeability, and tensile properties were evaluated for zein films plasticized with oleic acid. The effect of relative humidity on water vapor permeability and tensile properties of films was investigated. Samples were produced by two different methods: casting from a zein solution and stretching from a zein-fatty acid resin. Films were also coated with linseed oil. Results indicated that preparation method affected water sorption and permeability of zein films. Resin films showed lower water sorption than cast films, especially at high Aw values. Water vapor permeability was also lower for resin films. Coating with linseed oil further improved water vapor barrier ability of resin films. Permeability was affected by environmental relative humidity; higher relative humidity resulted in increased permeability. Environmental relative humidity also affected tensile properties of resin films. Toughness and elongation were improved when relative humidity increased from 50 to 85% rh. Tensile strength showed a maximum at 75% rh. Coating improved elongation and toughness of films. Maximum elongation and toughness were observed for coated samples at 85% rh. Zein resin films showed good tensile and water barrier properties that were maintained through environmental humidity levels from 50 to 98% rh.  相似文献   

4.
以硬脂酸作为增塑剂,胱氨酸作为交联剂制备具有一定力学性能和良好抗湿性能的大豆分离蛋白复合膜。将膜放在25℃,相对湿度为50%的干燥器中平衡两天,用质构仪测定膜的抗拉强度(TS),延伸率(E(%))。在水分活度aw为0.10~0.90的范围内研究了复合膜在25℃的吸湿特性。吸湿速率和吸湿等温线数据分别拟合到Peleg's 方程和GAB(Guggenheim-Anderson-de Boer)模型。结果表明:大豆蛋白复合膜的TS、延伸率E(%)以及吸湿速率随着硬脂酸和胱氨酸的添加比率显著地变化。硬脂酸和胱氨酸的最佳添加比率为40∶60(w/w)(每升蛋白质溶液中加入10 g混合添加剂),此时,大豆蛋白膜的强度比原来提高2倍,并且有最佳的吸湿速率。吸湿数据和GAB 模型有很高的拟合度,拟合系数最高达0.99。  相似文献   

5.
Interest in biodegradable materials for packaging and agricultural uses has grown in recent years. Plant proteins have been proposed as inexpensive, renewable, and abundant feedstock. Corn zein was investigated based on value-added considerations and on the unique thermoplastic and hydrophobic properties of zein. Films prepared from zein are known to be tough and resistant, but also hard and brittle, thus requiring the addition of plasticizers to improve flexibility. The objectives of this research were to study the tensile properties, water absorption, and microstructure of zein sheets plasticized with palmitic and stearic acids. Both palmitic and stearic acids showed similar effects as plasticizers of zein. Tensile strength of zein sheets increased with the addition of low levels of plasticizers. However, beyond a critical point, tensile strength decreased with further addition of fatty acids. Water absorption decreased continuously with increasing fatty acid content. Kinetic parameters indicated fatty acids decreased water absorption by decreasing the saturation level of zein sheets. Coating zein with flax oil decreased the rate of water absorption by sealing off surface pores. Scanning electron micrographs of zein sheets showed the development of layered structures as fatty acid content increased. Zein-fatty acid layers were believed to be responsible for the increased tensile strength of plasticized zein sheets and to have contributed to increased resistance to water absorption.  相似文献   

6.
The glass transition temperature and rheological moduli of plasticized corn gluten meal (CGM) were determined with dynamic mechanical thermal analysis (DMTA). The tested plasticizers were water, glycerol, polyethylene glycols (PEG) 300 and 600, glucose, urea, diethanolamine, and triethanolamine, at concentrations of 10–30% (dwb). The glass transition temperature (Tg) of CGM, measured at 188°C when unplasticized, was lowered by >100°C at 30% plasticizer content, except by PEG 600 and glucose, which showed limited compatibility with CGM proteins. The highest plasticizing efficiency, on a molar basis, was measured with PEG 300 and was attributed to the large number of hydrophilic groups and the high miscibility of this compound with CGM proteins. The change in Tg due to the plasticizing effect was modeled with the Gordon and Taylor equation, but a better fit of the experimental data was obtained with the Kwei equation.  相似文献   

7.
The effect of moisture content and film composition on biodegradability is the focus of this study. Flexible films were first characterized for the effect on water sorption isotherms of relative humidity, temperature, zein content, and the addition of the plasticizers stearic acid, poly(ethylene glycol), or etoxylated ricine oil. Zein/ethylcellulose (EC) mixture films had a behavior between that for pure zein and EC films, which had the lowest water sorption. For films with plasticizer, the lowest water sorption at 25 degrees C was observed for those with stearic acid. Biodegradability of zein/EC films, evaluated using bacterial cultures selected for their zein proteolytic activity and isolated from a local solid waste landfill and a lagoon, showed no plasticizer effect even though its effect on moisture content was significant. Large differences were observed at different film zein concentration with the highest biodegradability for 100% zein. However, biodegradability did not mimic the water sorption behavior of zein/EC mixture films.  相似文献   

8.
Oxygen permeabilities (OP) of CO(2)-casein (CO(2)CN), calcium caseinate (CaCN), and acylated casein (AcCN) films were determined as functions of % relative humidity (% RH), temperature, and plasticizer type. Tensile properties and water vapor permeabilities (WVP) were also measured. Plasticizers were glycerol (GLY) or a 3:1 ratio of GLY:poly(propylene glycol) (PPG), a hydrophobic plasticizer. OP of the CO(2)CN:GLY film was almost twice that of films containing either plasticizer at 35% RH, but its OP approached that of the other films at 70% RH. OP and WVP of films plasticized with GLY were greater than that for films plasticized with PPG. Plasticizer type had little impact on the tensile strength of CO(2)CN films while tensile strength of CaCN-GLY:PPG (3:1) films approximately doubled. Results show that structural dissimilarities in the films contribute to differences in OP only under conditions of low RH where the plasticizing effects of water are not significant.  相似文献   

9.
Chitosan films were plasticized with four hydrophilic compounds, namely, glycerol (GLY), ethylene glycol (EG), poly(ethylene glycol) (PEG), and propylene glycol (PG). Our objective was to investigate the effect of plasticizers on mechanical and surface properties of chitosan films. The stability of plasticized films was observed by storage for 3 and 20 weeks in an environmental chamber at 50 +/- 5% RH and 23 +/- 2 degrees C. Plasticization improves the chitosan ductility, and typical stress-strain curves of plasticized films have the features of ductile materials, except the film made with 5% PG that exhibits as a brittle polymer and shows an antiplasticization effect. In most cases, the elongation of plasticized films decreases with the storage time, which might be due to the recrystallization of chitosan and the loss of moisture and plasticizer from the film matrix. Although at the beginning the mechanical properties of films made with PG, at high plasticizer concentration, are comparable to those of films made with EG, GLY, and PEG, their stability is poor and they tend to become brittle materials. The surface properties, analyzed by contact angle measurement, reveal that plasticization increases film hydrophilicity. It is found that GLY and PEG are more suitable as chitosan plasticizers than EG and PG by taking into account their plasticization efficiency and storage stability. Furthermore, a plasticizer concentration of 20% (w/w) with GLY or PEG seemingly is sufficient to obtain flexible chitosan film with a good stability for 5 months of storage.  相似文献   

10.
Brown rice flour was mixed with a Chinese medical plant (Euryale ferox Salisb.) and processed to make ready‐to‐eat breakfast cereals using twin‐screw extrusion. Levels of 15 and 20% feed moisture in flour, and 200 and 250 rpm screw speed were set, and the physicochemical properties and content of α‐, β‐, γ‐, and δ‐tocopherols were determined. The data showed that 15% feed moisture gave a low bulk density and water absorption index but a high expansion ratio and water solubility index. High screw speed (250 rpm) produced a result similar to that of 15% feed moisture. A sample with 85% brown rice flour with 15% E. ferox Salisb. retained the highest content of α‐, β‐, γ‐, and δ‐tocopherols (125, 6, 78, and 9 μg/g), respectively. The optimum extrusion conditions determined were 15% E. ferox Salisb. mixed with brown rice at 15% feed moisture and at 250 rpm screw speed.  相似文献   

11.
Effects of formulation on the textural stability of intermediate‐moisture, flour‐based, “jerky”‐type extrudates were assessed. Potato‐based extrudates containing various particulate‐meat concentrations and different plasticizers (sucrose, fructose, glycerol, and glucose) were produced and subjected to accelerated storage for three weeks. The elastic modulus of the samples was measured before storage and then weekly. The relative fluidity and moisture mobility of the specimens were assessed by dynamic mechanical spectrometry (DMS), electron spin resonance (ESR), and nuclear magnetic resonance (NMR). Samples were also evaluated by fluorometry and X‐ray diffraction to determine the extent of browning reaction and degree of molecular ordering, respectively. While elastic modulus increased appreciably during storage, firming was progressively reduced by entrained meat content and also by plasticizers, especially glycerol; plasticized and meat‐containing samples had correspondingly lower tan δ peak temperatures as measured by DMS. Textural results were also in keeping with fluidity and local viscosity as assessed by ESR measurements. NMR T1 relaxation values, reflecting moisture mobility, increased during storage. Diffraction spectra were consistent with published observations of hydrated starch, suggesting that water may have been released due to increased association of proteinaceous constituents. Fluorescence measurements confirmed moderate Maillard browning in all samples and significant chlorogenic browning in glucose‐containing samples, although these effects were unrelated to degree of firming. It was concluded that textural stability was optimized by interruption of the matrix by dispersed meat or by plasticization by low molecular weight constituents.  相似文献   

12.
为了进一步利用农林剩余物资源替代石化原料,该研究以腰果酚为原料,通过对其酚羟基进行酯化改性,制备腰果酚基乙酸酯(cardanol acetate,CA)增塑剂。采用核磁共振氢谱(1H nuclear magnetic resonance,1H NMR)和核磁共振碳谱(13C nuclear magnetic resonance,13C NMR)对产物的结构进行表征。通过动态力学性能(dynamic thermo mechanical analysis,DMA),拉伸性能测试,热重分析(thermogravimetric analysis,TGA),以及与聚氯乙烯(polyvinyl chloride,PVC)共混样品的傅里叶红外分析(fourier transform infrared spectroscopy,FT-IR)等方法,评价腰果酚基乙酸酯作为辅助增塑剂应用于软质聚氯乙烯的增塑效果,并与商业增塑剂对苯二甲二辛酯(bis(2-ethylhexyl)benzene-1,4-dicarboxylate,DOTP)进行对比。研究结果表明,m(DOTP)∶m(CA)=4∶6为较佳配伍比例,共混体系的玻璃化转变温度由41.52℃降低至35.93℃,断裂伸长率由244.75%增加到了302.13%,热稳定性及相容性均得到有效改善,因此腰果酚基乙酸酯可用作聚氯乙烯的优良辅助增塑剂。研究结果为腰果酚在增塑剂领域的应用提供了参考。  相似文献   

13.
The goal of this work was to study the effect of storage time on the functional properties of glutenin films plasticized with selected hydrophilic low molecular weight compounds: glycerol (GL), triethanolamine (TEA), and sorbitol (S). Glutenins were extracted from wheat gluten, and films were cast from film-forming solutions. The glutenin-based films were homogeneous, flexible, translucent, and easy to handle. Films were stored in an environmental chamber at 50 +/- 5% realtive humidity and 23 +/- 2 degrees C. Optical, mechanical, and water vapor permeability properties were monitored at regular intervals for 16 weeks. Films plasticized with GL and TEA had similar mechanical and water vapor barrier properties during the first few days of fabrication. Films plasticized with S were stronger, with better water vapor barrier properties. Mechanical and water vapor permeability properties of films plasticized with GL changed dramatically over time, whereas the properties of films plasticized with TEA and S remained stable during storage. Color properties of films plasticized with GL, TEA, and S did not change within the time period studied.  相似文献   

14.
This work was focused on the relationship between the microstructure and the mechanical and barrier properties of whey protein isolate (WPI) films. Sorbitol (S) and glycerol (G) were used as plasticizers and the pH was varied between 7 and 9. The films were cast from heated aqueous solutions and dried in a climate room at 23 degrees C and 50% relative humidity for 16 h. The microstructure of the films was found to be dependent on the concentration, the plasticizers, and the pH. When the concentration increased, a more aggregated structure was formed, with a denser protein network and larger pores. This resulted in increased water vapor permeability (WVP) and decreased oxygen permeability (OP). When G was used as a plasticizer instead of S, the microstructure was different, and the moisture content and WVP approximately doubled. When the pH increased from 7 to 9, a denser protein structure was formed, the strain at break increased, and the OP decreased.  相似文献   

15.
Zein films plasticized with oleic acid have been considered potentially useful for biodegradable packaging applications. However, moisture was found to affect their tensile and gas barrier properties. We investigated the effects of two converting processes, fusion lamination and coating with drying oils, on tensile properties and gas permeability of zein films. Zein films were laminated to 4-ply sheets in a Carver press and coated with tung oil, linseed oil, or a mixture of tung and soybean oils. Tensile properties and permeability to water vapor, oxygen, and carbon dioxide were measured according to ASTM methods. Laminated films were clearer, tougher, and more flexible, and had a smoother finish than nontreated sheets. Lamination decreased O(2) and CO(2) permeability by filling in voids and pinholes in the film structure. Coating increased tensile strength and elongation and decreased water vapor permeability. Coatings acted as a composite layer preventing crack propagation and increasing film strength. They also formed a highly hydrophobic surface that prevented film wetting.  相似文献   

16.
omega-3 Fatty acids have numerous health benefits, but their addition to foods is limited by oxidative rancidity. Spray-drying tuna oil-in-water emulsion droplets with a coating of lecithin and chitosan multilayer system could produce emulsion droplet interfacial membranes that are cationic and thick, both factors that can help control lipid oxidation. Physicochemical and oxidative stability of the spray-dried emulsions were determined as a function of storage temperature and relative humidity (RH). The combination of ethylenediaminetetraacetic acid (EDTA) and mixed tocopherols was able to increase the oxidative stability of dried emulsions. Lipid oxidation was more rapid during storage at low relative humidity (11% and 33% compared to 52% RH). At high moisture, physical modifications in the sample were observed, including reduced dispersibility and formation of brown pigments. Sugar crystallization or Maillard products produced at the higher humidities may have inhibited oxidation. Overall, spray-dried tuna oil-in-water emulsions stabilized by lecithin-chitosan membranes were more oxidatively stable than bulk oils and thus have excellent potential as an omega-3 fatty acid ingredient for functional foods.  相似文献   

17.
Certain food additives commonly used in flour products also have a plasticization effect on product shelf life regarding retrogradation. Sucrose, sorbitol, glycerol, citric acid, and acetic acid at 25, 25, 25, 0.5, and 0.5%, respectively, were added to two different starch gel systems: slurry (high‐amylose rice flour gel) and dough (waxy rice flour dough). All plasticizers increased gelatinization temperature, decreased enthalpy (ΔH), and promoted a more homogeneous system. Sucrose had the greatest effect on gelatinization increase. Rice dough was more susceptible to plasticizers, resulting in higher moisture content and a more amorphous structure. Retrogradation was highly positively correlated with amylose content, moisture retention, ratio of protons of water/starch, and previous occurrence of retrogradation. Moisture retention was increased in plasticizer‐added samples, especially waxy rice dough. Over a longer storage period, sucrose and sorbitol showed an antiplasticization effect in waxy rice flour dough, but glycerol and acid caused higher retrogradation in high‐amylose rice flour gel.  相似文献   

18.
Free‐standing films were prepared from zein formulations containing 30, 40, 50, 60, 70, and 80% oleic acid (OA). Zein/OA formulations were also used as coating films for rodent diet bars. Water vapor permeability (WVP) of films and moisture loss rate (MLR) of coated rodent diet bars were measured at 4 and 25°C. Temperature affected the water barrier properties of films and coatings. At 4°C, WVP of films decreased with OA concentration while it increased at 25°C. WVP behavior was attributed to oleic acid phase changes due to temperature. At 4°C, OA is a crystalline solid that limits water diffusion through the films. At 25°C, liquid OA increased the system free volume and allowed for water diffusion. The effect was more pronounced the higher the OA concentration in films. Differential scanning calorimetry (DSC) of zein/OA films showed endothermic peaks at 12–18°C, confirming the melting of OA in that temperature range. MLR of coated rodent diet bars was also affected by temperature and OA concentration in coating formulations. In this case, formulations containing 40, 50, and 60% OA were better moisture barriers than coatings with higher OA content at both 4 and 25°C. Moisture losses were reduced at 4°C due to OA solidification.  相似文献   

19.
Corn zein was cross-linked with glutaraldehyde (GDA) using glacial acetic acid (HAc) as catalyst. The objectives are to evaluate the swelling characteristics of GDA cross-linked zein gels in water, ethanol, and their combinations. Similar formulations, upon solvent evaporation, form films. The mechanical properties of the films are compared to compression molded tensile bars from GDA melt-processed zein as a second objective. Chemistry of the cross-linking reaction was based on the aldehyde binding characteristics defined by use of fluorescence spectroscopy; sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) to demonstrate the cross-linking reaction; FTIR to observe absorption differences of the cross-linked product; differential scanning calorimetry, dynamic mechanical analysis and thermogravimetric analysis to assess thermal properties; and the use of Instron Universal Testing Machine to evaluate mechanical properties. A reaction mechanism for acid catalyzed GDA cross-linking of zein is proposed. Thermal and mechanical properties of tensile bars cut from either film or formed by compression molding were similar, where both showed increased tensile strengths, ductility and stiffness when compared with unmodified controls. Samples that were reacted with 8% GDA by weight based on weight of zein from either process retained their integrity when tensile bars from each were subjected to boiling water for 10 min or soaking in either water or HAc for 24 h. The melt-processed, cross-linked zein is a more environmentally friendly method that would eliminate the need for HAc recovery.  相似文献   

20.
对于污水处理潜水搅拌机效率在国内目前尚无计算公式和相关的概念,只有水推力、转矩、转速等参数,但是效率又是每个机械不得不考虑的一个参数。该文在分析潜水搅拌机功率损失的基础上,利用功率定义以及动量守恒推导出潜水搅拌机的效率计算公式,得出搅拌机的效率与水推力的3/2次方成正比,与叶片直径成反比,与潜水搅拌机的轴功率成反比的关系。利用此公式,分析了目前国内普遍使用的25款搅拌机效率现状,效率普遍偏低,五分之四的效率低于60%;并对某潜水搅拌机效率进行数值模拟分析,其池内流体平均流速为0.291m/s,效率为62.43%。污水处理潜水搅拌机效率公式的定义与探讨,为行业内潜水搅拌机的设计与应用提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号