首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemical and microbial properties of afforested mine soils are likely to depend on the species composition of the introduced vegetation. This study compared the chemical and microbial properties of organic horizons and the uppermost mineral layers in mine soils under pure pine (Pinus sylvestris), birch (Betula pendula), larch (Larix decidua), alder (Alnus glutinosa), and mixed pine–alder and birch–alder forest stands. The studied properties included soil pH, content of organic C (Corg) and total N (Nt), microbial biomass (Cmic), basal respiration, nitrogen mineralization rate (Min-N), and the activities of dehydrogenase, acid phosphomonoesterase, and urease. Near-infrared spectroscopy (NIR) was used to detect differences in the chemical composition of soil organic matter under the studied forest stands. There were significant differences in Corg and Nt contents between stands in both O and mineral soil horizons and also in the chemical composition of the accumulated organic matter, as indicated by NIR spectra differences. Alder was associated with the largest Corg and Nt accumulation but also with a significant decrease of pH in the mineral soil. Microbial biomass, respiration, the percentage of Corg present as Cmic, Min-N, and dehydrogenase activity were the highest under the birch stand, indicating a positive effect of birch on soil microflora. Admixture of alder to coniferous stand increased basal respiration, Min-N, and activities of dehydrogenase and acid phosphomonoesterase as compared with the pure pine stand. In the O horizon, soil pH and Nt content had the most important effects on all microbial properties. In this horizon, the activities of urease and acid phosphomonoesterase did not depend on microbial biomass. In the mineral layer, however, the amount of accumulated C and microbial biomass were of primary importance for the enzyme activities.  相似文献   

2.
In 11 rain‐fed arable soils of the Potohar plateau, Pakistan, the amounts of microbial‐biomass C (Cmic), biomass N (Nmic), and biomass P (Pmic) were analyzed in relation to the element‐specific total storage compartment, i.e., soil Corg, Nt, and Pt. The effects of climatic conditions and soil physico‐chemical properties on these relationships were highlighted with special respect to crop yield levels. Average contents of soil Corg, Nt, and Pt were 3.9, 0.32, and 0.61 mg (g soil)–1, respectively. Less than 1% of Pt was extractable with 0.5 M NaHCO3. Mean contents of Cmic, Nmic, and Pmic were 118.4, 12.0, and 3.9 µg (g soil)–1. Values of Cmic, Nmic, Pmic, soil Corg, and Nt were all highly significantly interrelated. The mean crop yield level was closely connected with all soil organic matter– and microbial biomass–related properties, but showed also some influence by the amount of precipitation from September to June. Also the fraction of NaHCO3‐extractable P was closely related to soil organic matter, soil microbial biomass, and crop yield level. This reveals the overwhelming importance of biological processes for P turnover in alkaline soils.  相似文献   

3.
Scale-dependent spatial variability of microbiological characteristics in soil of a beech forest The spatial variability of the microbial biomass content (Cmic), the microbial respiration rate (basal respiration) and the metabolic quotient (qCO2) was analyzed in sandy Cambisols and Luvisols in a beech forest in Northern Germany. Highest variability of microbiological features and, thus, the distance of independent samples was around 10 m that is discussed with reference to spatial hierarchy. Structural changes between the 10 m and 50 m grid were suggested for the Ah horizon due to the break of correlations of Cmic content and the contents of Corg and plant-available Ca, Mg, K and Nt. The Cmic content correlated with the Corg content close to tree trunks and ecotones like borders of the forest and clearings. The qCO2 did not generally increase with declining pH value. High H+ concentrations and Corg content in the litter layer near to the tree trunk indicated retarded microbial mineralization rates. High proportion of microorganisms that are resistant to low pH value and adjusted ro readily-degradable substrates seems to dominate in the soil close to the tree.  相似文献   

4.
Vermicompost (VC) produced from distillation waste of geranium (Pelargonium graveolens), farmyard manure (FYM) produced from animal excreta mixed with pine needle (Pinus sp.), and biofertilzer (Azotobacter) were utilized for this experiment. The plant growth attributes, biomass, and oil yield of geranium were significantly increased with integrated nutrient supply, and maximum increase was found in T8 treatments (N100P60 K60 + 5t VC). Soil organic carbon (Corg) significantly increased by 4.2% to 81.8% in T4 and T8 treatments, respectively, over the control. Data obtained on total nitrogen (Nt) and available N, phosphorus (P), and potassium (K) clearly showed that the integrated nutrient supply considerably improved the soil health and sustainability. The soil respiration and microbial biomass C (Cmic) and N (Nmic) were increased by the manures according to the application rate. The Cmic accounted for 1.8 to 2.7% of the soil Corg content and microbial N accounted for 3.9 to 5.8 % of Nt under different treatment combinations.  相似文献   

5.
The relationships of soil microbial biomass C (Cmic) or N (Nmic) with mean annual precipitation and temperature were studied along a climatic transect in the Mongolian steppe. Soil organic C (Corg) and total N (Nt), respiration rate, Cmic and Nmic at depths of 0–5 and 5–10 cm decreased with increasing aridity. The contents of Corg and Nt in the 0- to 5-cm soil layers decreased linearly with precipitation reduction along the transect. Cmic and Nmic changes with precipitation were not linear, with higher changes between 330 and 128 mm mean annual precipitation. Cmic/Corg and Nmic/Nt increased with increasing aridity. The metabolic quotient qCO2 of 0- to 5-cm soil layers was low between 330 and 273 mm precipitation. The relationship between the qCO2 of the 0- to 5-cm soil layers and the mean annual precipitation was well fitted with a quadratic function y =0.0006x2 –0.40x +86.0, where y is the qCO2 (µmol CO2-C mmol–1 Cmic) and x is the mean annual precipitation (mm). Corg, Nt, Cmic, Nmic and respiration rate decreased exponentially with increasing mean annual temperature in both the 0- to 5- and 5- to 10-cm soil layers, and change rate was lower when the mean annual temperature was higher than 2.6°C. The close relationships of the mean annual precipitation or temperature with soil Corg, Nt, Cmic, Nmic, Cmic/Corg and qCO2 indicate that each parameter can be calculated by determining the other parameters in this specific climatic range.  相似文献   

6.
Microbial biomass, microbial respiration, metabolic quotient (qCO2), Cmic/Corg ratio and nutrient status of the microflora was investigated in different layers of an aspen (Populus tremuloides Michx.) and pine forest (Pinus contorta Loud.) in southwest Alberta, Canada. Changes in these parameters with soil depth were assumed to reflect successional changes in aging litter materials. The microbial nutrient status was investigated by analysing the respiratory response of glucose and nutrient (N and P) supplemented microorganisms. A strong decline in qCO2 with soil depth indicated a more efficient C use by microorganisms in later stages of decay in both forests. Cmic/Corg ratio also declined in the aspen forest with soil depth but in the pine forest it was at a maximum in the mineral soil layer. Microbial nutrient status in aspen leaf litter and pine needle litter indicated N limitation or high N demand, but changes in microbial nutrient status with soil depth differed strongly between both forests. In the aspen forest N deficiency appeared to decline in later stages of decay whereas P deficiency increased. In contrast, in the pine forest microbial growth was restricted mainly by N availability in each of the layers. Analysis of the respiratory response of CNP-supplemented microorganisms indicated that growth ability of microorganisms is related to the fungal-bacterial ratio.  相似文献   

7.
Soil microorganisms are actively involved in many processes of the soil N cycle and are strong competitors with plants for soil N. Therefore, microbial dynamics are important factors in controlling forest productivity. Nevertheless, they are poorly studied especially in relation to forest age, which can produce strong effects on the microbial community by affecting the forest floor environment. In the present study, seasonal variations of soil microbial N (Nmic) were monitored in an old floodplain hardwood forest (270 years) and in a young hardwood plantation (19 years) in two soil horizons (0–15 and 15–30 cm). Although the differences according to time of sampling and soil horizon were statistically significant, Nmic was significantly higher in old than in young forest, especially for the deeper soil layer. However, the highest percentage of total N (Ntot) immobilised in microbial biomass was found in the surface soil layer of the young plantation. Soil organic C (Corg) explained 23% of the spatial–temporal variation of Nmic over all sampling periods in the old forest, whereas the linear combination of Ntot, total extractable soil N (Ntotex) and the C/N ratio explained 59% of variation in Nmic when considering only the growing season. In contrast, Corg and Ntotex explained 59% of variation in Nmic in the young stand when considering all sampling periods and 75% when the analysis was limited to growing season. Soil moisture did not show any significant correlation with Nmic in either site. The sensitivity of Nmic to variation in Corg and Ntot seems to be affected by forest age, being higher in young than in old forest. Finally our results indicate that during the growing season, when the Ntotex availability is low, the dynamics of Nmic and Ntotex are temporally interdependent, suggesting the existence of a reciprocal control whose mechanisms deserve to be elucidated.  相似文献   

8.
The aim of study was to evaluate the variation of soil microbial biomass carbon (Cmic) and microbial respiration (MR) in three types soil (Chromic Cambisols, Chromic Luvisols and Eutric Leptosols) of mixed beech forest (Beech- Hornbeam and Beech- Maple). Soil was randomly sampled from 0–10 cm layer (plant litter removed), 90 soil samples were taken. Cmic determined by the fumigation-extraction method and MR by closed bottle method. Soil Corg, Ntot and pH were measured. There are significant differences between the soil types concerning the Cmic content and MR. These parameters were highest in Chromic Cambisols following Chromic Luvisols, while the lowest were in Eutric Leptosols. A similar trend of Corg and Ntot was observed in studied soils. Two-way ANOVA indicated that soil type and forest type have significantly effect on the most soil characteristics. Chromic Cambisols shows a productive soil due to have the maximum Cmic, MR, Corg and Ntot. In Cambisols under Beech- Maple forest the Cmic value and soil C/N ratio were higher compared to Beech-Hornbeam (19.5 and 4.1 mg C g–1, and 16.3 and 3.3, respectively). This fact might be indicated that Maple litter had more easy decomposable organic compounds than Hornbeam. According to regression analysis, 89 and 68 percentage of Cmic variability could explain by soil Corg and Ntot respectively.  相似文献   

9.
Interactions between microbial communities and organic matter were analyzed for soils from the project regions ’︁Ecosystem Research in the Agricultural Landscape/FAM, Munich’ in southern Germany and ’︁Ecosystem Research in the Bornhöved Lake district’ from northern Germany using ratios between microbial biomass content (Cmic), microbial metabolic quotient (qCO2) and organic carbon content (Corg). In the agricultural soils in southern Germany, the qCO2/Corg ratio differed significantly with respect to agricultural management in contrast to ecophysiological Cmic/Corg ratio. In addition, Cmic/Corg ratio decreased from 39 to 21 mg Cmic g—1 Corg and qCO2/Corg ratio increased from 72 to 180 mg CO2‐C g—1 Cmic h—1 (g Corg g—1 soil)—1 with increasing soil depth. For the upper soil horizons from the landscape in northern Germany the two quotients differed significantly with reference to land use showing highest microbial colonization under grassland and lowest under beech forest. In contrast, C use efficiency was lowest in arable field under maize monoculture and highest in a wet grassland having a high organic C content.  相似文献   

10.
Various parameters of the soil microbial community may be used in soil quality evaluation and environmental risk assessment. The objectives of this study were to assess the effects of different environmental factors on the characteristics of forest humus microbial communities, and to test which environmental factors most affect the gross microbial indices and physiological profiles of these communities. Samples were taken at 71 plots located in a heavily polluted area of the Krakowsko-Cze¸stochowska upland in southern Poland. The samples were analyzed for pH in KCl (pHKCl), organic C (Corg), total N (Nt) and S (St), and for total and soluble Zn, Pb and Cd concentrations. The considered microbial parameters included basal respiration (BAS), microbial biomass (Cmic), Cmic-to-Corg ratio, and community-level physiological profiles (CLPPs) studied using BIOLOG® Ecoplates. Multiple regression analysis was used to estimate the effects of humus properties on the microbial parameters. It indicated that St and Corg-to-Nt ratio were the most important factors positively affecting Cmic (β=0.15 and 0.11, respectively) and BAS (β=0.13 and 0.08, respectively). The Cmic-to-Corg ratio was related positively to St (β=0.12) but negatively to Nt (β=−0.08). The effects of pHKCl and heavy metals on the gross microbial indices were significant but less important. The most important effect on microbial activity on BIOLOG® plates and CLPPs was from pHKCl. The other significant variables included St, Corg-to-Nt and interactions of heavy metals with pHKCl. It was concluded that Cmic, Cmic-to-Corg and BAS might be good indicators of the general status of soil microbial communities, but their use in studying heavy metal effects may entail difficulties in separating the effects of other factors. The sensitivity of the BIOLOG® test to pHKCl suggests that it may be useful for studying the effects of acidification or liming on soil microbial communities. The significant effect of the interactions between heavy metals and other variables on physiological profiles indicated that high heavy metal content affects the metabolic functions of soil microbial populations.  相似文献   

11.
Hot water extraction is sometimes recommended as an easy method to estimate the readily mineralizable fractions of total C (Ct) and total N (Nt) in arable soils. However, the usefulness of this method for forest soils has not been adequately studied. The objectives of this study were to relate the hot water extractable C (Chw) and N (Nhw) to microbiological and chemical properties of the forest soils under beech (Fagus sylvatica L.) stands and to test the ability of near infrared spectroscopy (NIRS) to predict chemical and microbial properties of these soils. Soils differing in humus type, soil type and soil texture were collected from five locations and five depths. In all soils the amount of Chw was higher than the microbial biomass C (Cmic) indicating that a considerable part of Chw was of non-microbial origin. The amount of Chw in mineral soil correlated significantly (r =–0.30–0.53) with Cmic, basal respiration (BAS) and Ct/Nt ratio but was not related to Cmic/Ct ratio. The amount of Nhw was correlated with Cmic, BAS, Cmic/Ct ratio, and Ct/Nt ratio (r =–0.59–0.78). However, Ct and Nt values showed better relationships (r =–0.42–0.88) with all the parameters, indicating no advantage in using Chw and Nhw in forest soils. NIRS predicted satisfactorily Ct, Nt, Chw, Nhw, Cmic, Cmic/Ct ratio and BAS in the mineral soils [the regression coefficients (a) of linear regression (measured against predicted values) ranged from 0.84 to 1.17 and the correlation coefficients (r) ranged from 0.86 to 0.94] indicating the applicability of NIRS to estimate these properties.  相似文献   

12.
In industrial areas, heavy metals may accumulate in forest soil organic horizons, affecting soil microorganisms and causing changes in the chemical composition of the accumulated organic matter. The objectives of this study were to test the ability of near-infrared spectroscopy (NIRS) to detect heavy metal effects on the chemical composition of forest soil O horizons and to test whether NIRS may be used to quantitatively determine total and exchangeable concentrations of Zn and Pb (Znt, Pbt, Znex, Pbex) and other chemical and microbial properties in forest soil O horizons polluted with heavy metals. The samples of O horizons (n = 79) were analyzed for organic C (Corg), total N and S (Nt, St), Znt, Pbt, Znex, Pbex, basal respiration (BR), microbial biomass (Cmic) and Cmic-to-Corg ratio. Spectra of the samples were recorded in the Vis-NIR range (400–2,500 nm). To detect heavy-metal-induced changes in the chemical composition of O horizons principal components (PC1–PC7) based on the spectral data were regressed against Znt + Pbt values. A modified partial least squares method was used to develop calibration models for prediction of various chemical and microbial properties of the samples from their spectra. Regression analysis revealed a significant relationship between PC3 and PC5 (r = −0.27 and −0.34, respectively) and Znt + Pbt values, indicating an effect of heavy metal pollution on the spectral properties of the O horizons and thus on their chemical composition. For quantitative estimations, the best calibration model was obtained for Corg-to-Nt ratio (r = 0.98). The models for Corg, Nt, and microbial properties were satisfactory but less accurate. NIRS failed to accurately predict St, Corg-to-St, Znt, Pbt, Znex, and Pbex.  相似文献   

13.
Management of soil ecosystems requires assessment of key soil physicochemical and microbial properties and the spatial scale over which they operate. The objectives were to determine the spatial structure of microbial biomass and activity and related soil properties, and to identify spatial relationships of these properties in prairie soils under different management histories. Soil were sampled along a transect at 0.2 m intervals in each of five long-term treatments, namely, undisturbed, cattle grazed at two intensities, and cultivated with either wheat (Triticum aestivum L.) or cotton (Gossypium hirsutum L.). Contents of organic carbon (Corg), dissolved organic C (DOC), soluble nitrogen (Nsol), and microbial biomass C (Cmic) and N (Nmic) as well as dehydrogenase activity (DH) in 70 samples were evaluated. Results showed that long-term soil management altered the spatial structure and dependence of Corg and microbial biomass and activity. Cultivation has contributed to high nugget variance for Corg, Cmic, Nmic and DH which interfered with detection of spatial structure at the sampling scale used. Contents of Corg were spatially connected to microbial biomass and activity and to DOC in the uncultivated but not in the cultivated soils, indicating that various factors affected by management may operate at different spatial scales.  相似文献   

14.
Management intensity modifies soil properties, e.g., organic carbon (Corg) concentrations and soil pH with potential feedbacks on plant diversity. These changes might influence microbial P concentrations (Pmic) in soil representing an important component of the P cycle. Our objectives were to elucidate whether abiotic and biotic variables controlling Pmic concentrations in soil are the same for forests and grasslands, and to assess the effect of region and management on Pmic concentrations in forest and grassland soils as mediated by the controlling variables. In three regions of Germany, Schwäbische Alb, Hanich‐Dün, and Schorfheide‐Chorin, we studied forest and grassland plots (each n = 150) differing in plant diversity and land‐use intensity. In contrast to controls of microbial biomass carbon (Cmic), Pmic was strongly influenced by soil pH, which in turn affected phosphorus (P) availability and thus microbial P uptake in forest and grassland soils. Furthermore, Pmic concentrations in forest and grassland soils increased with increasing plant diversity. Using structural equation models, we could show that soil Corg is the profound driver of plant diversity effects on Pmic in grasslands. For both forest and grassland, we found regional differences in Pmic attributable to differing environmental conditions (pH, soil moisture). Forest management and tree species showed no effect on Pmic due to a lack of effects on controlling variables (e.g., Corg). We also did not find management effects in grassland soils which might be caused by either compensation of differently directed effects across sites or by legacy effects of former fertilization constraining the relevance of actual practices. We conclude that variables controlling Pmic or Cmic in soil differ in part and that regional differences in controlling variables are more important for Pmic in soil than those induced by management.  相似文献   

15.
蒙古高原草原土壤微生物量碳氮特征   总被引:48,自引:0,他引:48  
李香真  曲秋皓 《土壤学报》2002,39(1):97-104
沿着水分梯度采集了蒙古高原不同草原类型表层土壤样品 1 44个 ,分析了土壤微生物量C、N含量及其与年平均温度和降雨量的关系。结果表明 :蒙古高原草原土壤微生物量C、N与土壤有机C、全N、降雨量、温度均表现出了很好的相关性。微生物量C变化在5 1 7~ 797mgkg- 1之间 ,微生物量N变化在 1 1 0~ 1 1 8 6mgkg- 1之间。微生物量C∶N比变化在 5~ 9之间。土壤微生物量碳 (Cmic)占土壤有机碳 (Corg)的比例 (Cmic Corg)变化在 1 1 5 %~ 4 1 %之间 ,Cmic Corg与土壤有机C、全N、降雨量均成显著的负相关。土壤呼吸表现为草甸草原土壤 >典型草原 >荒漠草原 ,土壤呼吸与降雨量显著正相关 ,与温度显著负相关。呼吸熵 (QCO2 )与降雨量成二次抛物线关系。放牧对微生物量的影响与不同草原类型和放牧率有关。  相似文献   

16.
A study was conducted to examine the responses of microbial activity and nitrogen (N) transformations along an altitudinal gradient. The gradient was divided into three parts. Three areas were sampled: upper part (UP): coniferous forest, corn field, and abandoned corn field; middle part (MP): tropical cloud forest, grassland, and corn field (COL); and lower part (LP): tropical deciduous forest and sugarcane. The results showed that soil microbial biomass carbon (C) and basal respiration were significantly higher in MP and UP than in LP, whereas the microbial quotient (Cmic/Corg) was higher in LP and MP than in UP. The metabolic quotient (qCO2) was similar among gradient parts evaluated. Net N mineralization, ammonification, and nitrification rates were higher in UP than MP and LP. We found that in UP, the forest conversion to cropland resulted in no significant differences in microbial activity and N transformation rates between land uses. In MP, microbial biomass C, ammonification, and net N mineralization rates decreased significantly with conversion to cropland, but Cmic/Corg and nitrification were higher in COL. Basal respiration and qCO2 were significantly lower in COL when compared with other land uses. In LP, lower microbial biomass C, Cmic/Corg, and nitrification rates but higher ammonification and net N mineralization rates were observed in tropical deciduous forest than in sugarcane. No significant differences in basal respiration and qCO2 were found between uses of LP. Clearly, then, soil organic C is not equally accessible to the microbial community along the gradient studied. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
We aimed to characterize humus macro-morphology and the associated soil microbial community within the unmodified litter (OL), the fragmented and humified layers (FH) and the organo-mineral (A) layer along a beech (Fagus sylvatica L.) forest chronosequence with four stand age-classes (15-, 65-, 95-, 130-yr-old) in Normandy, France. Humus macro-morphology was described with 36 quantitative and semi-quantitative variables. We measured microbial biomass N (Nmic), microbial N quotient (Nmic-to-Nt), fungal ergosterol, bacterial and fungal DNA using 16S and 18S rDNA real-time qPCR and evaluated the potential metabolic profile of heterotrophic bacteria within each soil layer and stand age-class. The log-transform ergosterol/fungal DNA ratio (EFR index) was used as an indicator related to active fungal biomass and the fungal/bacterial (F/B) ratio was calculated from qPCR results. There was a shift from mull (mainly dysmull) to moder humus forms along the chronosequence. While the Nmic did not change significantly, the Nmic-to-Nt decreased along the chronosequence in the OL layer. Ergosterol content increased in FH and A layers and the F/B ratio increased in the FH layer with increasing beech forest age. The EFR index was significantly higher in the OL and A layers of the oldest stands, whereas the highest EFR index in the FH layer occurred in the 15-yr-old stands. The functional diversity of heterotrophic bacteria was greater within OL and FH layers of 130-yr-old stands, but highest in the A layer of 15-yr-old stands while the Average Well Color Development remained stable for all soil layers. We found significant correlations between macro-morphology and microbial variables, especially between FH-based morphology and fungal biomass. Our main results are that beech forest maturation is accompanied by (1) an increase in fungal biomass in the FH layers and, (2) an increase in heterotrophic bacteria functional diversity in the organic layers. We have identified key macro-morphology variables that are good predictors of the structural and functional profile of the soil microbial community during beech forest development.  相似文献   

18.
Urban soils (constructozems) were studied in Moscow and several cities (Dubna, Pushchino, and Serebryanye Prudy) of Moscow oblast. The soil sampling from the upper 10-cm-thick layer was performed in the industrial, residential, and recreational functional zones of these cities. The biological (the carbon of the microbial biomass carbon, Cmic and the microbial (basal) respiration, BR) and chemical (pHwater and the contents of Corg, heavy metals, and NPK) indices were determined in the samples. The ratios of BR to Cmic (the microbial respiration quotient, qCO2) and of Cmic to Corg were calculated. The Cmic varied from 120 to 738 μg C/g soil; the BR, from 0.39 to 1.94 μg CO2-C/g soil per hour; the Corg, from 2.52 to 5.67%; the qCO2, from 1.24 to 5.28 μg CO2-C/mg Cmic/g soil per h; and the Cmic/Corg, from 0.40 to 1.55%. Reliable positive correlations were found between the Cmic and BR, the Cmic and Cmic/Corg, and the Cmic and Corg values (r = 0.75, 0.95, and 0.61, respectively), as well as between the BR and Cmic/Corg values (r = 0.68). The correlation between the Cmic/Corg and qCO2 values was negative (r = −0.70). The values of Cmic, BR, Corg, and Cmic/Corg were found to correlate with the ammonium nitrogen content. No correlative relationships were revealed between the determined indices and the climatic characteristics. The principal component analysis described 86% of the variances for all the experimental data and clearly subdivided the locations of the studied soil objects. The ANOVA showed that the variances of Cmic, Corg, and BR are controlled by the site location factor by 66, 63, and 35%, respectively. The specificity of the functioning of the anthropogenic soils as compared with their natural analogues was clearly demonstrated. As shown in this study, measurable biological indices might be applied to characterize the ecological, environmental-regulating, and productive functions of soils, including urban soils.  相似文献   

19.
In soil ecology, microbial parameters have been identified as sensitive indicators of changes in the soil environment. The Braunschweig FACE project provided the opportunity to study the effects of elevated CO2 (550 μmol mol−1) as compared to ambient CO2 (370 μmol mol−1) on total microbial biomass (Cmic), Cmic-to-Corg ratio and the fungal-to-bacterial respiratory ratio together with total Corg, Nt, C:N ratio and pH over a six-year period. Field management followed a typical crop rotation system of this region with either a crop-related full nitrogen supply (N100) or 50% reduced N supply (N50). The soil microbial parameters responded to the elevated CO2 treatment in varying intensities and time spans. The fungal-to-bacterial respiratory ratio was the most sensitive parameter in responding to an elevated CO2 treatment with highly significant differences to ambient CO2-treated control plots in the third year of CO2 fumigation. After six years bacterial respiratory activity had increased in ascending order to 34% in FACE-treated plots (N50 and N100) as compared to control plots. Soil microbial biomass (Cmic) responded more slowly to the FACE treatment with highly significant increases of >12% after the fourth year of CO2 fumigation. The Cmic-to-Corg ratio responded very late in the last two years of the CO2 treatment with a significant increase of >7.0% only in the N100 variant. Total Corg and Nt were slightly but significantly increased under FACE around 10.0% with ascending tendency over time starting with the second year of CO2 treatment. No significant FACE effects could be recorded for the C:N ratio or pH.These results suggest that under FACE treatment changes in the soil microbial community will occur. In our study the fungal-to-bacterial respiratory ratio was superior to total Cmic as microbial bioindicators in reflecting changes in the soil organic matter composition.  相似文献   

20.
Abstract

Soil microbial biomass (Cmic) is an important factor regulating a number of ecosystem processes. In this study, we investigated seasonal variations in soil microbial biomass in natural climax beech (Fagus crenata) forests in a typical cold-temperate mountain region of Japan. Four permanent tower sites along an altitudinal gradient were selected and soil samples were collected once every month during the growing season of 2007. Soil microbial biomass (by fumigation-extraction method) and soil properties were later measured in the laboratory, while environmental factors (soil temperature, soil moisture) were continuously recorded in the field. Our results indicated large seasonal variations (130.4 ~ 5558.0 µg g?1) in soil microbial biomass in beech forests – a range that is much larger than previously reported. Statistically significant correlations are noted between soil properties with Cmic, but largely due to spatial linkages. On the other hand, the environmental factors of soil temperature and especially soil moisture largely control seasonal variations in Cmic. Furthermore, pH could be an important factor influencing seasonal change in Cmic at the 20–30 cm deep soil layer. The study suggests no direct correlation between plant eco-physiology and soil microbial biomass in seasonal courses of the forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号