首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
This study examined the effect of cell‐wall‐degrading enzymes added to temper water on wheat milling performance and flour quality. An enzyme cocktail consisting of cellulase, xylanase, and pectinase and five independent variables (enzyme concentration, incubation time, incubation temperature, tempered wheat moisture content, and tempering water pH) were manipulated in a response surface methodology (RSM) central composite design. A single pure cultivar of hard red winter wheat was tempered under defined conditions and milled on a Ross experimental laboratory mill. Some treatment combinations affected flour yield from the break rolls more than that from the reduction rolls. However, a maximum for flour yield was not found in the range of parameters studied. Though treatments did not affect the optimum water absorption for breadmaking, enzyme‐treated flours produced dough exhibiting shorter mixing times and slack and sticky textures compared with the control. Regardless of differences in mixing times, specific loaf volumes were not significantly different among treatments. Crumb firmness of bread baked with flour milled from enzyme‐treated wheat was comparable to the control after 1 day but became firmer during storage up to 5 days.  相似文献   

2.
Tempering conditions of wheat grain change the quality of the flour, yet most experimental milling systems use a standard tempering without optimization. The effect of tempering condition on milling performance and flour functionality for soft red winter (SRW) wheat grain was tested by measuring flour yield, ash, polyphenol oxidase (PPO), and solvent retention capacity (SRC) in grain samples from three SRW cultivars (Roane, Cyrus, and Severn). Tempering was conducted with a full factorial design of initial wheat moisture, tempered wheat moisture, tempering temperature, and tempering time at two levels. Tempered wheat moisture had the largest effect on milling performance and flour functionality. Flour yield was more reduced for all samples tempered at 15% moisture than for samples tempered to 12% moisture. Flour quality of the 15% tempered sample was better than the 12% tempered samples due to less bran contamination as measured by flour ash and PPO. Increasing the tempering moisture increased flour sucrose SRC and lactic acid SRC but reduced sodium carbonate SRC for samples. Changing tempered wheat moisture changed flour yield and quality much more than did changing the length of time for tempering, the temperature at wheat is tempered, or differences in the initial moisture of the wheat before tempering. The last three effects could be used to improve flour yield in both the 12 and 15% tempered wheat treatment but the detrimental effects of these treatments on flour quality were minimal when combined with the 15% tempered wheat moisture treatment.  相似文献   

3.
Small kernels of soft wheat are sometimes considered to be harder than larger kernels and to have inferior milling and baking characteristics. This study distinguished between kernel size and kernel shriveling. Nine cultivars were separated into large, medium, and small kernels that had no shriveling. Eleven cultivars were separated into sound, moderate, and severely shriveled kernels. Shriveling greatly decreased the amount of flour produced during milling. It adversely affected all other milling quality characteristics (ash content, endosperm separation index, and friability). Shriveled kernels produced flour that had inferior soft wheat baking qualities (smaller cookie diameter and higher alkaline water retention capacity). In contrast, test weight and milling qualities were independent of kernel size. Small, nonshriveled kernels had slightly better baking quality (larger cookie diameter) than larger nonshriveled kernels. Small kernels were softer than large kernels (measured by break flour yield, particle size index, and flour particle size). Small nonshriveled kernels did not have diminished total flour yield potential or other reduced flour milling characteristics. Those observations suggest a possibility of separating small sound kernels from small shriveled kernels to improve flour yield and the need to improve dockage testing estimation techniques to distinguish between small shriveled and small nonshriveled kernels.  相似文献   

4.
Variations in physical and compositional bran characteristics among different sources and classes of wheat and their association with bread‐baking quality of whole grain wheat flour (WWF) were investigated with bran obtained from Quadrumat milling of 12 U.S. wheat varieties and Bühler milling of six Korean wheat varieties. Bran was characterized for composition including protein, fat, ash, dietary fiber, phenolics, and phytate. U.S. soft and club wheat brans were lower in insoluble dietary fiber (IDF) and phytate content (40.7–44.7% and 10.3–17.1 mg of phytate/g of bran, respectively) compared with U.S. hard wheat bran (46.0–51.3% and 16.5–22.2 mg of phytate/g of bran, respectively). Bran of various wheat varieties was blended with a hard red spring wheat flour at a ratio of 1:4 to prepare WWFs for determination of dough properties and bread‐baking quality. WWFs with U.S. hard wheat bran generally exhibited higher dough water absorption and longer dough mixing time, and they produced smaller loaf volume of bread than WWFs of U.S. soft and club wheat bran. WWFs of two U.S. hard wheat varieties (ID3735 and Scarlet) produced much smaller loaves of bread (<573 mL) than those of other U.S. hard wheat varieties (>625 mL). IDF content, phytate content, and water retention capacity of bran exhibited significant relationships with loaf volume of WWF bread, whereas no relationship was observed between protein content of bran and loaf volume of bread. It appears that U.S. soft and club wheat bran, probably owing to relatively low IDF and phytate contents, has smaller negative effects on mixing properties of WWF dough and loaf volume of bread than U.S. hard wheat bran.  相似文献   

5.
Wheat contains phenolic compounds concentrated mainly in bran tissues. This study examined the distribution of phenolics and antioxidant activities in wheat fractions derived from pearling and roller milling. Debranning (pearling) of wheat before milling is becoming increasingly accepted by the milling industry as a means of improving wheat rollermilling performance, making it of interest to determine the concentration of ferulic acid at various degrees of pearling. Eight cultivar samples were used, including five genotypes representing four commercial Canadian wheat classes with different intrinsic qualities. Wheat was pearled incrementally to obtain five fractions, each representing an amount of product equivalent to 5% of initial sample weight. Wheat was also roller milled without debranning. Total phenolic content of fractions was determined using the modified Folin‐Ciocalteau method for all pearling fractions, and for bran, shorts, bran flour, and first middlings flour from roller milling. Antioxidant activity was determined on phenolic extracts by a method involving the use of the free radical 2,2‐diphenyl‐l‐picrylhydrazyl (DPPH). Total phenolics were concentrated in fractions from the first and second pearlings (>4,000 mg/kg). Wheat fractions from the third and fourth pearlings still contained high phenolic content (>3,000 mg/kg). A similar trend was observed in antioxidant activity of the milled fractions with ≈4,000 mg/kg in bran and shorts, ≈3,000 mg/kg in bran flour, and <1,000 mg/kg in first middlings flour. Total phenolic content and antioxidant activity were highly correlated (R2 = 0.94). There were no significant differences between red and white wheat samples. A strong influence of environment (growing location) was indicated. Pearling represents an effective technique to obtain wheat bran fractions enriched in phenolics and antioxidants, thereby maximizing health benefits associated with wheat‐based products.  相似文献   

6.
End‐use quality in soft wheat (Triticum aestivum L.) can be assessed by a wide array of measurements, generally categorized into grain, milling, and baking characteristics. Samples were obtained from four U.S. regional nurseries. Selected parameters included test weight, kernel hardness, kernel size, kernel diameter, wheat protein, polyphenol oxidase activity, flour yield, break flour yield, flour ash content, milling score, flour protein content, flour SDS sedimentation volume, flour swelling volume, Rapid Visco Analyzer peak paste viscosity, solvent retention capacity (SRC) parameters, total and water‐extractable arabinoxylan (TAX and WEAX, respectively), and cookie diameter. The objectives were to model cookie diameter and lactic acid SRC as well as to compare exceptionally performing varieties for each quality parameter. Cookie diameter and lactic acid SRC were modeled by using multiple regression analyses and all of the aforementioned quality parameters. Cookie diameter was positively associated with peak paste viscosity and was negatively associated with or modeled by kernel hardness, flour protein content, sodium carbonate SRC, lactic acid SRC, and water SRC. Lactic acid SRC was positively modeled by break flour yield, milling score, flour SDS sedimentation volume, and sucrose SRC and was negatively modeled by flour protein content. Exceptionally high‐ and low‐performing varieties were selected on the basis of their responses to the aforementioned characteristics in each nursery. High‐ and low‐performing varieties exhibited notably wide variation in kernel hardness, break flour yield, milling score, sodium carbonate SRC, sucrose SRC, water SRC, TAX content, and cookie diameter. This high level of variation in variety performance can facilitate selection for improved quality based on exceptional performance in one or more of these traits. The models described allow a more focused approach toward predicting soft wheat quality.  相似文献   

7.
Improvement of milling quality is an important aspect in wheat breeding programs. However, the milling quality of Chinese wheats remains largely unexplored. Fifty‐seven Chinese winter wheat cultivars from four regions were used to investigate the variation of milling quality parameters and to determine the associations between milling quality traits and color of noodle sheet. Substantial variation was presented for all measured parameters in this germplasm pool. Complete soft, hard, and medium‐hard types were observed. Soft wheat and hard wheat show significant differences in flour ash content, flour bran area, and flour color grade. No simple trait can be used to select for flour milling quality. High flour ash content and bran speck area contributed negatively to brightness of dry flour. Correlation coefficients (r) between L* value of dry flour and flour ash content and bran speck area were ‐0.47 and ‐0.65 for hard cultivars, and ‐0.51 and ‐0.72 for soft cultivars, respectively. Flour color grade (FCG) was significantly and positively associated with bran speck area; r = 0.56 and 0.73 for hard and soft wheats, respectively. There was a high correlation between FCG and L* value of flour water slurry (r = ‐0.95). Strong associations were also established between milling quality index (MQI) and FCG, L* value of dry flour, flour‐water slurry, and white salted noodle sheet for both hard and soft wheats. In conclusion, substantial progress could be achieved in improvement of milling quality in Chinese winter wheats through genetic selection, and FCG and MQI could be two important parameters for evaluation of milling quality in breeding programs.  相似文献   

8.
Wheat bran‐derived arabinoxylan‐oligosaccharides (AXOS) recently have been shown to potentially exert prebiotic effects. In this study, 15 bran samples obtained by milling different wheat cultivars were treated with xylanases from Hypocrea jecorina (XHJ), Aspergillus aculeatus (XAA), and Pseudoalteromonas haloplanktis (XPH) to assess the effect of bran source and xylanase properties on the AXOS yield and structure. The total arabinoxylan (AX) extraction yield was higher with XHJ (8.2–10.7%) and XAA (8.2–10.8%) than with XPH (6.9–9.5%). Irrespective of the enzyme, a significant negative correlation was observed between extraction yield and arabinose to xylose (A/X) ratio of bran AX (r = –0.7), but not between yield and bran AX level. The A/X ratio of the extracted material was 0.27–0.34 for all bran samples and all enzymes, which combined with yield data and microscopic analysis, indicated primary hydrolysis of aleurone and nucellar epidermis AX. The average degree of polymerization (avDP) of the extracted AX was very low for all enzymes (2–3), owing to the release of high levels of monomeric arabinose and xylose. The release of these monosaccharides could be ascribed to 1) the activity of wheat bran‐associated enzymes (arabinofuranosidases and xylosidases); 2) the hydrolytic properties of the xylanases themselves; and 3) the presence of xylosidases as contaminations in enzyme preparation, in that order of importance. Heat treatment of bran before xylanase treatment significantly decreased the levels of monomeric arabinose and xylose in the extract, without affecting the extraction yield, resulting in a higher avDP of 3–7, thus yielding true AXOS. Overall, for AXOS production, wheat cultivars with a low bran A/X ratio of the AX are preferable as starting materials, and inactivation of bran‐associated enzymes before incubation is desirable. The XHJ xylanase was the best enzyme for wheat bran‐derived AXOS production.  相似文献   

9.
Kernel vitreousness is an important grading characteristic for segregation of subclasses of hard red spring (HRS) wheat in the United States. This research investigated the protein molecular weight distribution (MWD) and the flour and baking quality characteristics of different HRS wheat market subclasses. The U.S. regional crop quality survey samples obtained from six regions for three consecutive growing years were used for subclass segregation based on the dark, hard, and vitreous (DHV) kernel percentage. Flour milled from HRS wheat with greater percentages of DHV kernel showed higher water absorption capacity for breadmaking. Protein MWD parameters could be related to the association between DHV kernel level and water absorption. Specifically, flour protein fractions rich in gliadins and high‐molecular‐weight polymeric proteins in the SDS‐unextractable fraction were identified to have significant and positive correlations with both DHV kernels and flour water absorption levels. An example further showed the importance of flour water absorption on potential economic incentives that can be gained with having a greater percentage of vitreous kernels. This information could help the flour milling and baking industry to segregate the different subclasses of HRS wheat with varying DHV content for their intended end‐use applications.  相似文献   

10.
The total plant sterol contents (free sterols and covalently bound structures) of the main cereals cultivated in Finland were determined. Furthermore, sterol contents were determined for different flour and bran fractions in the milling process of wheat and rye, as well as plant sterol contents in various milling and retail bakery products. The sample preparation procedure included acid and alkaline hydrolysis to liberate sterols from their glycosides and esters, respectively. Free sterols were extracted and, after recovery using solid‐phase extraction, derivatized to trimethylsilyl ethers for gas chromatography (GC) analysis. We used GC with a mass spectrometer (MS) for identification. When two cultivars of rye, wheat, barley, and oats grown in the same year were compared, the highest plant sterol content was observed in rye (mean content 95.5 mg/100 g, wb), whereas the total sterol contents (mg/100 g, wb) of wheat, barley, and oats were 69.0, 76.1, and 44.7, respectively. In addition, the 10 rye cultivars and breeding lines compared had total sterol contents of 70.7–85.6 mg/100 g. In the milling process of rye and wheat, the plant sterols fractionated according to the ash content of the corresponding milling product. In all cereal grain and milling product samples, sitosterol was the main sterol. The level of stanols differed in the different milling process samples; it was lower in the most refined rye and wheat flours (≈15%) than in the bran fractions (≈30% in the bran with 4% ash content). Rye bread with whole meal rye flour as the main or only ingredient was a good source of sterols. Sterol content was higher than that of wheat bread, whereas plant sterol content of other bakery products was affected by the type and amount of fat used in baking.  相似文献   

11.
The effects of no‐till versus conventional farming practices were evaluated on soft wheat functional and nutritional characteristics, including kernel physical properties, whole wheat composition, antioxidant activity, and end‐product quality. Soft white winter wheat cultivar ORCF 102 was evaluated over a two‐year period from three long‐term replicated no‐till versus conventional tillage studies in Oregon. Wheat from the no‐till cropping systems generally had greater test weight, kernel diameter, and kernel weight and had softer kernels compared with wheat from the conventional tillage systems. Compared with the conventional systems, no‐till whole wheat flour had lower protein and SDS sedimentation volume. Ash content as well as most minerals measured (calcium, copper, iron, magnesium, and zinc), except for manganese and phosphorus, were generally slightly lower in no‐till than in conventional wheat. Whole wheat flour from the no‐till cropping systems generally had slightly lower total phenolic content and total antioxidant capacity. Milling properties, including flour yield, break flour yield, and mill score, were not affected by tillage systems. Refined flour from no‐till systems had lower protein, SDS sedimentation volume, and lactic acid and sucrose solvent retention capacities compared with flour from conventional tillage. No‐till wheat generally had greater sugar‐snap cookie diameter than conventionally tilled wheat. In conclusion, no‐till soft white winter wheat generally had slightly reduced nutritional properties (protein, ash, most minerals, and total antioxidant content) compared with wheat from conventionally tilled systems, and it had equivalent or sometimes superior functional properties for baking cookie‐type products.  相似文献   

12.
The content of tocopherols and tocotrienols, collectively known as vitamin E (tocols), was determined in fractions of roller‐milled wheat grains. The results showed that vitamin E components are present in all major flour fractions of wheat, but that the vitamin E content and composition differed significantly between fractions. The total content of vitamin E, calculated as alpha‐tocopherol equivalents, changed from 16.1 mg α‐TE/g in wheat grain to 12.2 mg α‐TE/g in roller‐milled wheat flour. The germ fraction had the highest content of tocopherols, and the content of α‐tocopherol (195.2 μg/g) was 16 times higher (on average) than in any other fraction. The content of tocotrienols was distributed more uniform in the wheat grain with the highest content in the bran fractions, and the content of β‐tocotrienol was higher than the content of α‐tocopherol in all milling fractions except the wheat germ. The content of β‐tocotrienol was 24.1 μg/g in wheat grain, 25.3–31.0 μg/g in the bran fractions, and 14.3–21.9 μg/g in the fractions of endosperm. Overall, germ and fine bran fractions represent good sources of vitamin E and might be used in breadmaking.  相似文献   

13.
Optimization of flour yield and quality is important in the milling industry. The objective of this study was to determine the effect of kernel size and mill type on flour yield and end‐use quality. A hard red spring wheat composite sample was segregated, based on kernel size, into large, medium, and small kernels, as well as unsorted kernels. The four fractions were milled in three roller mills: Brabender Quadrumat Jr., Quadrumat Sr., and Bühler MLU‐202 laboratory mills. Large kernels had consistently higher flour yield than small kernels across mills, with the Quadrumat Jr. mill showing the lowest flour yield. Mill type and kernel size significantly affected variation in flour protein molecular weight distribution. When compared with larger kernels, flour milled from the small‐kernel fraction contained a higher gliadin fraction and SDS‐unextractable high‐molecular‐weight polymeric proteins, which had positive correlations with bread loaf volume (r = 0.61, P < 0.05) and mixograph peak time (r = 0.84, P < 0.001). Overall, small kernels could contribute to enhancing flour breadmaking quality while having a detrimental effect on milling yield.  相似文献   

14.
Flour milling separates endosperm from bran through repeated roller milling and sifting, in which the size distribution of particles produced by the initial breakage of the wheat kernels critically affects the process. The double normalized Kumaraswamy breakage function (DNKBF), previously developed to describe wheat breakage during roller milling, was extended to refine the modeling of the effect of roll gap on breakage. The DNKBF describes two populations of particles arising from roller milling of wheat, a narrow peak of mid‐sized particles and a wider distribution of both small and very large particles. A new dataset was obtained from milling a set of wheat samples bred to give a range of shapes by cross‐breeding a conventional wheat, Cappelle, with an almost spherical wheat, Triticum sphaerococcum. A residual analysis showed a statistically significant effect of kernel shape on breakage using this new dataset. This analysis supports earlier suggestions that more elongated kernels break to give slightly larger particles than more spherical kernels of equivalent hardness, because of the relatively greater bran content of elongated kernels. The extended DNKBF was also used to model effects of moisture content, showing a distinct disjunction at around 16% moisture that aligns with commercial practice for wheat milling.  相似文献   

15.
Six commercially grown samples of hard spring wheat were milled using a tandem Buhler laboratory mill. Individual flour streams and branny by‐products, as well as whole‐grain wheat and straight‐grade flour, were characterized in terms of total (TP), water‐extractable (WEP), and water‐unextractable (WUP) pentosans. One representative cultivar sample was analyzed for its ratio of arabinose to xylose (A/X). TP and WEP of whole grain wheat of the six samples had ranges of 5.45–7.32% and 0.62–0.90% (dm), respectively. Neither TP nor WEP of whole grain was related to ash content variation. There was significant variation in the distribution and composition of pentosans in 16 millstreams of all the wheat samples, including bran and shorts fractions; TP and WEP contents had ranges of 1.69–32.4% and 0.42–1.76% (dm), respectively. When ash contents exceeded ≈0.6% (dm), strong positive correlations were obtained between ash and TP contents, and between ash and WUP contents for all the millstreams. Among bran and shorts fractions, TP and WUP content increased in the order of coarse bran > fine bran > shorts; while WEP, WEP/WUP and A/X showed the opposite pattern of variation of shorts > fine bran > coarse bran. Bran and shorts fractions had pentosan contents several times higher than would be predicted from the relationship between pentosan and ash contents of the flour streams. Pentosans therefore represented a much more sensitive marker of flour refinement compared with ash content. Pentosans of endosperm were substantially different in their extractability and composition from those of bran. On this basis, different functionalities of pentosans of bran and endosperm would be expected. Results demonstrated the importance of milling extraction and millstream blending in the functionality and quality of wheat flour for breadmaking.  相似文献   

16.
Free asparagine is an important precursor for acrylamide in cereal products. The content of free asparagine was determined in 11 milling fractions from wheat and rye. Whole grain wheat flour contained 0.5 g/kg and whole grain rye flour 1.1 g/kg. The lowest content was found in sifted wheat flour (0.2 g/kg). Wheat germ had the highest content (4.9 g/kg). Fermentation (baker's yeast or baker's yeast and sourdough) of doughs made with the different milling fractions was performed to investigate whether the content of free asparagine was reduced by this process. In general, most of the asparagine was utilized after 2 hr of fermentation with yeast. Sourdough fermentation, on the other hand, did not reduce the content of free asparagineas efficiently but had a strong negative impact on asparagine utilization by yeast. This indicates that this type of fermentation may result in breads with higher acrylamide content than in breads fermented with yeast only. The effect of fermentation time on acrylamide formation inyeast‐leavened bread was studied in a model system. Doughs (sifted wheat flour with whole grain wheat flour or rye bran) were fermented for a short (15+15 min) or a long time (180+180 min). Compared with short fermentation time, longer fermentation reduced acrylamide content in bread made with whole grain wheat 87%. For breads made with rye bran, the corresponding reduction was 77%. Hence, extensive fermentation with yeast may be one possible way to reduce acrylamide content in bread.  相似文献   

17.
The nutritional value of breadmaking cereal spelt (Triticum aestivum ssp. spelta) is said to be higher than that of common wheat (Triticum aestivum ssp. vulgare), but this traditional view is not substantiated by scientific evidence. In an attempt to clarify this issue, wholemeal and milling fractions (sieved flour, fine bran, and coarse bran) from nine dehulled spelt and five soft winter wheat samples were compared with regard to their lipid, fatty acid, and mineral contents. In addition, tocopherol (a biochemical marker of germ) was measured in all wholemeals, whereas phytic acid and phosphorus levels were determined in fine bran and coarse bran samples after 1 month of storage. Results showed that, on average, spelt wholemeals and milling fractions were higher in lipids and unsaturated fatty acids as compared to wheat, whereas tocopherol content was lower in spelt, suggesting that the higher lipid content of spelt may not be related to a higher germ proportion. Although milling fractionation produced similar proportions of flour and brans in spelt and wheat, it was found that ash, copper, iron, zinc, magnesium, and phosphorus contents were higher in spelt samples, especially in aleurone-rich fine bran and in coarse bran. Even though phosphorus content was higher in spelt than in wheat brans, phytic acid content showed the opposite trend and was 40% lower in spelt versus wheat fine bran, which may suggest that spelt has either a higher endogenous phytase activity or a lower phytic acid content than wheat. The results of this study give important indications on the real nutritional value of spelt compared to wheat. Moreover, they show that the Ca/Fe ratio, combined with that of oleate/palmitate, provides a highly discriminating tool to authenticate spelt from wheat flours and to face the growing issue of spelt flour adulteration. Finally, they suggest that aleurone differences, the nature of which still needs to be investigated, may account for the differential nutrient composition of spelt and wheat.  相似文献   

18.
The stability of vitamin E during 297 days of storage of wheat flour and whole wheat flour ground on a stone mill or a roller mill, respectively, were studied. One day after milling, the total content of vitamin E, expressed in vitamin E equivalents (α‐TE), was 18.7 α‐TE and 10.8 α‐TE for stone‐milled and roller‐milled wheat flour, respectively. The difference in total vitamin E content was primarily due to the absence of the germ and bran fractions in the roller‐milled flour. The total loss of vitamin E during storage was 24% for stone‐milled wheat flour but 50% for roller‐milled wheat flour. These results indicate that vitamin E, which is present in high amounts in wheat germ, functions as an antioxidant in the stone‐milled wheat flour. Hexanal formation showed that lipid oxidation in roller‐milled flour occurred just after milling, whereas the formation of hexanal in the germ fraction displayed a lack period of 22 days, confirming that vitamin E functions as an effective antioxidant in the wheat germ. Results showed no significant difference in total loss of vitamin E for stone‐milled and roller‐milled whole wheat flour. Total loss after 297 days of storage for both milling methods was ≈32%.  相似文献   

19.
Wheat kernel associated endoxylanases consist of a majority of microbial endoxylanases and a minority of endogenous endoxylanases. At least part of these enzymes can be expected to end up in wheat flour upon milling. In this study, the contribution of both types of these endoxylanases to changes in the arabinoxylan (AX) population during wheat flour breadmaking was assessed. To this end, wheat flour produced from two wheat varieties with different endoxylanase activity levels, both before and after sodium hypochlorite surface treatment of the wheat kernels, was used in a straight dough breadmaking procedure. Monitoring of the AX population during the breadmaking process showed that changes in AX are to a large extent caused by endogenous endoxylanases, whereas the contribution of microbial endoxylanases to these changes was generally very low. The latter points to a limited contamination of wheat flour with microbial enzymes during milling or to an extensive inactivation of these wheat flour associated microbial endoxylanases by endoxylanase inhibitors, present in wheat flour. When all wheat kernel associated microbial endoxylanases were first washed from the kernels and then added to the bread recipe, they drastically affected the AX population, suggesting that they can have a large impact on whole meal breadmaking.  相似文献   

20.
巩翰颖  李明  刘宏艳  卢大新 《核农学报》2019,33(9):1765-1773
提高小麦籽粒有益微量元素含量,特别是对人体影响较大的Fe、Zn含量,是解决中国广大居民微量元素营养匮乏的重要途径之一。2012-2015年将3个不同基因型小麦品种(邯6172、衡5229和周麦16),种植于河北石家庄赵县、陕西杨凌区和河南省新乡辉县。每个地域3个小区,每小区面积10 m2,试验田按照当地小麦品种区域试验管理。共采集36份小麦样品,小麦籽粒粉碎制得全麦粉;同时将小麦籽粒加工制粉,得到粗麸、细麸和面粉。采用电感耦合等离子体质谱法(ICP-MS)测定全麦粉及制粉产品(粗麸、细麸和面粉)中的Fe、Zn含量。结合单因素方差分析及Duncan多重比较分析不同地域、不同基因型、不同年际获得的小麦不同制粉产品间的Fe、Zn含量差异。结果表明,基因型对本研究全麦粉Fe含量影响最为显著,地域是影响全麦粉Zn含量的最重要因素。Fe、Zn含量在小麦制粉不同组分中的变化趋势为:粗麸>细麸>面粉。Fe含量在各组分中受基因型影响最大。Zn含量在全麦粉和粗麸中受地域影响最大,细麸中受年际影响最大,面粉中分别受年际×地域的交互作用、基因型和年际3个因素的影响最大。综上所述,全麦粉相对面粉的Fe、Zn含量更高,且更容易通过选种和选择合适地域耕种提高其Fe、Zn含量。本研究为从小麦的种植及加工角度改善主食中铁锌含量较低这一现状提供了理论参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号