共查询到20条相似文献,搜索用时 10 毫秒
1.
Three patent flours, each possessing three different levels of starch damage were prepared from a single hard white spring wheat. Each flour was sieved to yield three flours with different particle size distributions (85–110, 110–132, 132–183 μm). Raw alkaline noodles were prepared from the nine flours using either 1% w/w kansui (sodium and potassium carbonates in 9:1 ratio) or 1% w/w sodium hydroxide. Uniaxial stress relaxation parameters percent stress relaxation (SR%), initial rate of relaxation (k1) and the extent of relaxation (k2) were measured on the raw noodles immediately after production (t = 0 min) and at 60 min. Raw noodles after resting for 60 min were optimally cooked and stress relaxation parameters were measured. Raw noodles at t = 0 min exhibited SR%, k1, and k2 that were significantly (P < 0.0001) influenced by both the degree of starch damage and the type of alkaline reagent used. Flour particle size only influenced SR% and k1 (P < 0.025) but had no impact on k2. In raw noodles aged for 60 min, both SR% and k2 were significantly influenced by alkaline reagent, particle size, and starch damage (P < 0.01) while k1 was only affected by the degree of starch damage (P < 0.0001). Cooked noodle SR parameters were all significantly (P < 0.0001) influenced by alkaline reagent, particle size, and the degree of starch damage. Cooked noodles prepared from starch with low damaged flours within any given particle size range, regardless of the type of alkali employed, yielded the most rheologically elastic‐like (firmer) noodles. Two potential mechanisms by which the degree of starch damage influences noodle elastic like texture are discussed. 相似文献
2.
D. W. Hatcher M. J. Anderson R. G. Desjardins N. M. Edwards J. E. Dexter 《Cereal Chemistry》2002,79(1):64-71
Several reduction grinding conditions were used on a Canadian Western Red Spring (CWRS) farina to yield flours of comparable protein content within three specific particle size ranges (132–193, 110–132, 85–110 μm) at three starch damage levels (3.0, 3.9, 7.0 Megazyme units). White salted noodles (1% w/w NaCl) were initially processed at a fixed absorption (32%). Dynamic oscillatory and large deformation creep measurements indicated that doughs with lower starch damage, thick or thin, exhibited lower G′ (storage modulus), higher tan δ (G″ [loss modulus]/G′) values, and greater maximum strain during creep than doughs with higher starch damage. There were no clear trends between work input during sheeting and either starch damage or particle size. Instrumental texture analysis of raw noodles showed no significant differences due to either starch damage or flour particle size. Flours with fine particle size gave cooked noodles with the best textural attributes, whereas starch damage exhibited no consistent relationship with cooked noodle texture. Cooking loss was greatest in samples with highest starch damage and coarsest particle size; water uptake was inversely related to starch damage and particle size. Experiments were repeated at adjusted water absorptions (32–36.5%) for fine and coarse flours with highest and lowest starch damage. Differences in raw noodle dough rheological properties were largely eliminated, confirming that differences noted at constant absorption were primarily due to flour water absorption. Work input during sheeting was inversely related to starch damage and was higher for fine particle size. Cooking losses were highest for higher starch damage and fine particle size. Water uptake was highest for fine particle size, but in contrast to cooking loss, was higher at lower starch damage. Textural parameters indicated superior cooking quality when particle size was finer and starch damage was lower. Flour particle size and starch damage (as indicated by water absorption) are both primary quality determinants of white salted noodle properties and, to some extent, exert their influence independently. 相似文献
3.
To investigate the effects of mechanically damaged starch and flour particle size on the texture of fresh and stored flour tortillas, two commercial hard red winter wheat flour samples were reground four times using decreasing roll gaps. Tortillas were made with a modified hot‐press procedure. Texture characteristics were measured after tortillas were stored 2 hr (fresh tortilla), 2 days, and 4 days. Damaged starch and particle size significantly affected (P < 0.05) flour water absorption, dough extensibility and resistance, and dough viscosity. As damaged starch increased and particle size decreased, the flour tortillas became less stretchable, the maximum force of Kramer shear decreased, and firmness and rollability increased. The effects of damaged starch and particle size on stretchability and Kramer shear were greater in fresh tortillas than in stored tortillas and became smaller as the storage time increased. However, the effects of damaged starch and particle size on rollability and firmness were smaller in fresh tortillas than in stored tortillas but became greater as the storage time increased. 相似文献
4.
紫薯全粉添加量对甘薯淀粉物化特性及粉条性质的影响 总被引:1,自引:0,他引:1
在粉条中添加紫薯全粉以提高其营养价值对于改善居民膳食营养、丰富淀粉制品种类具有重要意义。采用AOAC相关方法、扫描电子显微镜、差式热量扫描、膨胀势、溶解度、回生速率等评估紫薯全粉添加量(0%、5%、8%、10%、12%、15%)对甘薯淀粉物化特性的影响,并对紫薯粉条的质构及烹煮性质等进行了测定。随着紫薯全粉添加量的增加,甘薯淀粉膨胀势、溶解度、回生特性和a*值显著提高,凝胶强度、黏度和亮度显著降低,热特性发生显著改变。甘薯粉条的亮度、质构性质、烹煮性质都随紫薯全粉添加量的增加而显著降低(p0.05)。紫薯全粉添加量对甘薯淀粉物化特性及粉条性质影响显著,且在紫薯全粉添加量为12%时甘薯粉条品质较好。本研究为甘薯营养粉条的研究与开发提供基础数据。 相似文献
5.
Mineral content, as determined and expressed by ash content, serves as an index of wheat flour quality for flour millers and food manufacturers who prefer flour of low mineral content, even though the significance of mineral content on the functional properties of wheat flour is not well understood. We explored whether minerals have any influence on the functional properties of wheat flour and product quality of white salted noodles. Ash, obtained by incinerating wheat bran, was incorporated into two hard white spring wheat flours and their starches to raise the total ash content to 1, 1.5, or 2%. Pasting properties were determined using a rapid visco analyzer (RVA). Addition of ash increased the peak viscosity of the flours in both water and buffer solution but did not affect the peak viscosity of starch. Wheat flours with added ash showed lower pasting temperature by approximately 10°C in buffer solution. Mineral extracts (15.3% ash) isolated from wheat bran, when added to increase the ash content of wheat flour and starch to 2%, increased the peak viscosity and lowered the pasting temperature of flour by 13.2–16.3% but did not affect the pasting properties of the isolated starch. The mineral premix also increased peak viscosity of wheat flour but not in starch. Added ash increased noodle thickness and lowered water retention of cooked noodles while it exhibited no significant effect on cooked noodle texture as determined using a texture analyzer. 相似文献
6.
Roller milled flours from eight genotypes of hull‐less barley (HB) with normal, waxy, zero amylose waxy (ZAW), and high amylose (HA) starch were incorporated at 20 and 40% (w/w) with a 60% extraction Canada Prairie Spring White (CPSW, cv. AC Vista) wheat flour to evaluate their suitability as a blend for yellow alkaline noodles (YAN). The barley flour supplemented noodles were prepared using conventional equipment. Noodles containing 40% HB flour required less work input than the corresponding 20% blend noodles due to a higher water absorption at the elevated level of HB flour addition, which probably caused them to soften. The addition of any HB flour at either level to the CPSW flour resulted in significantly decreased brightness (L*) and yellowness (b*), elevated redness (a*), concomitant with a significantly greater number of specks per unit area of noodle sheet compared with the control flour. The addition of 40% HB flour to YAN decreased cook time and cooking losses. Noodle firmness, as determined by maximum cutting stress (MCS), was significantly increased by the addition of 40% HB flour. Noodle chewiness, as determined by the texture profile analysis (TPA), was affected by the type of starch in the barley samples; the addition of waxy and ZAW HB flour decreased chewiness, whereas normal and HA HB flour increased chewiness of composite noodles. 相似文献
7.
Liming Cai Induck Choi Jong‐Nae Hyun Young‐Keun Jeong Byung‐Kee Baik 《Cereal Chemistry》2014,91(1):65-71
The influence of bran particle size on bread‐baking quality of whole grain wheat flour (WWF) and starch retrogradation was studied. Higher water absorption of dough prepared from WWF with added gluten to attain 18% protein was observed for WWFs of fine bran than those of coarse bran, whereas no significant difference in dough mixing time was detected for WWFs of varying bran particle size. The effects of bran particle size on loaf volume of WWF bread and crumb firmness during storage were more evident in hard white wheat than in hard red wheat. A greater degree of starch retrogradation in bread crumb stored for seven days at 4°C was observed in WWFs of fine bran than those of coarse bran. The gels prepared from starch–fine bran blends were harder than those prepared from starch–unground bran blends when stored for one and seven days at 4°C. Furthermore, a greater degree of starch retrogradation was observed in gelatinized starch containing fine bran than that containing unground bran after storage for seven days at 4°C. It is probable that finely ground bran takes away more water from gelatinized starch than coarsely ground bran, increasing the extent of starch retrogradation in bread and gels during storage. 相似文献
8.
Naruemon Prasopsunwattana María Botero Omary Elizabeth A. Arndt Peter H. Cooke Rolando A. Flores Wallace Yokoyama Ayako Toma Sutida Chongcham Sylvia P. Lee 《Cereal Chemistry》2009,86(4):439-451
Wheat tortillas were enriched with whole barley flour (WBF) of different particle sizes including 237 μm (regular [R]), 131 μm (intermediate [IM]), and 68 μm (microground [MG]). Topographical and fluorescent microstructure images of flours, doughs, and tortillas were examined. Flours and tortillas were analyzed for color, protein, ash, starch, moisture, and β‐glucan content. Farinograph testing was conducted on the flour blends. Water activity and texture analyses of tortillas were conducted. A 9‐point hedonic scale was used by 95 untrained panelists to evaluate tortilla appearance, color, flavor, texture, and overall acceptability. Two commercial products (CP) were included in some analyses. As WBF particle size decreased, color was lighter; protein, moisture content and mixing stability decreased; ash, starch content, water absorption and farinograph peak time increased; and β‐glucan content was constant. WBF tortillas were darker than the control (C), while IM and MG tortillas had lower peak forces than C. No flavor differences were reported among C, R, and MG tortillas but higher scores were given to both CP in all attributes tested. Tortillas made with the largest WBF particle size (R) were the most similar in protein content, texture and flavor when compared with C tortillas made with refined bread flour. 相似文献
9.
We evaluated the effect and magnitude of flour particle size on sponge cake (SC) baking quality. Two different sets of wheat flours, including flours of reduced particle size obtained by regrinding and flour fractions of different particle size separated by sieving, were tested for batter properties and SC baking quality. The proportion of small particles (<55 μm) of flour was increased by 11.6–26.9% by regrinding. Despite the increased sodium carbonate solvent retention capacity, which was probably a result of the increased starch damage and particle size reduction, reground flour exhibited little change in density and viscosity of flour‐water batter and produced SC of improved volume by 0.8–15.0%. The volume of SC baked from flour fractions of small (<55 μm), intermediate (55–88 μm), and large (>88 μm) particles of soft and club wheat was in the range of 1,353–1,450, 1,040–1,195, and 955–1,130 mL, respectively. Even with comparable or higher protein content, flour fractions of intermediate particle size produced larger volume of SC than flour fractions of large particle size. The flour fractions of small particle size in soft white and club wheat exhibited lower flour‐water batter density (102.6–105.9 g/100 mL) than did those of large and intermediate particle fractions (105.2–108.2 g/100 mL). The viscosity of flour‐water batter was lowest in flour fractions of small particle size, higher in intermediate particles, and highest in large particles. Flour particle size exerted a considerable influence on batter density and viscosity and subsequently on SC volume and crumb structure. Fine particle size of flour overpowered the negative effects of elevated starch damage, water absorption, and protein content in SC baking. 相似文献
10.
We investigated the relationship between the protein content and quality of wheat flours and characteristics of noodle dough and instant noodles using 14 hard and soft wheat flours with various protein contents and three commercial flours for making noodles. Protein content of wheat flours exhibited negative relationships with the optimum water absorption of noodle dough and lightness (L*) of the instant noodle dough sheet. Protein quality, as determined by SDS sedimentation volume and proportion of alcohol‐ and salt‐soluble protein of flour, also influenced optimum water absorption and yellow‐blueness (b*) of the noodle dough sheet. Wheat flours with high protein content (>13.6%) produced instant noodles with lower fat absorption, higher L*, lower b*, and firmer and more elastic texture than wheat flours with low protein content (<12.2%). L* and free lipid content of instant noodles were >76.8 and <20.8% in hard wheat flours of high SDS sedimentation volume (>36 mL) and low proportion of salt‐soluble protein (<12.5%), and <75.7 and >21.5% in soft wheat flours with low SDS sedimentation volume (<35 mL) and a high proportion of salt‐soluble protein (>15.0%). L* of instant noodles positively correlated with SDS sedimentation volume and negatively correlated with proportion of alcohol‐ and salt‐soluble protein of flour. These protein quality parameters also exhibited a significant relationship with b* of instant noodles. SDS sedimentation volume and proportion of salt‐soluble protein of flours also exhibited a significant relationship with free lipid content of instant noodles (P < 0.01 and P < 0.001, respectively). Protein quality parameters of wheat flour, as well as protein content, showed significant relationship with texture properties of cooked instant noodles. 相似文献
11.
Cowpeas (Vigna unguiculata) were milled through 0.5‐, 1.0‐, and 2.0‐ mm screens, and the flour was subsequently separated into different particle‐size ranges. Such procedures caused only minimal changes in moisture, fat, protein, ash, and total carbohydrate. The amount of extractable starch, however, varied from 34.5 to 52%. The effects of both mill screen and sieve mesh size were significant (P < 0.05). Differences in milling and separation procedures resulted in significant variations in water absorption (0.41–2.81 g of water/g of flour), solids lost (0.34–1.17 g/g of flour), and protein solubility (21.2–37.4%) (P < 0.05). Finely milled flours (91% moisture) had lower initial gelatinization temperatures (70–73°C), as measured by differential scanning calorimetry (DSC) (P < 0.01). Gelatinization peaks in high‐moisture flour were similar to that of pure starch. At lower moisture, a second peak was observed indicative of protein. Light‐scattering analysis showed that different conditions produced a bimodal particle‐size distribution when samples were suspended in water. The small size had relatively constant diameters (19–21 μm) and was associated with starch granules. The latter had a large size distribution and varying peak size and was associated with aggregated flour particles. These results indicate that changes in processing produces cowpea flours with differing chemical and physical properties. 相似文献
12.
Eight soft spring wheat (Triticum aestivum L.) genotypes representing the four granule bound starch synthase I (GBSSI) classes were evaluated with respect to flour/starch characteristics and pasting behaviors. Native starch was isolated from genotype straight‐grade flours (94.8–98.1% of starch recovered) to approximate the starch populations of the parent flours. As anticipated, amylose characteristics varied among the genotypes according to GBSSI class and accounted for the primary compositional difference between genotypes. Total (TAM), apparent (AAM), and lipid‐complexed (LAM) amylose contents ranged from 1.0–25.5 g, 0.7–20.4 g, and 0.3–5.6 g/100 g of native starch, respectively, and gradually decreased with the progressive loss of active Wx alleles. In addition, genotype flour total starch (FTS) and A‐type starch granule contents, which ranged from 81.7–87.6 g/100 g of flour (db) and 61.6–76.8 g/100 g of native starch (db), respectively, generally decreased with an increase in waxy character in parallel with amylose characteristics, as likely secondary effects of Wx gene dosage. Though amylose characteristics predominantly accounted for the majority of genotype flour pasting properties, FTS content and ratios of A‐ to B‐type granules also exhibited significant influence. Thus, loss of one or more Wx genes appeared to induce measurable secondary effects on starch characteristics and properties. 相似文献
13.
Rice noodles, which are widely consumed noodles in Southeast Asia, were evaluated as a potential carrier for fortificants such as vitamin A, folic acid, and iron. Because flour particle size was found to affect the noodle properties, this study was conducted to investigate the effect of five different particle sizes (≤63, 80, 100, 125, and 140 µm) of dry‐milled rice flour on the cooking quality, microstructure, texture, and sensory characteristics of the rice noodles. The retention of fortificant in the noodles at every stage of processing as affected by the flour particle size was also determined. It was found that the rice noodles produced from flour with the smallest particle size studied (≤63 µm) had the best quality and were the most liked by the consumers. In addition, the noodles had the most compact and regular structure, which could be attributed to having the most severely gelatinized starch. This starch would have caused the least leaching of the fortificant into the surrounding water during the boiling stage of the rice noodle processing. Retention of iron in the cooked fortified rice noodles prepared from flour with the smallest particle size was high at around 87%, whereas that of vitamin A and folic acid were below 15%. Because the losses of the fortificant from the rice noodles were mostly owing to the boiling process, further improvements of the rice noodle processing conditions are required for reduction of the vitamin losses. 相似文献
14.
Patent (60% yield) and straight-grade flours of Canada Western Red Spring (CWRS) and Canada Prairie Spring White (CPSW) wheat were used to determine the influence of different ratios of alkaline salts, their concentration, and NaCl on the texture and color characteristics of the yellow alkaline noodles. Addition of 3% (w/w) salt to any formulation resulted in a significant increase in the amount of work required to process the raw noodles, while significantly lower work input was observed for noodles prepared using a 5% (w/w) 9:1 Na-to-K carbonate ratio without salt formula. Wheat class, extraction rate, and alkali formulation had a significant effect on raw noodle brightness with noodles prepared using 5% carbonate being brighter than the 1% carbonate noodles. Maximum cooked noodle thickness was achieved from all flours using a 1% 9:1 Na-to-K carbonate ratio, 3% salt formulation. The inclusion of 3% NaCl into the formula resulted in noodles significantly thicker than the corresponding salt-free formula for all flours. Cooked noodle texture parameters evaluated were maximum cutting stress (MCS), resistance to compression (RTC), recovery (REC), and stress relaxation time. In all cases, the presence of 3% salt in the various formulations resulted in a decrease in each parameter relative to the corresponding salt-free formulation. Desirable bite (MCS), chewiness (RTC, REC), and relaxation times were achieved with a 1% concentration of alkali salts, without NaCl, regardless of the Na-to-K carbonate ratio. Use of a 5% concentration of alkali salts resulted in a significant reduction in texture that was most pronounced for the 1:9 Na-to-K carbonate formulation. 相似文献
15.
Instant masa flour finds extensive use in the food industry for making tortillas, taco shells, tamales, corn chips, and tortilla chips, and as an ingredient in extruded snacks. Due to lack of standard techniques for measuring masa functionality, processors and end‐users use masa flour particle‐size distribution and rheological characteristics in an attempt to predict its end use. In this study, a commercial masa flour sample was characterized by fractionating on the basis of particle size. Physicochemical and functional properties of masa flour fractions were investigated to establish structure‐composition and functionality relationships. It was observed that Rapid Visco Analyser (RVA) pasting profiles of flour fractions and textural properties of dough prepared on rehydration were related to particle size, yet, upon regrinding, RVA profiles did not change as markedly as expected. Differences in RVA measurements of the sized fractions could not be explained on the basis of hydration rate or total starch content. It was concluded that masa dough textural and RVA characteristics may be influenced by the status of starch polymer structures formed during nixtamalization. 相似文献
16.
Jingjing Wan Weining Huang Jing Zhong Liqun Huang Patricia Rayas‐Duarte Bin Liu 《Cereal Chemistry》2011,88(2):153-158
Flour was obtained from oats fermented with lactic acid bacteria (LAB) to study the effect of fermentation on the physical properties and the suitability of fermented oats for use in starch noodle production. The results showed that fermented samples had a significantly lower pH than control samples. Gel strength and amylose content initially increased and then decreased (P < 0.05) with fermentation time. The peak viscosity, breakdown, final viscosity, and setback value decreased with fermentation time. Fermented noodles showed a higher hardness and springiness. In particular, Lactobacillus plantarum (LP) induced the highest springiness, cohesiveness, gumminess, chewiness, and resilience over 12 hr of fermentation. The cooking quality evaluation indicated that fermentation improved the quality of oat starch noodles. Fermented oats resulted in noodles with low cooking loss and higher cooking weight compared to noodles made from fresh flour. The use of LP for 12 hr of fermentation time yielded noodles of the best quality. 相似文献
17.
[目的]为探究干涸湖盆典型地表风蚀过程及盐碱尘暴形成的机理。[方法]以锡林郭勒盟阿巴嘎旗查干淖尔干涸盐湖为研究对象,从湖心到湖岸根据盐湖地表的动态演化过程选择4种典型地表(结皮地表、破碎地表、活化地表和沙化地表),分析从湖心到湖岸近地表土壤粒度分布特征、风速廓线及输沙规律等。[结果](1)从湖心向湖岸延伸,地表0—2 cm沉积物颗粒粒配整体呈逐渐变粗的趋势,且以黏粒和粉粒为主;(2)干涸盐湖从湖心到湖岸风速整体呈降低趋势,不同地表的风速廓线基本符合Karman的速度对数分布规律,且拟合效果较好(R2>0.90);(3)破碎地表的输沙量最大,约为结皮地表的50倍,且由于有限沙尘供应,导致结皮地表的输沙率随高度变化呈现线性规律(R2=0.80),其他3种地表的输沙率随高度变化呈现指数函数形式(R2>0.97);(4)在近地表0~50 cm高度内,风沙流中携带的沙粒平均粒径为2~8μm,属于粉粒,分选性较差,偏度以负偏为主,峰态以中等和尖窄为主。[结论]整体来看,破碎地表上的风蚀作用最强,结皮地表上的风蚀作用最弱。... 相似文献
18.
Physicochemical properties of 34 wheat flours with various classes and different protein contents were related to optimum water absorption of noodle dough. Club and soft wheat flours generally exhibited higher water absorption (34–37%) of noodle dough than hard wheat flours (31–35%). Optimum water absorption of noodle dough in three hard wheat flours with five different protein contents was 33–37%. Optimum water absorption was negatively correlated with flour protein content and SDS sedimentation volume. Physical properties of flour, damaged starch content, NIRS hardness and water retention capacity, influenced optimum water absorption of noodle dough from club, soft and hard wheat flours. A prediction equation developed using protein content, water retention capacity and SDS sedimentation volume of flour provides a reliable estimation of the optimum absorption of noodle dough for making noodles. 相似文献
19.
[目的] 研究宁南黄土区不同植被恢复方式下的土壤粒度特征,旨在为更有效地指导该区域土壤资源的可持续发展和生态环境保护提供科学依据。[方法] 采用野外标准化方法采集0—100 cm土壤样品,利用Mastersizer 3000型激光粒度仪测定了小流域9种不同植被恢复方式(山杏林、山桃林、沙棘林、柠条林、山杏柠条林、山杏沙棘林、坝地、苜蓿地、撂荒地)216件样品,通过福克和沃德公式计算出平均粒径、标准偏差、偏度、峰度等土壤粒度参数。[结果] ①不同植被恢复方式下的粒度组成均以粉粒和极细砂为主,以粉粒含量在各粒度分级中所占比例最大。黏粒、粗砂、极粗沙和中砂含量分层整体趋于稳定,随土层深度的增加变化不大。粉粒、极细砂和细砂含量均随土层深度增加变化起伏较大,各层段表现出不同的变化趋势。②不同植被恢复方式下各粒级变异系数的变化规律基本一致,黏粒的变异系数最高,其次为砂粒,粉粒最小。③土壤平均粒径表现为:山杏×柠条林>沙棘林>山桃林>柠条林>山杏林>苜蓿地>山杏×沙棘林>撂荒地>坝地。撂荒地、山桃林和柠条林的分选性明显优于其他立地,沙棘林的分选性最差。[结论] 不同植被恢复方式的土壤粒度分布主要受到植被类型及人类活动扰动等主要因素的影响。 相似文献
20.
《Cereal Chemistry》2017,94(2):230-236
Extrusion was used for obtaining corn masa. Particle size, Ca(OH)2 concentration, and tempering time had significant effects on the viscosity of extruded flours. Ground corn tempered for different periods of time (0.016–10 h) increased viscosity without application of heat. This behavior can be explained by the release of starches from the protein matrix. Viscoelastic properties of masas showed storage modulus (G ′) > loss modulus (G ″) for all samples. G ′ and G ″ increased as a function of tempering time, indicating higher water absorption capacity (WAC). The same behavior was found for Ca(OH)2 concentration, suggesting formation of cross‐links between starch and polymers. Viscosity of masas modeled by the power law showed a value of n close to 0.1, suggesting that the dispersed solid phase was greater than the liquid phase. Index n and consistency coefficient K were associated with water absorption and viscosity, respectively. Regarding Ca(OH)2, the higher the Ca(OH)2 concentration, the lower the index n ; thus, Ca(OH)2 influenced the pseudoplastic behavior of extruded masas. Index n was directly proportional to WAC. Consistency coefficient K generally increased with the tempering time and small particle size. In addition, viscosity was higher after 10 h of tempering time. Tempering time improved rheological quality of masa obtained by extrusion. 相似文献