首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of maize expressing the Bacillus thuringiensis Cry1Ab protein (Bt maize) on soil microarthropods were assessed in the field at four European locations (two in Denmark and two in France) that differ in their climatic conditions or soil properties. Each site was considered as a separate experiment, with separate statistical comparison. Effects of farming practices using Bt maize were compared with conventional farming practices using near-isogenic non-Bt maize and also (at some of the sites) other conventional varieties. Furthermore, at one field site (Foulum, Denmark), the effects of Bt crops were studied in both conventional tillage and reduced tillage contexts. At another field site (Askov, Denmark), Bt maize effects were also compared to the effects of the chemical insecticide dimethoate. Moreover, at three of the field sites (all except Narbons, France), the possibility of a localised Bt effect around the rhizosphere compared to the bulk soil was assessed by sampling within and between maize rows. There were some significant negative effects of Bt maize on microarthropods in soils with a high clay content. Significant differences of the same magnitude also occurred between different conventional varieties of maize, but the effect of dimethoate appeared clearly greater than Bt effects. It is thus debatable if the Bt maize effect is an effect of the Bt toxin or just an effect of the maize variety. Based on the results, it can be concluded that the effect of Bt maize on soil microarthropods was small and within the normal variation expected in conventional agricultural systems.  相似文献   

2.
The population dynamics of soil organisms under agricultural field conditions are influenced by many factors, such as pedology and climate, but also farming practices such as crop type, tillage and the use of pesticides. To assess the real effects of farming practices on soil organisms it is necessary to rank the influence of all of these parameters. Bt maize (Zea mays L.), as a crop recently introduced into farming practices, is a genetically modified maize with the Cry1Ab gene which produces a protein toxic to specific lepidopteran insect pests. To assess the effects of Bt maize on non-target soil organisms, we conducted research at a field site in Foulum (Denmark) with a loamy sand soil containing 6.4% organic matter. The study focused on populations of springtails (Collembola) and earthworms (Oligochaeta) from samples taken at the beginning and at the end of the maize crop-growing season during 2 consecutive years. Farming practices, soil parameters, the biological structure of soil communities, and the type and age of the crop at the time of sampling, were used as attributes to predict the total abundance of springtails and biomass of earthworms in general and the abundance or biomass for specific functional groups (epigeic, endogeic and anecic groups for earthworms, and eu-, eu to hemi-, hemi-, hemi to epi- and epiedaphic groups for Collembola). Predictive models were built with data mining tools, such as regression trees that predict the value of a dependent variable from a set of independent variables. Regression trees were constructed with the data mining system M5′. The models were evaluated by qualitative and quantitative measures of performance and two models were selected for further interpretation: anecic worms and hemi-epiedaphic Collembola. The anecic worms (r2=0.83) showed preferences for less clay and more silt soil with medium pH but were not influenced directly by farming practices. The biomass of earthworms was greater in early autumn than in spring or late autumn. Biomass of hemi-epiedaphic Collembola (r2=0.59) increased at the end of the maize growing season, while higher organic matter content and pH tended to increase their biomass in spring. Greater abundance of Collembola was also noted in early autumn if the crop was non-Bt maize. The models assessed by this research did not find any effects of the Bt maize cropping system on functional groups of soil fauna.  相似文献   

3.
Soils from field sites at Foulum (DK), Narbons (FR) and Varois (FR) planted with genetically modified maize expressing either the insecticidal Bacillus thuringiensis protein (Bt) or herbicide tolerance (HT), as described elsewhere in this volume, were analysed for nematodes, protozoa and microbial community structure. These analyses were mirrored in single-species testing and in mesocosm experiments, and were coordinated with field samples taken for microarthropods, enchytraeids and earthworms so allowing for cross-comparison and a better understanding of the results observed in the field. Over the first 2 years of the field experiments (in 2002 and 2003), the effect of Bt-maize was within the normal variation expected in these agricultural systems. Sampling in 2004 and 2005 was expanded to include the effects of tillage (i.e. reduced tillage versus conventional tillage) and also the use of HT-maize. Tillage had major effects regardless of soil type (Varois or Foulum), with reduced-tillage plots having a greater abundance of microfauna and a different microbial community structure (measured both by phospholipid fatty-acid analysis (PLFA) and by community-level physiological profiling (CLPP)) from conventionally tilled plots. Grass, as a contrasting cropping system to maize, also had an effect regardless of soil type and resulted in greater microfaunal abundance and an altered microbial community structure. Differences in crop management, which for the Bt-maize was removal of the insecticide used to control European corn borer and for HT-maize was a change in herbicide formulation, were only tested at single sites. There were differences in microbial community structure (CLPP but not PLFA) and sporadic increases in protozoan abundance under the Bt-crop management. The HT-maize cropping system, which covered a shorter period and only one site, showed little change from the conventional system other than an altered microbial community structure (as measured by PLFA only) at the final harvest. The Bt-trait had a minimal impact, with fewer amoebae at Foulum in May 2003, fewer nematodes at Foulum in May 2004 but more protozoa at Varois in October 2002 and an altered microbial community structure (PLFA) at Foulum in August 2005. These were not persistent effects and could not be distinguished from varietal effects. Based on the field evaluations of microfauna and microorganisms, we conclude that there were no soil ecological consequences for these communities associated with the use of Bt- or HT-maize in place of conventional varieties. Other land management options, such as tillage, crop type and pest management regime, had significantly larger effects on the biology of the soil than the type of maize grown.  相似文献   

4.
Earthworms play an important role in many soil functions and are affected by soil tillage in agricultural soils. However, effects of tillage on earthworms are often studied without considering species and their interactions with soil properties. Furthermore, many field studies are based on one-time samplings that do not allow for characterisation of temporal variation. The current study monitored the short (up to 53 days) and medium term (up to 4 years) effects of soil tillage on earthworms in conventional and organic farming. Earthworm abundances decreased one and three weeks after mouldboard ploughing in both conventional and organic farming, suggesting direct and indirect mechanisms. However, the medium-term study revealed that earthworm populations in mouldboard ploughing systems recovered by spring. The endogeic species Aporrectodea caliginosa strongly dominated the earthworm community (76%), whereas anecic species remained <1% of all earthworms in all tillage and farming systems over the entire study. In conventional farming, mean total earthworm abundance was not significantly different in reduced tillage (153 m−2) than mouldboard ploughing (MP; 130 m−2). However, reduced tillage in conventional farming significantly increased the epigeic species Lumbricus rubellus from 0.1 m−2 in mouldboard ploughing to 9 m−2 averaged over 4 years. Contrastingly, in organic farming mean total earthworm abundance was 45% lower in reduced tillage (297 m−2) than MP (430 m−2), across all sampling dates over the medium-term study (significant at 3 of 6 sampling dates). Reduced tillage in organic farming decreased A. caliginosa from 304 m−2 in mouldboard ploughing to 169 m−2 averaged over 4 years (significant at all sampling dates). Multivariate analysis revealed clear separation between farming and tillage systems. Earthworm species abundances, soil moisture, and soil organic matter were positively correlated, whereas earthworm abundances and penetration resistance where negatively correlated. Variability demonstrated between sampling dates highlights the importance of multiple samplings in time to ascertain management effects on earthworms. Findings indicate that a reduction in tillage intensity in conventional farming affects earthworms differently than in organic farming. Differing earthworm species or ecological group response to interactions between soil tillage, crop, and organic matter management in conventional and organic farming has implications for management to maximise soil ecosystem functions.  相似文献   

5.
The effects of tillage on plant availability nutrients are critical to develop nutrient management strategies to optimize yield. The objective of this study was to evaluate differences in the concentration of 19-nutrient and yield after 4-year of conventional [moldboard plough (MT)] and two reduced [rototiller (ST) and chisel (CT)] tillage systems in maize (Zea mays L.) after winter vetch (Vicia sativa L.) in double crop one year. Three tillage systems were compared from 2005 to 2008 in area located in the western region of Turkey under semi-arid Mediterranean clay-loam soils. Nutrients were determined in maize leaves, stems, roots and soils. Results show that the concentration of macronutrients were found to be higher in leaves and stems of maize than roots in three tillage systems of all years, while the opposite was true for micronutrients. Among the macro and micro-nutrients, there was no effect of tillage on nutrient concentration in all maize tissues for sulfur, magnesium, sodium and copper (S, Mg, Na and Cu). However, the nitrogen, potassium, calcium, boron, zinc, manganese, iron, aluminum, barium, cadmium, cobalt, chromium, nickel, lead and selenium (N, K, Ca, B, Zn, Mn, Fe, Al, Ba, Cd, Co, Cr, Ni, Pb and Se) were affected by tillage. ST increased N in stems of 2006 compared with other systems. K in roots of 2006 was 52 and 30% greater in CT than in ST and MT, respectively, while ST and MT of 2007 resulted in 38 and 41% greater than CT. In two of four years, ST contributed to higher grain yield compared with other systems. In general, ST can effectively contribute to increase maize yield following winter vetch compared with MT under this region. Results suggested the need for different management systems associated with reduced tillage including rotation, particularly for basic nutrients. Further, results showed similarities and differences with other studies under tillage with maize following winter vetch.  相似文献   

6.
Within the ECOGEN project, long-term field experiments with genetically modified maize, Zea mays L. were conducted to study agro-ecological effects on the soil fauna and agro-economic implications of the technology. Here, we describe the study-sites, experimental layout and results of agro-economic relevance. Experiments were conducted during 2002–2005 in Denmark (Foulum), northern France (Varois) and the Midi-Pyrenees region of southern France (Narbons). MON810 Bacillus thuringiensis (Bt)-varieties expressing the Cry1Ab protein, and a T25 glufosinate-ammonium (Basta) tolerant variety expressing the pat-gene encoding phosphinotrinacetyl-transferase were compared with near-isogenic non-Bt varieties, and conventional maize varieties. At Foulum, the maize was harvested for silage. There were no significant differences in yield between Bt-maize and a near-isogenic non-Bt variety, while a small difference in N-concentration of dry matter was detected in 1 year in a range of a measured quality parameters. Similar yield and quality were found in ploughed and reduced tillage treatments in all varieties. At Varois, the maize was harvested at ripeness and no significant differences in grain yield between Bt-maize and near-isogenic non-Bt varieties were found. These results were expected, as only Narbons harbours significant corn-borer populations. At Narbons, the number of Sesamia and Ostrinia corn-borer larvae were significantly lower in the Bt-maize than in a near-isogenic non-Bt variety and for Sesamia even less than in conventional varieties sprayed with pesticides to control corn-borer infestation. Here, Bt-maize produced a higher grain yield and grain size than a near-isogenic non-Bt variety or allowed a significant reduction in pesticide use. Concentrations of Cry1Ab in the Bt-varieties were sufficient to effectively control corn-borer larvae. In soil, Cry1Ab was close to the limit of detection and the protein did not accumulate in the soil year on year.  相似文献   

7.
Although reduced tillage (RT) may preserve soil biota and improve the productivity and sustainability of arable lands in temperate regions, the extension of RT is limited by difficulties in controlling weeds. We studied the effect of RT without herbicide application on weed communities and soil biota in a 1-year 2-crop rotation system with winter wheat (Triticum aestivum L.) and maize (Zea mays L.) on Andosols in Japan. RT of the surface 3 cm and conventional moldboard plowing (CT) were conducted before seeding twice per year. For the first 3 years, from autumn 1997 to spring 2000, one field was managed with RT and another with CT. For the second 3 years, from autumn 2000 to spring 2003, RT and CT were conducted in two replicated plots in each field. Weed communities and soil biota were studied in the last 2 years. Dominant weed species in winter wheat cropping were Italian ryegrass (Lolium multiflorum Lam.) in 2002 and common vetch (Vicia angustifolia L.) in 2003, and their biomass was high where RT or CT was continuously conducted. Switching of tillage methods, from RT to CT or vice versa, reduced the biomass of winter weeds. In summer maize cropping, several annual and perennial weed species tended to increase under RT in the second 3 years. However, redroot pigweed (Amaranthus retroflexus L.), the most dominant weed in 2002 and 2003, responded to tillage inconsistently and its biomass was not always increased by RT. Species diversity of winter weeds was decreased by CT conducted in the first 3 years, and that of summer weeds was decreased by CT conducted in the second 3 years. The seedbank in the 0–10-cm soil layer under recent RT was large (7200–16 300 seeds m−2) compared with that under CT (2900–7300 seeds m−2). The microbial substrate-induced respiration (SIR) and the population densities of nematodes and mites were higher under RT in the second 3 years and were not affected by previous tillage practices. Both were highly correlated with soil total nitrogen. The positive effect of RT on these soil organisms was primarily attributable to the accumulation of organic matter in soil, but not to plant cover as a result of incomplete weed control by RT. Occasional adoption of RT in current CT systems may be effective at enriching soil organisms with little risk of weed infestation.  相似文献   

8.
This study compared soil respiration (SR) fluxes from winter wheat-based cropping systems in the US Southern Great Plains (SGP) under reduced and conventional tillage. The study consisted of four sets of paired paddocks assigned to conventional or reduced tillage with a four-year crop rotation applied over time. During the 2016–2017 study year, four sets of paired paddocks were planted to: winter wheat managed for grazing, dual-purpose (grazing and grain production), and grain-only systems of production, and winter canola. Heterotrophic SR fluxes were measured using a plant and root exclusion method on eight permanently deployed PVC cores per paddock. Fluxes from the cores were measured manually using a closed chamber connected to an infrared gas analyser on 12–13 dates during the winter wheat growing season (October through May). There were strong seasonal patterns of SR flux, with lower rates during dry and cold periods, and higher rates during warm and wet periods. Large rainfall induced pulses of SR flux were observed for both tillage systems. There was no consistent large-scale difference in SR flux between tillage treatments applied to paired paddocks. Results from this study indicate SR fluxes from winter wheat-based cropping systems are controlled more by soil environmental conditions than form of tillage.  相似文献   

9.
玉米间作豌豆种间竞争互补对少耕密植的响应   总被引:2,自引:0,他引:2  
通过对种间关系的研究,确定玉米间作豌豆中能否集成少耕和密植效应,对进一步优化间作技术具有理论指导意义。2016—2017年,本研究在河西绿洲灌区,以玉米间作豌豆为研究对象,设传统耕作、少耕两种耕作措施和低、中、高3种玉米密度,研究不同处理对玉米间作豌豆种间竞争力和豌豆收后间作玉米恢复效应的影响,揭示种间关系与间作产量的相关关系。结果表明,不同间作处理的土地当量比均大于1,说明本试验条件下的间作处理均具有增产优势;与传统耕作相比,少耕使玉米间作豌豆产量提高5.79%;少耕条件下,中密度间作产量较低密度、高密度处理显著提高8.37%、9.09%,说明玉米间作豌豆集成少耕和中密度具有进一步增产的优势。少耕结合中密度强化了间作豌豆对玉米的竞争力,较低密度、高密度处理的竞争力分别高36.56%、20.17%,形成间作玉米恢复效应强化的基础;豌豆收获后,少耕间作玉米具有明显的恢复生长效应,较传统耕作高10.30%~47.11%。间作群体的籽粒产量与豌豆相对于玉米全生育期内的平均竞争力呈二次曲线相关关系,当竞争力在0.25时利于间作获得高产。因此,玉米间作豌豆模式中集成少耕和密植技术,通过调控种间关系进一步挖掘间作增产潜力,少耕结合玉米中密度可作为绿洲灌区玉米间作豌豆增产的理想措施。  相似文献   

10.
The fate of the insecticidal Cry1Ab protein from crop residues (leaves and roots) of the transgenic maize variety MON810 was studied in the presence and absence of two earthworm species (Lumbricus terrestris, Aporrectodea caliginosa; separate incubations) in soil microcosms. The recombinant Cry1Ab protein was quantified using a highly sensitive ELISA. Control microcosms received corresponding non-transgenic plant material. All earthworms survived in the microcosms over a period of 5 weeks, irrespective of whether they received MON810 or non-transgenic plant material. Weight loss was observed for both earthworm species, independent of the plant material or transgenic modification. A strong decline of immunoreactive Cry1Ab in plant residues (mean initial concentration approx. 5000 ng g−1) of MON810 was observed in all treatments, but in microcosms with earthworms this decline was significantly higher with less than 10% of the initial Cry1Ab concentration remaining after 5 weeks. Cry1Ab concentrations in casts were only 0.1% of those found in remaining plant material of the respective microcosms. No immunoreactive Cry1Ab proteins were found in earthworm tissues (threshold of detection: 0.58 ng g−1 fresh weight). No further decline was found for Cry1Ab concentrations in casts of A. caliginosa during a subsequent period of 3 months of incubation in bulk soil (<0.1 ng g−1) after removal of the earthworms from the microcosms, while in casts of L. terrestris the concentration decreased from 0.4 to below 0.1 ng g−1. In conclusion, this study demonstrates that earthworms enhance the decline of immunoreactive Cry1Ab proteins from maize residues.  相似文献   

11.
Summary The use of N and P by mixed and by sole cropping (crop rotation) of maize and cowpeas were compared in a field experiment on an Alfisol at the Nyankpala Agricultural Experiment Station in the northern Guinea Savanna of Ghana, using two levels of N (0 and 80 kg N ha-1 year-1 as urea) and P application (0 and 60 kg P ha-1 year-1 as Volta phosphate rock). Maize grain yields were significantly reduced in the mixed cropping system. This yield difference became smaller with the application of N and P fertilizer. The N and P concentrations in maize ear leaves at silking indicated that a deficiency in N and P contributed to the maize yield depression in mixed cropping. Competition for soil and fertilizer N between maize and cowpeas was suggested by: (1) A similarity in total N uptake between the two cropping systems; (2) efficient use of soil nitrate by the cowpeas; and (3) low N2 fixation by the cowpeas, calculated with the aid of an extended-difference method. In general, N2 fixation was low, with the highest values in the sole cropping (53 kg ha-1) and a substantial reduction in the mixed cropping system. The application of N fertilizer further reduced N2 fixation. This was substantiated by nodule counts. The lower N2 fixation in the mixed cropping system was only partly explained by the lower density of cowpeas in this system. In addition, dry spells during the cropping season and shading by the maize component could have reduced the nodulation efficiency. No N transfer from the legume/rhizobium to the non-legume crop was observed. Impaired P nutrition in the mixed compared with the sole-cropped maize might have been due to less P mobility in the soil. This was indicated by lower soil moisture contents in the topsoil under mixed cropping, especially during the dry year of 1986. The results show that mixed cropping of maize and cowpeas did not lead to improved use of soil and fertilizer N and P or to an enhanced N2 fixation. On the contrary, an annual rotation of maize and cowpeas was clearly superior.  相似文献   

12.
Leaf litter selection by detritivore and geophagous earthworms   总被引:1,自引:0,他引:1  
Summary Litterbag experiments with 10 different kinds of leaf litter showed that detritivore (Lumbricus species) and geophagous (Aporrectodea species) earthworms prefer certain litter types over others, since different numbers of worms were found below the litter after 50–52 days of exposure in a pasture. The detritivores preferred Fraxinus, Tilia, and predecomposed Ulmus and Fagus litter to Fagus litter and paper, while geophages preferred Tilia litter to Alnus and Ulmus litter, so that the two groups of earthworms showed different preferences. The detritivores seemed to be more selective than the geophages. The palatability of the litter was examined in relation to the C: N ratio, the lignin concentration and the initial and final polyphenol concentration. The numbers of detritivores were significantly correlated with the C: N ratio and the final polyphenol concentration, so that selection of litter seems to be related to palatability. The numbers of geophages were not significantly correlated with any of the parameters for palatability. The disappearance of litter after 50–52 days appeared to be due to detritivore activity, since the numbers found below the litter were positively and significantly correlated with the litter disappearance. There was no significant correlation with geophage activity. This indicates that detritivores use litter as food, and therefore influence the composition of the litter layer.  相似文献   

13.
The desert oasis is one of the major grain production areas in arid land, and many intensive farming practices have been adopted to improve the land utilization in the agriculture system. However, there remains little consensus on how to improve such farming practices for increasing both productivity and environment benefits in this system. A 4-year experiment was conducted in a typical desert oasis farmland to determine the effects of the farming practices on crop yield, soil carbon (C) and nitrogen (N) accumulation, and carbon footprint (CF). The farming practices included two tillage patterns: conventional (CT) and reduced tillage (RT), two cropping patterns: continuous (Con) and rotation cropping (Rot), and two mulching pattern: film (F) and straw mulching (S) with eight combined treatments. The RT did not significant decrease crop yield but increase soil C and N accumulation rate by 59% and 130%, and thus decrease CF for crop production compared with the CT. S can also improve soil C and N accumulation, and cause low CF for crop production, but leading to 14–41% decrease in maize yield compared with F. Rot result in a 14% increase on maize yield also has extra benefit to decrease CF for crop production, but no significant effect on soil C and N accumulation compared with Con. Our study adds a reasonable perspective on how to improve the conventional farming systems in desert oasis, the information about RT, straw mulching, and maize–soybean rotation have positive effect on improving soil quality and decreasing CF for crop production in this desert soil area is critical to develop the sustainable agriculture system in this desert oasis farmland, which both maintaining crop productivity and minimizing negative environmental impacts.  相似文献   

14.
Mika Rty 《Pedobiologia》2004,48(4):321-328
A laboratory experiment was carried out to test the hypothesis that the earthworms Lumbricus terrestris and Aporrectodea caliginosa are able to maintain their populations and reproduce in the acid forest soil of a deciduous forest where no lumbricids were found in the field. The experiment was conducted in 45-l containers in which layers of mineral subsoil, humus and organic topsoil collected from the site were established. Both species survived and at least L. terrestris reproduced during the 60 weeks’ incubation. Burrows and middens of L. terrestris were recorded and quantities of litter were consumed. The presence of lumbricids increased the organic matter content of humus, reduced the acidity of the topsoil and humus layers, and suppressed the population of the enchytraeid Cognettia sphagnetorum. A dense population of Enchytraeus albidus was found in L. terrestris middens. It is concluded that edaphic factors do not explain the absence of earthworms, but isolation from cultural landscapes and lack of opportunity to colonize the site from the surroundings is the decisive factor.  相似文献   

15.
The study on energy-use efficiency and economics of soybean based cropping system, viz., soybean–wheat (Glycine max 9 L., Triticum aestivum L. emend. Fiori & Paol.), soybean–lentil (Lens culinaris Medicus) and soybean–field pea (Pisum sativum L., sensu lato), was carried out at the Hawalbagh experimental farm of Vivekananda Institute of Hill Agriculture, Almora, Uttarakhand, India during 2001–2003 (29°36′ N, 79°40′ E). These cropping systems, under rainfed conditions, were evaluated with different tillage management practices, viz., zero tillage (ZT), minimum tillage (MT) and conventional tillage (CT). Each tillage management practice, under each cropping system was evaluated for total energy output, energy input–output ratio, gross income, net income and marginal income, to variable cost of cultivation. Results revealed that the maximum energy was consumed in terms of chemical fertilizers, followed by seed and plant protection chemicals, in all cropping systems. Equivalent energy was used from literature for conversion purpose. The maximum output energy was observed in CT (44,253 MJ/ha), followed by MT for soybean–lentil cropping system (43,450 MJ/ha). The output–input energy ratio was maximum in ZT for soybean–lentil (4.9) followed by MT for soybean–pea cropping system (4.6). The economic analysis also revealed that the maximum benefits could be obtained from these sequences. Conventional tillage for all cropping sequences was found to be a better option as compared to minimum tillage and zero tillage. Benefit–cost ratios were higher in conventional tillage in all the three cropping systems. However, from the point of energy saving or cost reduction, zero tillage and minimum tillage may be considered depending on resources.  相似文献   

16.
Congregated information on maize and wheat root morphology and their distribution as influenced by tillage and soil physical conditions is meager. Root growth under no-tillage (NT) or conventional tillage (CT) is variable: Under NT, higher bulk density slows root elongation and provides shorter roots but simulate root branching; results may be opposite depending on soil texture. Under CT, soil compaction may have negative effects on root growth, with roots exhibiting plasticity. In humid climates, low soil temperatures can reduce root length density (RLD) and increase the diameter of spring cereals under NT. Tillage intensity induces a different distribution of nutrients, a trend which increases with time resulting in higher RLD in the topmost layer of NT. Compared to maize it is difficult to present an overview of the effect on tillage on the RLD of wheat due to inconclusive results. Adequate placements of banded starter fertilizer will effectively build up an early root system of maize, especially at suboptimal growth temperatures. Many studies reported a higher or similar grain yield of maize or wheat under NT compared to CT in temperate climates. However, the limited information or the conflicting results will promote the topic for inclusion in future breeding programs.  相似文献   

17.
不同耕作方式下旱作玉米田土壤呼吸及其影响因素   总被引:14,自引:4,他引:14  
为揭示不同耕作方式对旱作玉米田土壤呼吸的影响,对比研究深松耕、免耕、旋耕和翻耕4种耕作方式下土壤呼吸速率的动态变化及其与土壤水分、温度、有机质、全氮、pH值等的关系。结果表明,夏玉米生长季,4种耕作方式下土壤呼吸速率随生育时期均呈先增加后降低的趋势,平均土壤呼吸速率为深松耕>翻耕>旋耕>免耕;播种前至拔节期土壤温度为翻耕>深松耕>旋耕>免耕,抽雄期至成熟收获期为免耕>旋耕>深松耕>翻耕;各耕作方式下0~20cm层土壤有机质、全氮均逐渐增加,与免耕比较,翻耕有机质和全氮均降低;生育前期土壤pH值波动明显,抽雄期后趋于平缓,土壤pH值平均值为翻耕>旋耕>免耕>深松耕。各影响因素与土壤呼吸速率相关分析表明,深松耕和翻耕土壤水分、温度与土壤呼吸速率呈显著或极显著正相关;有机质与土壤呼吸速率呈负相关,且与深松耕措施下土壤呼吸速率呈显著负相关;除免耕外,其他耕作方式下土壤全氮、pH值与土壤呼吸呈负相关。该研究可为补充完善土壤呼吸排放机理、评估区域碳收支平衡及制定科学有效的土壤碳调控管理措施提供依据。  相似文献   

18.
森林蒸腾在维系森林生态系统水量平衡上起着重要作用,研究麻栎和栓皮栎的蒸腾耗水规律,有助于了解栎林的水文过程和水量平衡.采用热扩散探针法,对江苏省句容市麻栎和栓皮栎林蒸腾速率进行连续观测,研究蒸腾速率在晴天、阴天和雨天的日变化特征,以及不同天气下气候因子对蒸腾速率的影响机制.结果表明,麻栎和栓皮栎蒸腾速率日变化在晴天、阴...  相似文献   

19.
Summary The N uptake of maize was assessed on an Alfisol in a sole crop and in an alley cropping system in southwestern Nigeria. Although the application of prunings increased the maize N content in both sole and alley-cropped maize, the N contributed to the maize by the prunings was low, ranging between 4.4 and 23.8 kg ha–1. This was equivalent to 3.2% and 9.407% of the N released during decomposition of the prunings. Application of the prunings increased the grain yields of the sole maize by 38% and the maize yield in the alley-cropped plots by 104%, compared with yields in the corresponding plots where prunings were not applied. The results indicate that part of the N from the prunings was retained in the soil organic-N pool. Maize N, dry weights and grain yields were lowest in the alley-cropped plots where prunings were removed, probably because of competition between the maize and the hedgerow trees.  相似文献   

20.
植物器官的氮磷比(N/P)可以揭示植物生长发育过程的营养平衡。深松耕作为黄土高原半干旱区一种较好的农田耕作方法被广泛应用,尽管已被证实深松耕可以提高作物产量和地上生物量,但深松耕是否影响作物器官N/P及从作物器官N/P角度能否解释地上生物量增加的机制尚有待进一步研究。该研究于2016-2018年在黄土高原区设置了不同耕作方法(深松耕、旋耕、翻耕和免耕)和施氮量(基肥200 kg/hm2、基肥200 kg/hm2+拔节期肥100 kg/hm2)的田间裂区试验,研究了不同处理对玉米地上生物量、不同器官(根、茎和叶)中N/P的影响以及其N/P与地上生物量的关系。结果表明:1)相比翻耕、免耕,深松耕能显著提高地上生物量(P<0.05),2016和2018年深松耕的地上生物量比翻耕、免耕分别提高了9.56%、9.29%和4.67%、5.94%;2)相比翻耕、免耕,深松耕和旋耕均能显著降低根、叶的N/P(P<0.05),深松耕的根、叶N/P分别为19.90、17.74,降幅最大;施肥措施及耕作方法与施肥措施的交互作用对根、茎和叶的N/P无显著影响;3)通过结构方程模型分析发现,耕作方法通过影响根和叶N/P,间接影响地上生物量,效应值分别为0.10和0.14,耕作方法对地上生物量无直接显著影响,说明根和叶的N/P是影响地上生物量的两个重要的间接因素;通过线性混合效应模型分析得出,地上生物量与根、叶N/P呈显著负相关关系,与茎N/P无相关性。研究表明,深松耕通过降低玉米根和叶N/P、促进植物氮磷营养平衡的生态策略来提高地上生物量。研究结果对进一步揭示耕作与施肥对玉米生产与农田生态系统氮磷平衡的影响机制具有一定的借鉴意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号