首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years, maize has become one of the main alternative crops for the Autumn–Winter growing season (off-season) in several regions of Brazil. Water deficits, sub-optimum temperatures and low solar radiation levels are some of the more common problems that are experienced during this growing season. However, the impact of variable weather conditions on crop production can be analyzed with crop simulation models. The objectives of this study were to evaluate the Cropping System Model (CSM)-CERES-Maize for its ability to simulate growth, development, grain yield for four different maturity maize hybrids grown off-season in a subtropical region of Brazil, to study the impact of different planting dates on maize performance under rainfed and irrigated conditions, and for yield forecasting for the most common off-season production system. The CSM-CERES-Maize model was evaluated with experimental data collected during three field experiments conducted in Piracicaba, SP, Brazil. The experiments were completely randomized with three replications for the 2001 experiment and four replications for the 2002 experiments. For the yield forecasting application, daily weather data for 2002 were used until the forecast date, complemented with 25 years of historical daily weather data for the remainder of the growing season. Six planting dates were simulated, starting on February 1 and repeated every 15 days until April 15. The evaluation of the CSM-CERES-Maize showed that the model was able to simulate phenology and grain yield for the four hybrids accurately, with normalized RMSE (expressed in percentage) less than 15%. The planting date analysis showed that a delayed planting date from February 1 to April 15 caused a decrease in average yield of 55% for the rainfed and 21% for the irrigated conditions for all hybrids. The yield forecasting analysis demonstrated that an accurate yield forecast could be provided at approximately 45 days prior to the harvest date for all four maize hybrids. These results are promising for farmers and decision makers, as they could have access to accurate yield forecasts prior to final harvest. However, to be able to make practical decisions for stock management of maize grains, it is necessary to develop this methodology for different locations. Future model evaluations might also be needed due to the release of new cultivars by breeders.  相似文献   

2.
During the last decade, the production of off‐season maize has increased in several regions of Brazil. Growing maize during this season, with sowing from January through April, imposes several climatic risks that can impact crop yield. This is mainly caused by the high variability of precipitation and the probability of frost during the reproduction phases. High production risks are also partially due to the use of cultivars that are not adapted to the local environmental conditions. The goal of this study was to evaluate crop growth and development and associated yield, yield components and water use efficiency (WUE) for maize hybrids with different maturity ratings grown off‐season in a subtropical environment under both rainfed and irrigated conditions. Three experiments were conducted in 2001 and 2002 in Piracicaba, state of São Paulo, Brazil with four hybrids of different maturity duration, AG9010 (very short season), DAS CO32 and Exceler (short season) and DKB 333B (normal season). Leaf area index (LAI), plant height and dry matter were measured approximately every 18 days. Under rainfed conditions, the soil water content in the deeper layers was reduced, suggesting that the extension of the roots into these layers was a response to soil water limitations. On average, WUE varied from 1.45 kg m−3 under rainfed conditions to 1.69 kg m−3 under irrigated conditions during 2001. The average yield varied from 4209 kg ha−1 for the hybrids grown under rainfed conditions to 5594 kg ha−1 under irrigated conditions during 2001. Yield reductions under rainfed conditions were affected by the genotype. For the hybrid DKB 333B with a normal maturity, yield was reduced by 25.6 % while the short maturity hybrid Exceler was the least impacted by soil water limitations with a yield reduction of only 8.4 %. To decrease the risk of yield loss, the application of supplemental irrigation should be considered by local farmers, provided that this practice is not restricted by either economic considerations or the availability of sufficient water resources.  相似文献   

3.
Maize (Zea mays L.) is the most important substrate for biogas production in Germany. This study was conducted to determine the influence of harvest date and hybrid maturity on the yield and quality of maize biomass for anaerobic methane production. In 2004 and 2005, maize hybrids of widely contrasting maturity were grown on a loamy sand soil (Haplic Luvisol) near Braunschweig, Germany. Whole-plant yield was determined several times after female flowering and the biomass analysed for nutrient composition. The specific methane yield (SMY) was measured using 20 l batch digesters. In both experimental years, the late energy maize prototypes had a lower concentration of fat and protein, but higher concentration of ash, detergent fibre, and lignin as compared with the climatically adapted medium-early hybrids. Despite substantially different nutrient concentration among the maize hybrids, no clear-cut association existed between chemical composition and specific methane yield. Contrary to the medium-early hybrids, the late hybrids attained both maximum specific methane yield and maximum methane hectare yields at the final harvest date. In the very long growing season of 2004, the highest individual methane yield of 9370 N m3 ha−1 was obtained by the hybrid with the latest maturity used in the study. It appears that late energy maize, which can take full advantage of the growing season, is better suited for biogas production, provided that the whole-plant dry matter concentration is high enough to produce good quality silage.  相似文献   

4.
Twenty one landraces of cabbage (Brassica oleracea var. capitata L.) and two of Tronchuda cabbage (B. oleracea var. tronchuda Bailey) from Galicia (north–western Spain) along with five commercial hybrids of cabbage and one commercial variety of Tronchuda cabbage were evaluated in this study in two planting dates, autumn/winter for an early harvest and spring/summer for a late harvest. Data were recorded on morphologic, agronomic, nutritional, and sensory traits. The objectives were to assess the characteristics of the Galician cabbage landraces and to compare their agronomic value with that of the commercial hybrids available in local markets, at two planting dates. Four cabbage landraces and the two Tronchuda cabbage landraces showed no head formation. At the autumn/winter season, commercial hybrids showed poor adaptation, with more plants lost after transplanting, less early vigor, and yield than the head forming landraces. However, for characters related to crop uniformity (head appearance, days to harvest, and synchrony of production), commercial hybrids did better than landraces. Regarding the sensory and nutritional values, in the autumn/winter season, accessions were tenderer, sweeter, had a better flavour, and showed higher levels of crude protein and less of crude fibre than in the spring/summer season. Landraces had higher calcium contents compared to commercial varieties. Local landraces MBG-BRS0425, MBG-BRS0452, MBG-BRS0536, and MBG-BRS0537 stood out for the most interesting traits in the autumn/winter season growing period and they could be included in breeding programs to obtain hybrids suitable to grow in this planting period.  相似文献   

5.
An important part of agricultural adaptation is the timing of crop sowing dates, affecting yields and the level of risk incurred during a particular season. Cold stress is especially relevant in maize, Zea mays L., so that the timing of planting in the spring is a tactical response to short‐term weather, but is also subject to strategic planning with regard to longer‐term climate. Both factors compare the potential implications of cold stress to the additional yield obtainable through earlier planting. New cultivars suited to growing conditions in Europe and generally increasing spring temperatures have enabled earlier planting, but it is still dependent on short‐term weather during the planting period. In the context of field‐level decision‐making, a panel regression is used to estimate the relationship between weekly local temperature and precipitation and planting dates at specific sites throughout Germany. Next, localised weather data and planting behaviour are linked to yields at the district (Landkreis) level to show the effects of planting date on yield. Based on these relationships optimal planting dates are explored with some associated costs and benefits. Results show a trend towards earlier planting that follows observed increasing spring temperatures and the availability of more cold‐tolerant cultivars but this advance is buffered by the increasing severity of minimum temperatures during a critical period. Earlier planting potentially increases yield but this is offset by additional management costs and risk. A robust and simple depiction of farmer behaviour in climatic, technological and economic context can help to understand trends in crop management and productivity that effect agricultural landscapes.  相似文献   

6.
黄淮南部玉米产量对气候生态条件的响应   总被引:6,自引:0,他引:6  
针对近年来黄淮南部气候条件和耕作制度变化, 2015—2016年在河南农业大学科教园区以该区主推品种郑单958为材料, 采用分期播种方法, 研究玉米产量对气候生态条件的响应, 探讨气候因子与玉米产量的关系。结果表明, 由于年际间、播期间气候因子的差异, 玉米产量差异显著, 大体表现为春播产量高于夏播, 且夏播产量随播种时间的推迟而显著降低。随着播期的推迟, 玉米苗期日均温逐渐升高, 粒期日均温逐渐降低, 有效积温减少, 生育期缩短。试验设定密度下, 百粒重对产量的贡献大于穗粒数, 而影响百粒重和穗粒数的主要气候因子是全生育期有效积温和粒期有效积温。影响玉米产量的主要气候因子是苗期气温日较差(r = 0.696*)和日均温(r = -0.638*)、粒期有效积温(r = 0.822**)和日均温(r = 0.723**)、生育期有效积温(r = 0.843**)。因此, 生产上, 春播玉米播期由传统的4月15日左右推迟至5月1日左右, 可减少花期阴雨和高温热害影响, 表现出较好的丰产稳产性。夏播玉米在麦收后抢时早播, 不仅可争取更多积温, 还可使玉米苗期处于较低日均温、粒期处于较高日均温的有利温度条件下, 同时为推迟收获期和机械粒收创造条件。  相似文献   

7.
Global warming has lengthened the theoretical growing season of spring maize in Northeast China (NEC), and the temperatures during the growing season have increased. In practise, crop producers adjust sowing dates and alternate crop cultivars to take advantage of the lengthening growing season and increasing temperatures. In this study, we used crop data and daily weather data for 1981–2007 at five locations in NEC to quantify the utilization of the lengthening growing season and increasing temperatures by adjusting sowing dates and cultivar selection for spring maize production. If these two positive factors are not fully utilized, then it is important to know the potential impacts of these climatic trends on spring maize grain yields. The results show that in NEC, both the actual and theoretical growing seasons are lengthening, i.e., the sowing dates have been advanced and the maturity dates have been delayed. The actual sowing dates are 1–8 days later and the actual maturity dates are 6–22 days earlier than the theoretical perspective. Advancing sowing dates and changing cultivars led to 0–5 days and 6–26 days extension of the growing season. For the potential thermal time (TT), adjusting the sowing dates decreased the unutilized TT before sowing, while the cultivar selection increased the utilized TT and decreased the unutilized TT after maturity. On average, the unutilized heating resource before sowing is less than that after the maturity date (0.3–1.9% vs. 2.1–7.8%). During 1981–2007, for per day extension of the growing season, the spring maize grain yield increased by 75.2 kg ha−1. The spring maize grain yields have increased by 7.1–57.2% when both early sowing and changing cultivars during 1981–2007. In particular, adjusting the sowing dates increased the grain yield by 1.1–7.3%, which was far less than the increase effect (6.5–43.7%) from switching to late maturing cultivars. Therefore, selecting late maturing cultivars is an important technique to improve maize grain yields in NEC under the global warming context. Nevertheless, if the currently unutilized TT were fully explored, the local spring maize grain yield would have increased by 12.0–38.4%.  相似文献   

8.
为了探讨四川盆地油菜-夏玉米两熟条件下夏玉米适宜播期,以‘仲玉3号’、‘蠡玉16’和‘成单30’为供试材料,设置4个夏播播期,对玉米的倒伏状况、干物质积累、产量和籽粒品质变化进行了系统研究。结果表明:品种、播期、品种与播期交互作用显著影响玉米根倒率、总倒折率、收获指数、产量和有效穗数,且播期对实际倒伏、收获指数、产量和有效穗数影响大于品种。品种显著影响玉米籽粒的淀粉含量,品种和播期均显著影响籽粒的蛋白质含量,品种对淀粉和蛋白质的影响大于播期。四川盆地油菜-夏玉米模式中,油菜收获后夏玉米贴茬早播,有利于提高玉米抗倒伏能力、收获指数和籽粒产量;兼顾高产和优质目标,5月1日至5月15日播种宜选用‘成单30’,晚播品种宜选用‘仲玉3号’或者‘蠡玉16’。  相似文献   

9.
2001—2012年河南省夏玉米产量变化及生长季气象因子分析   总被引:3,自引:1,他引:2  
为明确近年来河南省夏玉米产量变化及其与生长季(6—9月)灾害性天气发生规律的关系,统计了2001—2012年河南省农作物受灾面积,夏玉米总产、单产和种植面积,同时利用河南省不同纬度18个台站2001—2013年地面气候资料日值数据,分析了夏玉米生长季6—9月不同气象因子变化规律。结果表明,河南省近年来主要的灾害性天气为干旱、渍涝和风灾;玉米总产的增加主要在于近年来玉米种植面积的增加,单产水平一直处于5550 kg/hm2;玉米生长期,特别是灌浆期(8月)遭受阴雨寡照(低温)、高温干旱是造成玉米单产降低的主要原因之一;倒伏导致减产主要是在玉米灌浆中后期(8—9月)遇到大风灾害性天气。加强在玉米抵御自然灾害性天气能力方面的研究,是提高玉米单产和全面提升玉米生产能力的重要举措。  相似文献   

10.
本研究旨在探讨冬小麦–夏玉米周年生产条件下黄淮海区夏玉米的适宜熟期与积温需求特性。选用郑单958(ZD958)、先玉335(XY335)、登海605(DH605)、登海618(DH618)和登海661(DH661),设置5月21日、5月31日、6月10日和6月20日4个播期,研究表明,播期对夏玉米生理成熟所需积温无显著影响,各品种生理成熟所需要的积温主要取决于品种自身的特性,DH618、XY335、ZD958、DH605、DH661的生育期和生理成熟所需要积温分别为110、112、116、116、121 d和2800、2880、2945、2950、3025°C d。冬小麦-夏玉米周年生产条件下,夏玉米最大可能的生长期约107~112 d(自6月15日至10月1~5日),积温约2800°C d,难以满足现有品种的生产需要。夏玉米直播晚收、冬小麦适期晚播有利于周年产量提高,但目前广泛推广的夏玉米品种生育期过长(约120 d),适时晚收仍难以完全生理成熟,机收籽粒损伤严重。可见,冬小麦–夏玉米周年生产条件下夏玉米最大可能的生长期和有效积温不能满足目前广泛推广的夏玉米品种所需生育持续期和积温,且适时晚收仍难以完全生理成熟,黄淮海区亟需生育期适宜(生育期≤107 d)的高产夏玉米新品种。  相似文献   

11.
Adjustments on planting date and on the time to terminate irrigation may reduce agricultural water use. However, such management practices in regions with extreme weather conditions have the potential to negatively affect yield. A 3‐year (2012–2014) study was conducted on a clay‐loam soil in a cool, semi‐arid environment to (i) determine the response of confection sunflower to planting date and irrigation termination timing and (ii) identify the relative importance of yield components in irrigated confection sunflower across planting dates. Early May planting had considerable negative effects on all studied variables, except on the percentage of large seeds. The highest yield of total and large seeds was obtained from the late May plantings, averaging 3,777 and 3,379 kg/ha, respectively. None of the irrigation strategies affected the measured variables. However, the interaction between planting date and termination of irrigation significantly affected the 1,000‐seed weight. Our study revealed the last week of May as suitable planting period for confection sunflower in the semi‐arid north‐western region of Wyoming, USA, and that irrigation on heavy soils may be terminated as early as at R5.5 stage without a significant yield reduction. The path‐coefficient analysis indicated head diameter and the number of seeds per head as important traits that significantly influence the yield of confection sunflower across planting dates.  相似文献   

12.
Even in the temperate climates of Europe, increasing early season drought and rising air temperature are presenting new challenges to farmers and wheat breeders. Sixteen winter wheat (Triticum aestivum L.) genotypes consisting of three hybrids, six line cultivars and two breeding lines from Germany as well as five line cultivars from France, Austria, Slovakia, Hungary and the Ukraine (referred to as “exotic” lines) have been included in this study. The genetic materials were evaluated over three growing seasons under a range of soil moisture regimes at the three North German sites Braunschweig (irrigated and drought‐stressed), Warmse (rainfed) and Söllingen (rainfed). The average grain yields in the twelve growth environments (water regime × season combinations) ranged from 6.1 to 13.5 t ha?1. The exotic lines showed little evidence of specific phenological adaptation to drought although they are frequently faced with water scarcity in their countries of origin. The hybrids and German lines exhibited higher regression coefficients (bi) to environmental means than the exotic lines, indicating particular adaptation to favourable growing conditions. The phenotypical correlations of grain yield between the various environments were high, ranging for instance from 0.6 to 0.8 for the irrigated and drought‐stressed environments at Braunschweig. It is thus expected that in the foreseeable future continued selection aiming at high yield potential will suffice as a means to counter the expected increase in droughts.  相似文献   

13.
鲁南地区夏玉米产量对气象因子的响应   总被引:2,自引:1,他引:1  
2017年在临沂市农业科学院试验田以早熟玉米品种华美1号、登海518和中熟玉米品种登海605、郑单958为材料,分期播种,采用灰色关联分析法研究夏玉米产量对气象因子的响应。结果表明:随着播种期推迟,2种熟期玉米生育期均缩短。6月17日播种比6月10日播种的早熟夏玉米产量略降低,播种期再推迟,早熟夏玉米产量显著降低;随着播种期的推迟,中熟夏玉米产量显著降低,日均温、平均土壤温度和气温日较差均降低,有效积温、日照时数均减少;气象因子对早熟夏玉米产量的影响为:有效积温>日照时数>气温日较差>平均土壤温度>日均温>降水量,气象因子对中熟夏玉米产量的影响为:有效积温>日照时数>日均温>平均土壤温度>气温日较差>降水量。生产上,鲁南地区中熟夏玉米适宜播期在6月10日左右,早熟夏玉米品种适宜播期在6月10日至6月17日,夏玉米在麦收后应及早播种,为实现高产和子粒机收创造条件。  相似文献   

14.
The effect of planting date on the growth and yield of irrigated sunflower was investigated in 1992 and 1993. Two sunflower hybrids, Islero and Upsol-veraflor, were sown at three different dates (3 October, 4 November, 2 December 1992 and 5 October, 6 November, 4 December 1993) in Sultan Qaboos University Agricultural Experiment Station on the Batinah Coast of Oman in a desert climate. Sunflower planted in December emerged later, flowered later and matured later than that planted in October or November. Severity of stalk lodging was closely related to the extent of stem weevil infestation, which was more serious in the early planted sunflower. Sclerotina head rot was also most severe in the October plantings and least severe in the December plantings. Head diameter, number of seeds per head and percentage of large seeds increased with delay in planting date. Seed yield and oil yield were highest in the December planted sunflower but oil concentration was not affected by the planting date. Based on these results, a December planting date was recommended for the Batinah Coast of Oman and other areas with similar climatic conditions.  相似文献   

15.
Influence of Soil Moisture on Growth, Water Use and Yield of Mustard   总被引:1,自引:0,他引:1  
A field experiment was conducted to study the influence of soil moisture on growth, water use and yield of mustard ( Brassica juncea L. cv. Rai 5 ). Two soil moisture regimes were rainfed and irrigated at 10 days interval throughout the growing season. The total amount of water received as irrigation was 110 mm and as rainfall was 15 mm. Total dry matter per unit ground area, leaf area index (LAI), crop growth rate (CGR) and net assimilation rate (NAR) were increased and leaf area ratio (LAR) and specific leaf area (SLA) were decreased by irrigation. Chlorophyll content and relative leaf water content (RLWC) were increased by irrigation, but proline content was greater in the rainfed crop at both the flowering and pod-filling stages. Time taken to first flowering, duration of flowering, number of seeds/pod and harvest index were unaffected by irrigation. Plant height at harvest, number of pods/plant, seed yield and oil content of seeds were increased and 1000-seed weight was decreased by irrigation. The consumptive use of water increased with an increase in water supply, but the water use efficiency (WUE) was decreased.  相似文献   

16.
Summary Data of planting and plant density are two cultural practices influencing grain yield of maize (Zea mays L.). Our study was designed to evaluate the usefulness of a mass selection scheme to improve cold and density tolerance of the BS2 and BS3 maize populations. Populations were planted at an early planting date and a high plant density, and three cycles of mass selection for well-filled ears on erect plants were conducted at earch of three Corn Belt locations (i.e., Waseca, MN; Ames, IA; Portageville, MO).Results showed that selection improved cold tolerance traits of BS3, but not of BS2. Mass selection did not increase density tolerance of either population at any location. Selection did not improve response to planting dates, although the early planting date did improve agronomic performance and grain yield of all entries. We concluded that mass selection at high plant densities and early planting dates at diverse geographical locations did not produce cycles adapted to specific environmental conditions.  相似文献   

17.
The determination of optimum crop management practices for increasing soybean production can provide valuable information for strategic planning in the tropics. However, this process is time consuming and expensive. The use of a dynamic crop simulation model can be an alternative option to help estimate yield levels under various growing conditions. The objectives of this study were to evaluate the performance of the Cropping System Model (CSM)‐CROPGRO‐Soybean and to determine optimum management practices for soybean for growing conditions in the Phu Pha Man district, Thailand. Data from two soybean experiments that were conducted in 1991 at Chiang Mai University and in 2003 at Khon Kaen University were used to determine the cultivar coefficients for the cultivars CM 60 and SJ 5. The CSM‐CROPGRO‐Soybean model was evaluated with data from two experiments that were conducted at Chiang Mai University. The observed data sets from farmers’ fields located in the Phu Pha Man district were also used for model evaluation. Simulations for different management scenarios were conducted with soil property information for seven different soil series and historical weather data for the period 1972–2003 to predict the optimum crop management practices for soybean production in the Phu Pha Man district. The results of this study indicated that the cultivar coefficients of the two soybean cultivars resulted in simulated growth and development parameters that were in good agreement with almost all observed parameters. Model evaluation showed a good agreement between simulated and observed data for phenology and growth of soybean, and demonstrated the potential of the CSM‐CROPGRO‐Soybean model to simulate growth and yield for local environments, including farmers’ fields, in Thailand. The CSM‐CROPGRO‐Soybean simulations indicated that the optimum planting dates from June 15 to July 15 produced maximum soybean yield in a rainfed environment. However, the planting date December 15 produced the highest yield under quality irrigation. Soybean yield was slightly improved by applying nitrogen at a rate of 30 kg N ha?1 at planting. Soybean yield also improved when the plant density was increased from 20 to 40 plants m?2. The results from this study suggest that the CSM‐CROPGRO‐Soybean model can be a valuable tool in assisting with determining optimum management practices for soybean cropping systems in the Phu Pha Man district and might be applicable to other agricultural production areas in Thailand and southeast Asia.  相似文献   

18.
Excessive tillage compromises soil quality by causing severe water shortages that can lead to crop failure. Reports on the effects of conservation tillage on major soil nutrients, water use efficiency and gain yield in wheat (Triticum aestivum L.) and maize (Zea mays L.) in rainfed regions in the North China Plain are relatively scarce. In this work, four tillage approaches were tested from 2004 to 2012 in a randomized study performed in triplicate: one conventional tillage and three conservation tillage experiments with straw mulching (no tillage during wheat and maize seasons, subsoiling during the maize season but no tillage during the wheat season, and ridge planting during both wheat and maize seasons). Compared with conventional tillage, by 2012, eight years of conservation tillage treatments (no tillage, subsoiling and ridge planting) resulted in a significant increase in available phosphorus in topsoil (0–0.20 m), by 3.8%, 37.8% and 36.9%, respectively. Soil available potassium was also increased following conservation tillage, by 13.6%, 37.5% and 25.0%, and soil organic matter by 0.17%, 5.65% and 4.77%, while soil total nitrogen was altered by −2.33%, 4.21% and 1.74%, respectively. Meanwhile, all three conservation tillage approaches increased water use efficiency, by 19.1–28.4% (average 24.6%), 10.1–23.8% (average 15.9%) and 11.2–20.7% (average 15.7%) in wheat, maize and annual, respectively. Additionally, wheat yield was increased by 7.9–12.0% (average 10.3%), maize yield by 13.4–24.6% (average 17.4%) and rotation annual yield by 12.3–16.9% (average 14.1%). Overall, our findings demonstrate that subsoiling and ridge planting with straw mulching performed better than conventional tillage for enhancing major soil nutrients and improving grain yield and water use efficiency in rainfed regions in the North China Plain.  相似文献   

19.
Summary Reciprocal recurrent selection was carried out with two populations of maize (Zea mays L.) having good combining ability. We selected for higher grain yield, early maturity, shorter plant height and lodging resistance. Two cycles were completed in two years (four seasons), by resorting to late planting of S1 lines for recombination in the main season in which top-cross families were assessed. Top-crosses and selfings were made in the off-season. The original and improved versions of the populations and their crosses were evaluated in multilocation trials. The superiority of the population hybrid was 10.3% for grain yield, 5.5% for plant height and 1.8 days to silk. The improved hybrid had delayed leaf senescence and better resistance to lodging and post-flowering stalk rots. Among the yield components, only ear girth showed improvement. Syn 2 of the improved population cross showed a yield reduction of 6.2% in comparison to Syn 1. Intrapopulation gains were not significant except for lodging resistance in one population.  相似文献   

20.
播期对糯玉米籽粒产量及品质的影响   总被引:3,自引:0,他引:3  
为满足农户对糯玉米种植的不同需求,探讨山西中晚熟地区播期对糯玉米产量与品质的影响。以晋糯18和晋糯20为试验材料,4月26日-7月5日,设置6个播期处理,研究其对产量、穗长、百粒重、穗粒重及籽粒蛋白质、淀粉、粗纤维素及赖氨酸相对含量的影响。结果表明,播期与品种对糯玉米产量及品质都有显著影响。其中B3播期(5月24日)处理下2个糯玉米品种产量、穗长、百粒重及穗粒重都高于其他播期处理,说明糯玉米适宜在小满前后播种。提前播期有利于籽粒蛋白质、赖氨酸相对含量的提高,而推迟播期降低籽粒粗纤维素、赖氨酸相对含量。B1与B6播期下籽粒淀粉相对含量低于其他播期,且B4、B5播期下籽粒淀粉相对含量高于其他播期。说明适当推迟播期有利于籽粒淀粉相对含量的提高,但过早或过迟播种均显著降低籽粒淀粉含量。糯玉米籽粒中粗纤维素含量与品种遗传背景密切相关,且推迟播种后品种差异对籽粒淀粉含量的影响降低。通过相关性分析发现积温、降水量与产量、穗粒重以及赖氨酸相对含量均达到极显著正相关关系,与穗长、百粒重均达到显著正相关关系,说明播期对产量性状及籽粒赖氨酸相对含量有显著影响。在山西中晚熟地区糯玉米在小满前后播种时产量最高,适当提前有利于籽粒蛋白质、赖氨酸含量的提高,适当推迟有利于籽粒粗纤维素、淀粉含量的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号