共查询到17条相似文献,搜索用时 62 毫秒
1.
耕深均匀性是拖拉机作业过程中一个重要的衡量指标,为此提出了一种耕深均匀性的拖拉机电子液压悬挂系统的控制方法。首先介绍了该系统的结构组成及耕深控制原理,然后建立了系统的物理模型,并分析了耕深值和提升臂转角存在的关系,以便利用提升臂转角来间接测量实际的耕深值。以设定的耕深值为输入,实际耕深值为负反馈,采用PID控制算法对该系统的耕深控制过程进行了仿真分析,实现了在线校正实际耕深与设定值的偏差。最后,通过田间试验分别验证了156mm耕深值和200mm耕深值的控制过程,证明了该控制方法的可行性。结果表明:提出的控制方法能够保证耕作过程中耕深的均匀性,也大大降低了驾驶员的操作强度。 相似文献
3.
土地耕作是拖拉机的一项重要作业内容,耕作质量通过耕深来反映。拖拉机耕深控制方法大多为液压式或电液混合式,控制的准确性和可靠性较高,但耕深调节存在一定的滞后,而采用电力控制系统可以较好地解决上述问题。为此,在拖拉机上安装电力控制系统,对铧式悬挂犁组的耕深进行控制。系统接收传感器的实时数据,分析结果并与设定的耕深数据比较,确定耕深的修正量;步进电机按照控制指令转动,使分配室内的油液重新分配,改变犁体提升臂的位置以达到调节耕深的目的。试验结果表明:在不同的试验条件下,实际耕深偏离设置值很小,系统对耕深的监测准确,实时性和准确性较高。 相似文献
4.
拖拉机耕深微机控制系统的研究 总被引:3,自引:1,他引:3
阐述了用微机控制拖拉机耕深的工作原理,接口电路和软件设计特点,室内模拟和田间试验表明,以MCS-51单片机为主体的TMD-2型微机耕深控制系统对耕深的控制达到了耕深均匀,操作方便,防止陷车的目的。 相似文献
5.
拖拉机耕深自动监测与控制 总被引:2,自引:3,他引:2
拖拉机耕深采用伺服和微机根据负荷及耕深的大小进行自动控制,使拖拉机处于最佳工况,提高作业质量和经济性。由耕作阻力的力信号和耕深变化的位移信号相叠加并和设定耕深相比较输入伺服放大器或计算机,然后输出控制信号,控制电液伺服阀的工作,改变控制阀的行程和方向,以改变输入拖拉机提升油缸的油量和流向,达到控制耕深的目的。 所组成的 TMD-1 型微机拖拉机耕深控制系统成功地进行了模拟试验和田间试验,取得了满意的结果。 相似文献
6.
7.
针对拖拉机犁耕作业工况,基于现有的电液悬挂闭环控制系统,提出了以位置调节为主线、滑转率自动开关控制为辅的联合控制方法。结合拖拉机田间犁耕作业环境,阐明了电液悬挂闭环控制系统的工作机理,设计出控制精度较高的模糊PID控制器。同时,开展了典型试验地块的田间犁耕试验,将试验数据导入MatLab软件中形成不同调节方式下的对比曲线,并分析工作过程中耕深、滑转率和牵引力的变化。试验结果表明:提出的联合控制方法能满足实际工作的农艺要求,在保证犁耕耕作质量的同时,亦使发动机负荷稳定性良好,对进一步的精细控制研究提供了参考。 相似文献
8.
根据拖拉机液压悬挂系统的特点,提出电控液压悬挂系统模糊控制器的设计方法,建立了模糊推理系统。利用Matlab对悬挂系统耕深分别进行了模糊控制和PID控制仿真,研究结果表明,模糊控制策略控制比PID控制更能适用于拖拉机液压悬挂系统。 相似文献
9.
耕整地机具是农业机械化生产的必要机械装备,为农业生产的顺利开展奠定土壤性状的基础,随着耕整地机具技术的不断升级,耕整地的作业效率和作业能力也在不断提升,为实现耕整地质量的进一步优化,利用电气控制技术实现耕深的自动控制与实时测量十分必要。分析了耕整地机械特征与作业需求,设计了耕深自动控制的流程与关键技术体系,以及耕深实时测量的电子软硬件配置思路。 相似文献
10.
11.
拖拉机悬挂模糊控制系统研究 总被引:1,自引:0,他引:1
介绍了拖拉机悬挂模糊控制系统、原理及结构图以及模糊控制算法的实现。利用MATLAB建立了拖拉机悬挂模糊控制系统仿真模型,并进行了仿真分析。结果表明,拖拉机悬挂模糊控制系统的超调量及调整时间比PID控制系统小,说明模糊控制用于拖拉机悬挂系统的力位调节控制是合适的。 相似文献
12.
针对目前小麦播种机在复杂的田间作业过程中存在的播深一致性和稳定性难以控制等问题,从调节覆土量确定小麦播深的控制角度出发,提出了一种基于播深反馈的模糊PID控制方法,设计了小麦播种机高精度播深控制系统,实现了播深的自动调控,保证了小麦播深的均匀一致性。该系统主要由车载终端、播深检测模块、播前镇压辊检测模块以及播前镇压辊调节机构等4部分组成,能够实现小麦播种机播深的实时检测及调整。通过播深检测模块获取实时播深并作为反馈输入,结合播深预设值,根据专家模糊规则和Mamdani推理法对PID参数进行在线整定得到控制输出量,控制驱动器调整播前镇压辊位置,不断调整作业过程中的覆土量,从而实现对播深的实时精确控制,确保播深的一致性。田间试验结果表明:播种作业过程中,播深存在小范围波动。当设定播深为30mm、车速为3~5km/h时,播深平均值为30.13mm,播深标准差为0.18mm,播深合格率均值为93%,播深变异系数均值为2.93%。该系统实现了小麦播种机播深均匀一致的实时自适应调控。 相似文献
13.
介绍一种电控悬挂耕深控制系统在拖拉机上的应用,并介绍了该系统主要电控液压元件的结构特点及工作原理。 相似文献
14.
介绍了拖拉机悬挂模糊控制系统结构及原理图以及模糊控制算法的实现,并利用MATLAB建立了拖拉机悬挂模糊控制系统仿真模型并进行了仿真,结果表明模糊控制用于拖拉机悬挂系统的控制是合适的。 相似文献
15.
针对丘陵山地拖拉机电液悬挂控制系统田间试验困难、可重复性差等问题,基于半实物仿真技术开展电液悬挂控制系统试验研究。首先通过对试验拖拉机和悬挂作业装置进行受力分析,建立了丘陵山地拖拉机整机动力学模型、铧犁体的土壤阻力模型和拖拉机悬挂装置动力学模型。然后对丘陵山地拖拉机电液悬挂系统横向仿形控制、位控制、牵引力控制以及力位综合控制的系统原理进行了分析,设计了丘陵山地拖拉机电液悬挂模糊PID控制器。之后搭建拖拉机电液悬挂控制系统半实物仿真试验平台,开发电液悬挂控制系统,开展电液悬挂系统仿地形控制、力控制、位控制和力位综合控制等试验,对比分析模糊PID控制和经典PID控制方法性能。试验结果表明,模糊PID控制性能较好:在位置控制模式下,模糊PID控制无超调,控制系统响应时间为0.6s,较经典PID控制提高约33.3%;耕深控制系统稳态误差约为0.05cm,较经典PID控制降低约50%;在力控制模式下,模糊PID控制耕深的跟随误差最大值为0.38cm,标准差为0.17cm,较经典PID控制分别下降了64.5%、39.3%,验证了所开发的电液悬挂控制系统的有效性。 相似文献
16.
针对拖拉机在运输重型悬挂设备时,压力冲击剧烈、拖拉机会产生较大的俯仰运动等问题,提出了在位置控制系统中加入动压反馈校正环节,增加系统阻尼比,来抑制系统压力波动。该动压反馈校正环节利用压力传感器输出信号,经过控制器微分校正后给系统输入,能够在不影响系统动态刚度的前提下,增加系统阻尼比。首先,通过建立拖拉机电液悬挂的运动学模型,分析研究了各杆件间的转角传动比,并建立了拖拉机悬挂系统的动力学模型,利用Matlab编写程序求解液压缸的负载力,建立了液压系统模型,分析了加入动压反馈校正环节后的液压系统阻尼比变化情况,给出了动压反馈参数的确认方法。其次,应用Matlab/Simulink对所建立的模型进行仿真分析,仿真结果表明:在液压系统提升过程中压力变化较大,最大压力达到5.8MPa,校正后的电液悬挂系统压力波动较小,最大压力仅4.0MPa,在液压系统受到干扰力冲击时,原液压系统压力波动范围为2.7MPa,而采用动压反馈校正后的位置控制压力波动范围为1.1MPa,验证了该校正方法能够有效地提高系统阻尼比,抑制压力波动。最后,搭建试验平台进行试验验证,试验结果表明:拖拉机电液悬挂提升过程中未校正系统的提升最大压力为4.6MPa,且压力振荡下降,而校正后的系统最大压力仅3.8MPa,压力较为平缓。冲击干扰试验中原系统的最大压力达到6.5MPa,压力波动范围为6.0MPa,而校正后的系统最大压力仅为4.6MPa,压力波动范围为4.2MPa,相对于原系统锁止工况,压力波动范围降低了30%。本文提出的拖拉机电液悬挂动压反馈校正方法,可以很好地抑制拖拉机电液悬挂液压缸压力波动,从而达到保护农机具,降低俯仰运动,提高驾驶员舒适性的目的。 相似文献