首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
不同土壤比阻下拖拉机耕深均匀性研究   总被引:1,自引:0,他引:1  
针对拖拉机跨区作业时系统响应特性和耕深均匀性,以力位综合控制为基础,提出了一种变论域模糊PID控制方法。根据拖拉机耕作特性,阐述了系统工作原理,并对其控制策略进行了分析,设计出变论域模糊PID控制器。借助MatLab/Simulink仿真平台开展了系统响应特性试验,同时结合拖拉机适耕土壤情况,选取土壤比阻均值约为3、4、6N/cm~2的3块典型试验田进行了田间实车试验。结果表明:提出的控制方法响应迅速、灵敏度较高,能较好地满足悬挂系统快速升降的工况需求;同时,加权系数取值对拖拉机耕深均匀性及其调节区间均有较大影响,为加权系数的自调整和多参数联合自动控制的研究奠定了基础。  相似文献   

2.
针对丘陵山地拖拉机电液悬挂控制系统田间试验困难、可重复性差等问题,基于半实物仿真技术开展电液悬挂控制系统试验研究。首先通过对试验拖拉机和悬挂作业装置进行受力分析,建立了丘陵山地拖拉机整机动力学模型、铧犁体的土壤阻力模型和拖拉机悬挂装置动力学模型。然后对丘陵山地拖拉机电液悬挂系统横向仿形控制、位控制、牵引力控制以及力位综合控制的系统原理进行了分析,设计了丘陵山地拖拉机电液悬挂模糊PID控制器。之后搭建拖拉机电液悬挂控制系统半实物仿真试验平台,开发电液悬挂控制系统,开展电液悬挂系统仿地形控制、力控制、位控制和力位综合控制等试验,对比分析模糊PID控制和经典PID控制方法性能。试验结果表明,模糊PID控制性能较好:在位置控制模式下,模糊PID控制无超调,控制系统响应时间为0.6s,较经典PID控制提高约33.3%;耕深控制系统稳态误差约为0.05cm,较经典PID控制降低约50%;在力控制模式下,模糊PID控制耕深的跟随误差最大值为0.38cm,标准差为0.17cm,较经典PID控制分别下降了64.5%、39.3%,验证了所开发的电液悬挂控制系统的有效性。  相似文献   

3.
根据拖拉机液压悬挂系统的特点,提出电控液压悬挂系统模糊控制器的设计方法,建立了模糊推理系统。利用Matlab对悬挂系统耕深分别进行了模糊控制和PID控制仿真,研究结果表明,模糊控制策略控制比PID控制更能适用于拖拉机液压悬挂系统。  相似文献   

4.
重型拖拉机电液悬挂比例控制器设计   总被引:3,自引:0,他引:3  
设计了一种基于飞思卡尔MC9S12XS128型微处理器的电液悬挂比例控制器。根据重型拖拉机电液悬挂系统控制要求,在分析现有重型拖拉机电液悬挂比例控制器的结构、类型和特点的基础上,确定了比例控制器的整体设计方案,在CodeWarrior环境下完成软件程序设计,采用PID控制算法实现对拖拉机作业机组的位控制、牵引力控制和力位综合控制。以重型拖拉机电液悬挂系统为试验平台,对所设计的电液悬挂比例控制器进行了田间试验,牵引力和耕深控制的过渡时间分别为3.89s和0.81s。结果表明:比例控制器对重型拖拉机悬挂装置的综合控制具有响应快、精度高、稳定性强等特点,在保证拖拉机平顺性和作业质量的同时,提高了作业效率,降低了拖拉机驾驶员的劳动强度。  相似文献   

5.
拖拉机悬挂系统耕深自动控制策略的研究   总被引:1,自引:0,他引:1  
对拖拉机电控液压悬挂系统耕深自动控制方法进行仿真研究,提出一种基于P—模糊PID双模态控制原理的自动控制方法,建立悬挂系统位置控制过程中的数学模型,设计相应的P—模糊PID控制器,利用Matlab/Simulink建立仿真模型。仿真研究系统在设定耕深信号下的响应,对比常规的模糊控制方法结果表明,耕深从0~250mm系统的动态响应时间在1s以内,动态响应速度将近提高了一倍,并且系统没有超调,控制精度高,取得了很好的控制效果。研究结果为进一步提高拖拉机的耕作质量提供一定的理论依据和指导意义。  相似文献   

6.
基于滑转率的拖拉机自动耕深模糊控制仿真   总被引:2,自引:0,他引:2  
仿真分析了基于滑转率的拖拉机自动耕深模糊控制算法.首先建立系统的数学模型,并用Matlab/Simulink建立计算机仿真模型.然后设计系统的模糊控制器,进一步根据系统的数学模型进行了仿真分析,观察控制效果.同时用PID控制算法、模糊PID控制算法进行仿真,分别进行响应性、抗干扰、适应性的对比分析,结果表明,模糊PID和模糊控制算法较为合适,两者控制效果近似,但是模糊PID控制算法需要更多的变量,更为复杂.  相似文献   

7.
针对拖拉机犁耕作业工况,基于现有的电液悬挂闭环控制系统,提出了以位置调节为主线、滑转率自动开关控制为辅的联合控制方法。结合拖拉机田间犁耕作业环境,阐明了电液悬挂闭环控制系统的工作机理,设计出控制精度较高的模糊PID控制器。同时,开展了典型试验地块的田间犁耕试验,将试验数据导入MatLab软件中形成不同调节方式下的对比曲线,并分析工作过程中耕深、滑转率和牵引力的变化。试验结果表明:提出的联合控制方法能满足实际工作的农艺要求,在保证犁耕耕作质量的同时,亦使发动机负荷稳定性良好,对进一步的精细控制研究提供了参考。  相似文献   

8.
耕深均匀性是拖拉机作业过程中一个重要的衡量指标,为此提出了一种耕深均匀性的拖拉机电子液压悬挂系统的控制方法。首先介绍了该系统的结构组成及耕深控制原理,然后建立了系统的物理模型,并分析了耕深值和提升臂转角存在的关系,以便利用提升臂转角来间接测量实际的耕深值。以设定的耕深值为输入,实际耕深值为负反馈,采用PID控制算法对该系统的耕深控制过程进行了仿真分析,实现了在线校正实际耕深与设定值的偏差。最后,通过田间试验分别验证了156mm耕深值和200mm耕深值的控制过程,证明了该控制方法的可行性。结果表明:提出的控制方法能够保证耕作过程中耕深的均匀性,也大大降低了驾驶员的操作强度。  相似文献   

9.
针对长江中下游农业区土壤黏重潮湿、机具碾压导致地表平整度差、耕作时耕深不稳定等问题,提出了一种基于拖拉机车身俯仰角与悬挂装置提升臂转角的耕深监控方法。首先,对旋耕作业机组姿态进行分析,确定了耕深与角度之间的几何关系,建立了耕深控制模型,并利用角位移传感器和倾角传感器分别测量提升臂转角和拖拉机车身俯仰角的变化,从而间接确定耕深;然后设计了耕深电液监控系统,该系统可预设耕深和实时显示耕深;最后,选用Simulink软件通过仿真对耕深电液监控系统进行响应速度检验,仿真结果显示,系统能在0.6s达到稳定状态,满足耕深控制要求。进行了耕深自动监控系统准确性试验,结果表明,系统能检测因倾仰导致的三点悬挂下拉杆悬挂点高度的变化量,调控高度稳定在设定值,验证了系统的准确性。为检验耕深电液监控系统田间作业性能,选择所设计的电液监控系统与原机械调节系统进行了对比试验,结果表明,利用电液监控系统进行旋耕作业时,其在各工况中耕深稳定性变异系数不超过4.28%,耕深标准差和耕深稳定性变异系数均低于机械调节系统。  相似文献   

10.
基于SimulationX的拖拉机滑转率控制研究   总被引:1,自引:0,他引:1  
介绍了国内外拖拉机电控液压悬挂系统的发展现状和农具耕深控制方法,提出了基于拖拉机悬挂位置控制的滑转率系统,并阐述了拖拉机液压悬挂系统结构与该控制系统的工作原理。在SimulationX软件中建立悬挂机构的物理模型和液压系统模型,基于该物理模型对农具耕深值和悬挂外提升臂转角关系进行分析,以便通过控制悬挂外提升臂转角控制农具耕深,并采用PID控制策略对所建立的液压悬挂系统进行控制仿真。结果表明:该控制系统具有可行性,并且在保持农具耕作深度的基础上兼顾了拖拉机的滑转率,有利于提高拖拉机液压悬挂的控制水平和改善拖拉机的耕作效率。  相似文献   

11.
拖拉机悬挂模糊控制系统研究   总被引:1,自引:0,他引:1  
介绍了拖拉机悬挂模糊控制系统、原理及结构图以及模糊控制算法的实现。利用MATLAB建立了拖拉机悬挂模糊控制系统仿真模型,并进行了仿真分析。结果表明,拖拉机悬挂模糊控制系统的超调量及调整时间比PID控制系统小,说明模糊控制用于拖拉机悬挂系统的力位调节控制是合适的。  相似文献   

12.
针对丘陵山地拖拉机作业地形复杂,传统电液悬挂控制系统地形适应性差的问题,设计了一套横向姿态可调的丘陵山地拖拉机电液悬挂仿形控制系统。根据丘陵山地拖拉机仿形控制作业需求,在传统悬挂结构基础上加装一个液压驱动旋转装置,设计了一种仿形悬挂机构,基于液压多点动力输出技术设计了带有负载反馈的闭心式液压控制系统,并提出了一种基于带死区的经典PID算法的控制方法。通过对阀控非对称液压缸工作原理的分析,建立了其数学模型并推导出仿形控制系统的传递函数,运用Matlab/Simulink建立了电液悬挂仿形控制系统的动力学模型并进行了仿真分析,仿真结果表明,系统在0°~11°阶跃信号的作用下,调整时间约为0.4s,几乎无超调,系统稳定后农机具横向倾角约为11.1°,稳态误差约为0.1°,仿真结果验证了该控制算法的有效性。通过对传统拖拉机的液压悬挂装置进行改装,将原来的手柄操纵式液压悬挂装置改装成带有虚拟终端的电液悬挂控制系统,搭建了仿形控制试验台并进行了室内台架试验,试验结果表明,系统调整时间约为2.2s,几乎无超调,系统稳定后农机具横向倾角约为11.2°,稳态误差约为0.2°,在系统允许误差(0.5°)范围内,试验结果验证了所设计的丘陵山地拖拉机电液悬挂仿形控制系统调节的快速性与稳定性,满足拖拉机等高线坡地作业需求。  相似文献   

13.
介绍了拖拉机悬挂模糊控制系统结构及原理图以及模糊控制算法的实现,并利用MATLAB建立了拖拉机悬挂模糊控制系统仿真模型并进行了仿真,结果表明模糊控制用于拖拉机悬挂系统的控制是合适的。  相似文献   

14.
面向植保机械喷杆位置调节作业的需要,选取电液伺服系统作为其调节装置,提出一种基于模糊控制的控制方法。首先,将电液伺服系统中的未知项、非线性项等进行完整的数学建模;然后,以输出量与给定量的误差及其变化率作为模糊控制器的输入信号,伺服阀的控制电流为输出信号,建立模糊控制系统,实现了对电液伺服系统中不确定项与非线性项的控制;最后,搭建Mat Lab仿真平台进行仿真,同时作为对比设计了PID算法。结果表明:所设计的模糊控制器具有良好的跟踪性能,对系统的不确定性和振动具有良好的控制效果。  相似文献   

15.
针对拖拉机在运输重型悬挂设备时,压力冲击剧烈、拖拉机会产生较大的俯仰运动等问题,提出了在位置控制系统中加入动压反馈校正环节,增加系统阻尼比,来抑制系统压力波动。该动压反馈校正环节利用压力传感器输出信号,经过控制器微分校正后给系统输入,能够在不影响系统动态刚度的前提下,增加系统阻尼比。首先,通过建立拖拉机电液悬挂的运动学模型,分析研究了各杆件间的转角传动比,并建立了拖拉机悬挂系统的动力学模型,利用Matlab编写程序求解液压缸的负载力,建立了液压系统模型,分析了加入动压反馈校正环节后的液压系统阻尼比变化情况,给出了动压反馈参数的确认方法。其次,应用Matlab/Simulink对所建立的模型进行仿真分析,仿真结果表明:在液压系统提升过程中压力变化较大,最大压力达到5.8MPa,校正后的电液悬挂系统压力波动较小,最大压力仅4.0MPa,在液压系统受到干扰力冲击时,原液压系统压力波动范围为2.7MPa,而采用动压反馈校正后的位置控制压力波动范围为1.1MPa,验证了该校正方法能够有效地提高系统阻尼比,抑制压力波动。最后,搭建试验平台进行试验验证,试验结果表明:拖拉机电液悬挂提升过程中未校正系统的提升最大压力为4.6MPa,且压力振荡下降,而校正后的系统最大压力仅3.8MPa,压力较为平缓。冲击干扰试验中原系统的最大压力达到6.5MPa,压力波动范围为6.0MPa,而校正后的系统最大压力仅为4.6MPa,压力波动范围为4.2MPa,相对于原系统锁止工况,压力波动范围降低了30%。本文提出的拖拉机电液悬挂动压反馈校正方法,可以很好地抑制拖拉机电液悬挂液压缸压力波动,从而达到保护农机具,降低俯仰运动,提高驾驶员舒适性的目的。  相似文献   

16.
拖拉机液压悬挂耕深电液控制系统设计与试验   总被引:3,自引:0,他引:3  
从拖拉机液压悬挂耕深电液控制系统原理出发,设计了一种以电液比例阀为主控制阀的耕深电液控制系统,建立该系统数学模型,分析其位控制和力控制特性,并进行了试验验证.试验结果表明:采用耕深电液控制系统,其位控制过渡时间为0.65 s,静差为±1.5 cm;力控制调节时间为7.5 s;力位综合控制耕深为20cm时,耕深的波动范围为±1 crn.能够满足农机具田间作业时耕深的控制精度和稳定性要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号