首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The relationships between foliage element concentrations in red spruce and soil chemical properties were studied to determine if standard soil measurements of individual elements in soils were well correlated with the concentrations of these elements in foliage. Significant positive correlations between O horizon and foliage concentrations existed only for K, Mn and P. Significant negative correlations between the concentrations of the major divalent cations (i.e. Ca, Mg, Mn) and K in the foliage were found suggesting a possible antagonism between the mono‐ and divalent cations for uptake from the soil. Trees with the highest foliage concentrations of Ca also were determined to be growing on soils which were producing the best growth rates. Foliage concentrations of P, and to a lesser extent K and Mg, were below values considered to be adequate for optimum growth in red spruce.  相似文献   

2.
Development and use of a database of hydraulic properties of European soils   总被引:21,自引:0,他引:21  
J. H. M. W  sten  A. Lilly  A. Nemes  C. Le Bas 《Geoderma》1999,90(3-4):169-185
Many environmental studies on the protection of European soil and water resources make use of soil water simulation models. A major obstacle to the wider application of these models is the lack of easily accessible and representative soil hydraulic properties. In order to overcome this apparent lack of data, a project was initiated to bring together the available hydraulic data which resided within different institutions in Europe into one central database. This information was then used to derive a set of pedotransfer functions applicable to studies at a European scale. These pedotransfer functions predict the hydraulic properties from parameters collected during soil surveys and can be a good alternative for costly and time-consuming direct measurement of these properties. A total of 20 institutions from 12 European countries collaborated in establishing the database of draulic operties of uropean oils (HYPRES). This database has a flexible relational structure capable of holding a wide diversity of both soil pedological and hydraulic data. As these data were contributed by 20 different institutions it was necessary to standardise both the particle-size and the hydraulic data. A novel similarity interpolation procedure was successfully used to achieve standardization of particle-sizes according to the FAO clay, silt and sand particle-size ranges. Standardization of hydraulic data was achieved by fitting the Mualem-van Genuchten model parameters to the individual θ(h) and K(h) hydraulic properties stored in HYPRES. The HYPRES database contains information on a total of 5521 soil horizons (including replicates). Of these, 4030 horizons had sufficient data to be used in the derivation of pedotransfer functions. Information on both water retention and hydraulic conductivity was available for 1136 horizons whereas 2894 horizons had only information on water retention. Each soil horizon was allocated to one of 11 possible soil textural/pedological classes derived from the six FAO texture classes (five mineral and one organic) and the two pedological classes (topsoil and subsoil) recognised within the 1:1 000 000 scale Soil Geographical Data Base of Europe. Next, both class and continuous pedotransfer functions were developed. By using the class pedotransfer functions in combination with the 1:1 000 000 scale Soil Map of Europe, the spatial distribution of soil water availability within Europe was derived.  相似文献   

3.
4.
Drying–rewetting cycles (D/W) occur frequently in topsoils and may mobilize phosphorus (P). We investigated the effect of repeated D/W on the release of dissolved inorganic (DIP) and organic P (DOP) from forest floors and A horizons. Samples were taken from 3 European beech sites and from 3 Norway spruce sites. Soils were desiccated up to pF 6 (–100 MPa) in three D/W cycles in the laboratory, while the controls were kept permanently at 50% water holding capacity. After each drying, P was extracted from the soils in water. D/W caused the release of DIP and DOP especially from O layers. There was no general difference in response to D/W between samples from beech and spruce. The net release of DIP after D/W was largest from the Oe horizons (average 50–60 mg P kg?1) for both beech and spruce forest soils. The net release of DIP from Oi layers was on average 7.8 mg P kg?1 and from spruce Oa layers 21.1 mg P kg?1. In the A horizons, net DIP release was similar in beech and spruce soils with 0.4 mg P kg?1. The release of DOP was less than the release of DIP except for the A horizons. Repeated cycles did not increase the release of DIP and DOP. The release of DIP and DOP was positively correlated with the microbial biomass in Oe and Oa layers but not in Oi layers. Our results suggest that D/W may significantly influence the short term availability of dissolved P in both beech and spruce forest soils.  相似文献   

5.
Phosphorus (P) is essential for sustainable forest growth, yet the impact of anthropogenic impacts on P leaching losses from forest soils is hardly known. We conducted an irrigation experiment with 128 mesocosms from three forest sites representing a gradient of resin extractable P of the A‐horizon. On each site we selected a Fagus sylvatica and a Picea abies managed subsite. We simulated ambient rain (AR), anthropogenic nitrogen input (NI) of 100 kg (ha · a)?1 and forest liming (FL) with a dolomite input of 0.3 Mg (ha · a)?1. Soil solution was extracted from the organic layer, 10 cm depth and 20 cm depth of the mesocosms, and analyzed for molybdate reactive phosphorus (MRP) and molybdate unreactive phosphorus (MUP). Additionally, we separated colloids from the soil solution using Asymmetric Field Flow Fractionation for assessing the colloidal fraction of total element concentrations. NI increased MRP and MUP concentrations for all plots with one exception, while FL decreased MRP and MUP with the exception of another plot. While the irrigation treatments had little impact on the P‐richest site, MRP and MUP concentrations changed strongly at the poorer sites. The colloidal fraction of P in the soil solution equaled 38–47% of the total P load. Nitrogen input and liming also affected the Fe, Al, Ca, and Corg contents of the colloidal fraction.  相似文献   

6.
7.
缙云山森林土壤微生物数量与群落特征   总被引:1,自引:0,他引:1  
本文以重庆市缙云山国家森林保护区的毛竹林、 马尾松针叶林、 马尾松针阔混交林为供试对象,研究了不同森林群落的土壤微生物数量、 群落特征及其与土壤养分的关系。结果表明,毛竹林土壤中的细菌、 放线菌、 真菌数量最多,混交林次之,针叶林最少,高低之间分别相差 32.3倍(细菌)、 19.2倍(放线菌)和19.3倍(真菌)。说明森林植被群落的生产力越高,枯枝落叶量越大,土壤微生物数量越多。在毛竹林土壤中,微生物的多样性指数、 均匀度指数和优势度指数显著高于针叶林和混交林,说明毛竹土壤的生态环境相对稳定良好,微生物种群丰富,密度较大,种群优势突出。此外,土壤微生物存在明显的季节变化,夏季最高,冬季最低,与土壤有效氮、 磷的季节变化基本耦合。土壤微生物数量与土壤有机质和碱解氮呈显著正相关(r有机质=0.592**~0.741**,r碱解氮=0.490*~0.581**,n=24); 在毛竹林和混交林土壤中,土壤微生物数量与有效磷呈显著正相关(r毛竹林=0.461*,r 混交林=0.450*,n=24),说明微生物在土壤有机质转化和氮、 磷供应过程中起重要作用,与森林植被群落的生产力密切相关。  相似文献   

8.
酸雨对土壤有机碳氮潜在矿化的影响   总被引:16,自引:0,他引:16  
Acid rain is a serious environmental problem worldwide. In this study, a pot experiment using forest soils planted with the seedlings of four woody species was performed with weekly treatments of pH 4.40, 4.00, 3.52, and 3.05 simulated acid rain (SAR) for 42 months compared to a control ofpH 5.00 lake water. The cumulative amounts of C and N mineralization in the five treated soils were determined after incubation at 25 ℃ for 65 d to examine the effects of SAR treatments. For all five treatments, cumulative CO2-C production ranged from 20.24 to 27.81 mg kg^-1 dry soil, net production of available N from 17.37 to 48.95 mg kg^-1 dry soil, and net production of NO3-N from 9.09 to 46.23 mg kg^-1 dry soil. SAR treatments generally enhanced the emission of CO2-C from the soils; however, SAR with pH 3.05 inhibited the emission. SAR treatments decreased the net production of available N and NO3-N. The cumulative CH4 and N2O productions from the soils increased with increasing amount of simulated acid rain. The cumulative CO2-C production and the net production of available N of the soil under Acmena acuminatissima were significantly higher (P 〈 0.05) than those under Schima superba and Cryptocarya concinna. The mineralization of soil organic C was related to the contents of soil organic C and N, but was not related to soil pH. However, the overall effect of acid rain on the storage of soil organic matter and the cycling of important nutrients depended on the amount of acid deposition and the types of forests.  相似文献   

9.
Soil cation exchange capacity (CEC), which is considered to be an indicator of buffering capacity, is an important soil attribute that influences soil fertility but is costly, time‐consuming and labour‐intensive to measure. Pedotransfer functions (PTFs) have routinely been used to predict soil CEC from easily measured soil properties, such as soil pH, texture and organic matter content. However, uncertainty in which one to select can be substantial as different PTFs do not necessarily produce the same result. In this study, a total of 100 soil samples were collected from surface horizons (0–20 cm) in different regions of Qingdao City, China. Three ensemble PTFs (ePTFs), including simple ensemble mean (SEM), individually bias‐removed ensemble mean (IBREM) and collective bias‐removed ensemble mean (CBREM), were developed to reduce the uncertainty in CEC prediction based on 12 published regression‐based PTFs. In addition, a local PTF (LPTF) for CEC was also developed using multiple stepwise regression and basic soil properties. The performances of the three ePTFs were compared with those of the published PTFs and LPTF. Results show that the differences between the performances of the published PTFs were substantial. When the systematic bias of each published PTF was removed separately, the prediction capability of the PTFs was increased. The performance of LPTF was significantly better than that of SEM, but slightly worse than IBREM. It is noted that CBREM had higher accuracy than all of the other methods. Overall, CBREM is a promising approach for estimating soil CEC in the study area.  相似文献   

10.
Summary Rates of N mineralization and of N uptake were measured in situ in three eucalypt forests and a cool-temperate rainforest, and were correlated with productivity. All of the soils had a high capacity for immobilization, and nitrification was insignificant. Changes in both organic and inorganic P fractions during in situ containment of soils were small. While the concentration of inorganic available P was not related to forest productivity, a measure of labile organic P was closely related both to productivity and to P in the microbial biomass. Estimates of inorganic- and organic-N availability were highly correlated with independent estimates of organic-P availability, and the results are discussed in relation to biological control of nutrient availability in the surface horizons of forest soils.  相似文献   

11.
Abstract

An efficient sampling scheme for evaluating seasonal changes of inorganic nitrogen in a forest soil was designed. It was based on variances of ammonium‐ and nitrate‐nitrogen estimated from core samples from each of three horizons (A1, A2, B1) taken from 8 randomly selected sites in a three‐hectare study area. The scheme adopted was: At each sampling time a single composite sample for each horizon was made using 15 cores from randomly‐selected locations; duplicate subsamples from each composite were analyzed for ammonium‐ and nitrate‐nitrogen.  相似文献   

12.
Acid soil in West Cameroon has limited phosphorus (P) availability which limits plant growth. This is mainly because of low pH, high levels of exchangeable aluminium (Al) and iron (Fe) and fixation of P. In this study, acid soils, sampled in Bafang, were amended with biochar produced from coffee husks (CH) and cocoa pod husks (CP) at two different temperatures (350 and 550 °C) in other to evaluate the effect on the physicochemical properties of the acid soil and the effect on P sorption and desorption. The soil was amended with biochar at a rate of 0, 20, 40 and 80 g/kg and incubated for 7 and 60 days. Physicochemical properties of all soil–biochar samples were determined followed by sorption experiments and data fitted in the Langmuir and Freundlich isotherm models in other to evaluate soil P sorption capacity and its affinity to soil amended with biochar. Moreover, desorption studies were done to evaluate the availability of P in soil amended with biochar after sorption. The outcomes of this study reveal an increase in soil pH, electrical conductivity (EC), available P, soil organic carbon and a drastic decrease in exchangeable Al and Fe. The point of zero charge of biochar-amended soil was higher than the control and increased with amendment rate. The experimental data of the sorption of P on soils and soil–biochar samples fits into Langmuir and Freundlich models (R2 > 0.9) suggesting that the P adsorption is controlled by both model mechanisms. Soil–biochar mixture results in a decrease in the sorption capacity as compared with the control and the decrease was predominant with increasing amendment rate. At amendment rates of 20, 40 and 80 g/kg after 7 days of incubation, Q max for SCH350 were 2267, 2048 and 1823 mg/kg which increased to 2407, 2112 and 1990 mg/kg after 60 days of incubation. This tendency was observed for all biochar inputs with respect to the increase in incubation days. Furthermore, desorption of P from soil–biochar mixtures was enhanced with biochar added at greater rate and produced at higher temperature. The desorption percentage was increased by more than around 10% for all biochar types from 20 mg/kg to 80 mg/kg amendment. Thus, biochar addition to acid soils reduces P fixation to acid soil and improves P desorption to soil solution, thereby providing more available P in the soil solution and better conditions for plant growth.  相似文献   

13.
One main problem with current research on spatio‐temporal modeling of ion fluxes in forest soils is the separation of space and time effects in the soil‐monitoring concept. This article describes an approach to overcome this weakness. Time trends of point information on soil‐solution data (base‐cation concentrations and fluxes) are scaled by linking them to soil‐chemical data which is available in higher spatial resolution and can be upscaled to an area base. This approach is based on a combined evaluation of bulk soil and soil‐solution data using both statistical and process‐oriented methods. Multiple‐linear‐regression analyses coupled with geostatistics were developed to predict spatial patterns of exchangeable cation percentages. In a second step, empirical ion‐distribution coefficients were adapted according to Gapon using data of suction‐cup plots and bulk‐soil samples. Seasonally adjusted time‐series data of soil‐solution chemistry were then connected with the maps of the predicted exchangeable‐cation percentages by means of the Gapon equations. This evaluation step provided both time‐ and space‐dependent maps of cation concentrations in the soil solution. Finally, using the results of a water‐budget model it was possible to derive spatio‐temporal patterns of soil cation fluxes. Methodological limitations and the results of verification processes are discussed. The methods described can only be used in acidic soils and should not be used in soil layers rich in humus, since adsorption to C compounds differs from adsorption to clay minerals. The time increments of the models should be not shorter than yearly in order to suppress annual periodicity. Although the Gapon equations were not based on laboratory‐determined exchange solutions at quasi‐equilibrium, but rather on field data from the suction‐cup technique, the exchangeable‐cation percentages showed steady functions of selectivity coefficients. The methods tested at a watershed scale may be flexible enough to be applied at other scales as well.  相似文献   

14.
15.
Forest management and climate change may have a substantial impact on future soil organic carbon (SOC) stocks at the country scale. Potential SOC in Japanese forest soils was regionally estimated under nine forest managements and a climate change scenario using the CENTURY ecosystem model. Three rotations (30, 50, 100 yr) and three thinning regimes were tested: no‐thinning; 30% of the trees cut in the middle of the rotation (e.g. 15 year in a 30‐yr rotation) and thinned trees all left as litter or slash (ThinLef) and the trees from thinning removed from the forest (ThinRem). A climate change scenario was tested (ca. 3 °C increase in air temperature and 9% increase in precipitation). The model was run at 1 km resolution using climate, vegetation and soil databases. The estimated SOC stock ranged from 1600 to 1830 TgC (from 6800 to 7800 gC/m2), and the SOC stock was largest with the longest rotation and was largest under ThinLef with all three rotations. Despite an increase in net primary production, the SOC stock decreased by 5% under the climate change scenario.  相似文献   

16.
施用碱稳定污泥污水土壤经γ-辐照后土壤溶液中Cu和Zn   总被引:1,自引:0,他引:1  
Soil samples collected from several acid soils in Guangdong, Fujian, Zhejiang and Anhui provinces of the southern China were employed to characterize the chemical species of aluminumions in the soils. The proportion of monomeric inorganic Al to total Al in soil solution was in the range of 19% to 70%, that of monomeric organic Al (Al-OM) to total Al ranged from 7.7% to 69%, and that of the acid-soluble Al to total Al was generally smaller and was lower than 20% in most of the acid soils studied. The Al-OM concentration in soil solution was positively correlated with the content of dissolved organic carbon (DOC) and also affected by the concentration of Al3+. The complexes of aluminum with fluoride (Al-F) were the predominant forms of inorganic Al, and the proportion of Al-F complexes to total inorganic Al increased with pH. Under strongly acid condition, Al3+ was also a major form of inorganic Al, and the proportion of Al3+ to total inorganic Al decreased with increasing pH. The proportions of Al-OH and Al-SO4 complexes to total inorganic Al were small and were not larger than 10% in the most acid soils. The concentration of inorganic Al in solution depended largely on pH and the concentration of total F in soil solution. The concentrat ions of Al-OM, Al3+, Al-F and Al-OH complexes in topsoil were higher than those in subsoil and decreased with the increase in soil depth. The chemical species of aluminumions were influenced by pH. The concentrations of Al-OM, Al3+, Al-F complexes and Al-OH complexes decreased with the increase in pH.  相似文献   

17.
Broad industrial application of organotin compounds (OTC) leads to their release into the environment. OTC are deposited from the atmosphere into forest ecosystems and may accumulate in soils. Here, we studied the degradation of methyltin and butyltin compounds in a forest floor, a mineral, and a wetland soil with incubation experiments at 20 °C in the dark. OTC degraded slowly in soils with half‐lives estimated from 0.5 to 15 years. The first order degradation rate constants of OTC in soils ranged from 0.05 to 1.54 yr–1. The degradation rates in soils were generally in the order mono‐ ≥ di‐ > tri‐substituted OTC. Stepwise dealkylation was observed in all cases of di‐substituted OTC, but only in some cases of tri‐substituted OTC. Decomposition rates of OTC in the forest floor were higher than in wetland and mineral soils. Tetramethyltin in the gas phase was not detected, suggesting little tin methylation in the wetland soils. Slow degradation of OTC in soils might lead to long‐term storage of atmospherically deposited OTC in soils.  相似文献   

18.
Carbon (C) stocks in forest soils were evaluated in the first comprehensive survey of Great Britain, the BioSoil soil survey, using a total of 167 plots (72 in England, 26 in Wales and 69 in Scotland). The average C stock down to 80 cm depth for seven main soil types ranged between 108 and 448 t C/ha with maximum values from 511 to 927 t C/ha. Carbon stock varied with soil depth and type, forest type, and stand age. Stocks within the upper mineral soil (0–20 cm) represented between 29 and 69% of the total 0–80 cm C stock, while those in the top 40 cm comprised 59–100% of the total. Carbon stocks decreased in the order deep peats > peaty gleys > groundwater gleys > surface‐water gleys > podzols and ironpans > brown earths > rankers and rendzinas. Litter and fermentation horizons on average contributed an additional 7.3 and 8.8 t C/ha, respectively, to the overall soil C stock. Measured soil C stocks (0–80 cm) were upscaled by area of main soil and forest types to provide national estimates. Total forest soil stocks for England, Wales and Scotland were upscaled to 163, 46 and 337 Mt C, respectively, with an additional 17, 4 and 21 Mt C within surface organic layers (litter and fermentation horizons). Carbon stocks were larger under conifers compared with broadleaves. Peaty gleys contributed most to the total C stock in Scotland, while brown earths and podzolic soils made the largest contribution in Wales, and brown earths and surface‐water gley soils in England. Estimated total carbon stocks in forest soils in Great Britain, including organic layers, are 589 Mt C in the top 80 cm and 664 Mt C in the top 1 m of soil. The BioSoil soil survey provides the most comprehensive estimate of forest soil C stocks in Great Britain to date and provides a good baseline for assessing future change even though variability in forest soil C stocks is high. However, a relatively small number of additional plots to fill existing gaps in spatial coverage and to increase representation of rendzinas and highly organic soils would significantly reduce the level of uncertainty.  相似文献   

19.
20.
Sixty-seven strains of Bradyrhizobium isolated from soybean plants growing on acid soils in West Java and Sumatra, Indonesia, were examined for the effect of the pH and aluminum concentration on their growth in nutrient media, compared with 61 strains of Bradyrhizobium from soils in Japan. The results in this study indicated that the indigenous population of Bradyrhizobium in the soils of Indonesia showed a large difference in acid- and Al-tolerance from that of Japan. Eighty-five and 48% of the isolates from Japanese soils and Indonesian soils, respectively, were unable to grow in YEM broth at pH below 4.5. The acid-tolerance was correlated with AI-tolerance of the isolates on YEM agar plates at pH 4.4. Seventy-five percent of the isolates that grew in YEM broth at pH 4.5 were also resistant to 400 µM Al on the YEM plates. Acetylene reduction assay of the root nodules revealed that 3 of the acid- and Al-tolerant isolates from Indonesian soils showed a significantly high nitrogen fixation activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号