首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, leguminous crops like Atylosia scarabaeoides, Centrosema pubescens, Calopogonium mucunoides, and Pueraria phaseoloides. grown as soil cover individually in the interspaces of a 19‐yr‐old coconut plantation in S. Andaman (India) were assessed for their influence on various microbial indices (microbial biomass C, biomass N, basal respiration, ergosterol, levels of ATP, AMP, ADP) in soils (0–50 cm) collected from these plots after 10 years. The effects of these cover crops on . CO2 (metabolic quotient), adenylate energy charge (AEC), and the ratios of various soil microbial properties viz., biomass C : soil organic C, biomass C : N, biomass N : total N, ergosterol : biomass C, and ATP : biomass C were also examined. Cover cropping markedly enhanced the levels of organic matter and microbial activity in soils after the 10‐yr‐period. Microbial biomass C and N, basal respiration, . CO2, ergosterol and levels of ATP, AMP, ADP in the cover‐cropped plots significantly exceeded the corresponding values in the control plot. While the biomass C : N ratio tended to decrease, the ratios of biomass N : total N, ergosterol : biomass C, and ATP : biomass C increased significantly due to cover cropping. Greater ergosterol : biomass C ratio in the cover‐cropped plots indicated a decomposition pathway dominated by fungi, and high . CO2 levels in these plots indicated a decrease in substrate use efficiency probably due to the dominance of fungi. The AEC levels ranged from 0.80 to 0.83 in the cover‐cropped plots, thereby reflecting greater microbial proliferation and activity. The ratios of various microbial and chemical properties could be assigned to three different factors by principal components analysis. The first factor (PC1) with strong loadings of ATP : biomass C ratio, AEC, and . CO2 reflected the specific metabolic activity of soil microbes. The ratios of ergosterol : biomass C, soil organic C : total N, and biomass N : total N formed the second factor (PC2) indicating a decomposition pathway dominated by fungi. The biomass C : N and biomass C : soil organic C ratios formed the third principal component (PC3), reflecting soil organic matter availability in relation to nutrient availability. Overall, the study suggested that Pueraria phaseoloides. or Atylosia scarabaeoides were better suited as cover crops for the humid tropics due to their positive contribution to soil organic C, N, and microbial activity.  相似文献   

2.
The leguminous cover crops Atylosia scarabaeoides (L.) Benth., Centrosema pubescens Benth., and Pueraria phaseoloides (Roxb.) Benth., were grown in the interspaces of a 19 y–old coconut plantation and incorporated into the soil at the end of the monsoon season every year. At the end of the 12th year, soils from different depths were collected and analyzed for various microbial indices and their interrelationships. The objectives were to assess the effects of long‐term cover cropping on microbial biomass and microbial‐community structure successively down the soil profile. In general, total N (TN), organic C (OC), inorganic N, extractable P, and the levels of biological substrates viz., dissolved organic C (DOC) and N (DON), labile organic N (LON), and light‐fraction organic matter (LFOM) C and N decreased with depth at all the sites. Among sites, the cover‐cropped (CC) sites possessed significantly greater levels of TN, OC, DOC, DON, and LON compared to the control. Consequently, microbial biomass C (MBC), N (MBN), and P (MBP), CO2 evolution, and ATP levels, in general, decreased with depth at all sites and were also significantly higher in the CC sites. Among the ratios of various microbial indices, the ratio of MBC to OC and metabolic quotient (qCO2) declined with depth. Higher MBC‐to‐OC ratios and large qCO2 levels in the surface soils could be ascribed to greater levels of readily degradable C content and indicated short turnover times of the microbial biomass. In contrast, the ratios of MBC to MBN and MBC to MBP increased with depth due to low N/P availability and relatively higher C availability in the subsoils. Cover cropping tended to enhance the ratios of MBC to OC, MBC to MBN, MBC to MBP, and ergosterol to MBC and decreased the ATP‐to‐MBC ratio at all depths. The relatively lower ATP‐to‐MBC ratios in the CC site, especially in the subsoil indicated microbial‐community structure possibly dominated by fungi. By converting the ergosterol content to fungal biomass, it was observed that fungi constituted 52%–63% of total biomass C at the CC site, but only 33%–40% of total biomass C at the control site. Overall, the study indicated that leguminous cover crops like P. phaseoloides or A. scarabaeoides significantly enhanced the levels of OC, N and microbial activity in the soils, even down to 50 cm soil depth.  相似文献   

3.
Intensive greenhouse vegetable‐production systems commonly utilize excessive fertilizer inputs that are inconsistent with sustainable production and may affect soil quality. Soil samples were collected from 15 commercial greenhouses used for tomato production and from neighboring fields used for wheat cropping to determine the effects of intensive vegetable cultivation on soil microbial biomass and community structure. Soil total nitrogen (N) and organic‐matter contents were greater in the intensive greenhouse tomato soils than the open‐field wheat soils. Soil microbial carbon (C) contents were greater in the greenhouse soils, and soil microbial biomass N showed a similar trend but with high variation. The two cropping systems were not significantly different. Soil microbial biomass C was significantly correlated with both soil total N and soil organic matter, but the relationships among soil microbial biomass N, soil total N, and organic‐matter content were not significant. The Biolog substrate utilization potential of the soil microbial communities showed that greenhouse soils were significantly higher (by 14%) than wheat soils. Principal component (PC) analysis of soil microbial communities showed that the wheat sites were significantly correlated with PC1, whereas the greenhouse soils were variable. The results indicate that changes in soil microbiological properties may be useful indicators for the evaluation of soil degradation in intensive agricultural systems.  相似文献   

4.
Microbial biomass, respiratory activity, and in‐situ substrate decomposition were studied in soils from humid temperate forest ecosystems in SW Germany. The sites cover a wide range of abiotic soil and climatic properties. Microbial biomass and respiration were related to both soil dry mass in individual horizons and to the soil volume in the top 25 cm. Soil microbial properties covered the following ranges: soil microbial biomass: 20 µg C g–1–8.3 mg C g–1 and 14–249 g C m–2, respectively; microbial C–to–total organic C ratio: 0.1%–3.6%; soil respiration: 109–963 mg CO2‐C m–2 h–1; metabolic quotient (qCO2): 1.4–14.7 mg C (g Cmic)–1 h–1; daily in‐situ substrate decomposition rate: 0.17%–2.3%. The main abiotic properties affecting concentrations of microbial biomass differed between forest‐floor/organic horizons and mineral horizons. Whereas microbial biomass decreased with increasing soil moisture and altitude in the forest‐floor/organic horizons, it increased with increasing Ntot content and pH value in the mineral horizons. Quantities of microbial biomass in forest soils appear to be mainly controlled by the quality of the soil organic matter (SOM), i.e., by its C : N ratio, the quantity of Ntot, the soil pH, and also showed an optimum relationship with increasing soil moisture conditions. The ratio of Cmic to Corg was a good indicator of SOM quality. The quality of the SOM (C : N ratio) and soil pH appear to be crucial for the incorporation of C into microbial tissue. The data and functional relations between microbial and abiotic variables from this study provide the basis for a valuation scheme for the function of soils to serve as a habitat for microorganisms.  相似文献   

5.
Central Brazil is the region with the most dynamic agriculture expansion worldwide, where tropical forests and Cerrado (Brazilian savanna) are converted to pastures and crop fields. Following deforestation, agricultural practices, such as fertilization, tillage and crop rotations, alter soil parameters and affect microbial abundances and the C and N cycles. The objective of this study was to compare changes in soil fertility, stocks of soil C and N, microbial biomass, and abundance of bacteria, fungi and archaea in Cerrado soils following land use change to crops (soybean/corn/cotton) and pasture (the perennial forage grass Brachiaria brizantha A. Rich.). Agriculture increased soil fertility and conserved soil C and N since their absolute concentration values were highest in agriculture soils and the C and N stocks adjusted by soil density were similar to the native vegetation soils. At the same time, agriculture changed the microbial abundances (decrease of microbial biomass C and N, increase of archaea, and reduction of bacteria and fungi at the crop sites), and N dynamics (increase of soil ammonium and nitrate concentrations). Even if these changes can be beneficial for food and agricultural commodities production, all these soil alterations should be further investigated due to their possible unknown effects on biosphere–hydrosphere–atmosphere exchange processes such as greenhouse gases emissions and nitrate leaching.  相似文献   

6.
We investigated the impact of land-use changes on the soil biomass at several soil sites in Indonesia under different types of land-use (primary forest, secondary forest, coffee plantation, traditional orchard, and deforested area), located within a small geographical area with similar parent material and climatic conditions. Various parameters of soil microbial biomass (biomass C, biomass N, content of anthrone-reactive carbohydrate carbon, and soil ergosterol content) were examined. Our results suggested that the removal of the natural plant cover did not cause any appreciable decrease in the amount of microbial biomass; on the contrary it led to a short-time increase in the amount of microbial biomass which may be due to the availability of readily decomposable dead roots and higher sensitivity to the decomposition of residual litter in recently deforested soils. However, the amount of microbial biomass tended to decrease in proportion to the duration of the land history in coffee plantation soils. This may be ascribed to the effect of the loss of available substrates associated with soil erosion in the long term. Lower ergosterol contents in recently deforested areas reflected a reduction in the amount of fungal biomass which may be due to the destruction of the hyphal network by the slash and burn practice. On the other hand, the higher soil ergosterol content at the sites under bush regrowth indicated that microbial biomass was able to recover rapidly with the occurrence of a new plant cover.  相似文献   

7.
Upland soils in the Amazon basin are often highly weathered and therefore possess low plant-available nutrient contents. Soil fertility is principally maintained by geochemical, biochemical, and biogeochemical processes. Within these processes, the soil microbial biomass is responsible for many of the cycles and transformations of nutrients in soils. The aim of this work was to evaluate the changes in soil fertility, in the form of nitrogen (N) and microbial activity, as indicators of the dynamic of carbon (C) with two extractants [irradiation extraction (IE) and IRGA methods], N, and phosphorus (P) in an upland soil area containing a dystrophic Yellow Latosol (Xanthic Ferralsol) in the western Amazon (Brazil) with succession of two plant covers (citrus or pasture) and management. The study was carried out in two chronosequences: primary forest followed by citrus plantations and primary forest followed by pasture. The results showed that pasture has greater capacity to accumulate organic C and total N than either primary forest or citrus plantation. Removing forest to introduce pasture or citrus plantations influences the soil fertility and microbial biomass of C, N, and P in the soil. Under the edaphoclimatic conditions, the irradiation extraction and IRGA methods all proved efficient in determining the soil microbial C activity. In addition, regardless of the depth of soil, the predominant N form is ammonium (NH4 +).  相似文献   

8.
Biogas slurry is increasingly used as fertilizer. Earlier research was focused on plant growth and soil chemical properties, with only little information available regarding the effects of biogas slurry on soil and root microbial indices. For this reason, a 70 d pot experiment was conducted in which biogas and raw slurries obtained from six biodynamic farms were added to a soil. Italian ryegrass (Lolium multiflorum Lam.) was cultivated to investigate the effects on plant yield, N uptake (two harvests), soil microbial biomass, soil fungi, and root‐colonizing microorganisms. Biogas slurries increased the mean total above‐ground plant biomass by 66% and raw slurries by 35% in comparison to the control. The mean plant N‐uptake increased under biogas and raw slurry application by 166% and 65%, respectively, compared with the unfertilized pots. The effects of biogas and raw slurry application on soil microbial indices were similar except for the lower fungal biomass after biogas slurry amendment. In contrast to biogas slurries, the raw slurries significantly increased microbial biomass C and N by roughly 25% in comparison to the control. The application of biogas slurries significantly decreased the soil ergosterol content in comparison with raw slurry and control treatment, leading to a significantly lower ergosterol : microbial biomass C ratio. In the roots, biogas and raw slurry application significantly decreased the concentrations of the amino sugars galactosamine and glucosamine by 39 and 27%, respectively, but not that of ergosterol in comparison with the control. This was most likely due to a reduced colonization with arbuscular mycorrhizal fungi in the presence of highly available plant nutrients.  相似文献   

9.
Tea (Camellia sinensis) is a globally important crop and is unusual because it both requires an acid soil and acidifies soil. Tea stands tend to be extremely heavily fertilized in order to improve yield and quality, resulting in a great potential for diffuse pollution. The microbial ecology of tea soils remains poorly understood; an improved understanding is necessary as processes affecting nutrient availability and loss pathways are microbially mediated. We therefore examined the relationships between soil characteristics (pH, organic C, total N, total P, available P, exchangeable Al), the soil microbial biomass (biomass C, biomass ninhydrin-N, ATP, phospholipid fatty acids—PLFAs) and its activities (respiration, net mineralization and nitrification). At the Tea Research Institute, Hangzhou (TRI), we compared fields of different productivity levels (low, medium and high) and at Hongjiashan village (HJS) we compared fields of different stand age (9, 50 and 90 years). At both sites tea soils were compared with adjacent forest soils. At both sites, soil pH was highest in the forest soil and decreased with increasing productivity and age of the tea stand. Soil microbial biomass C and biomass ninhydrin-N were significantly affected by tea production. At TRI, microbial biomass C declined in the order forest>low>high>middle production and at HJS in the order stand age 50>age 9>forest>age 90. Soil pH had a strong influence on the microbial biomass, demonstrated by positive linear correlations with: microbial biomass C, microbial biomass ninhydrin-N, the microbial biomass C:organic C ratio, the microbial biomass ninhydrin-N:total N ratio, the respiration rate and specific respiration rate. Above pH(KCl) 3.5 there was net N mineralization and nitrification, and below this threshold some samples showed net immobilization of N. A principal component (PC) analysis of PLFA data showed a consistent shift in the community composition with productivity level and stand age. The ratio of fungal:bacterial PLFA biomarkers was negatively and linearly correlated with specific respiration in the soils from HJS (r2=0.93, p=0.03). Our results demonstrate that tea cultivation intensity and duration have a strong impact on the microbial community structure, biomass and its functioning, likely through soil acidification and fertilizer addition.  相似文献   

10.
《Applied soil ecology》2007,37(2-3):107-115
Maquis is a dense evergreen shrub layer which, in semi-arid Mediterranean lands, is commonly linked to the presence of well-conserved soils with large contents of mineralizable substrates. It was our aim to test whether: (i) maquis promotes soil microbial biomass and activity, and (ii) mature pine plantations without a shrubby understory support microbial biomass and activity levels comparable to those of stands with maquis. Surface soil samples were taken in four sites that sustain pine plantations (PP), maquis with pines (MP), maquis (MQ) and grasslands (GS). Microbial biomass was inferred from the C content in the soil microbiota. The ATP content in fresh samples and the CO2–C production from incubated samples were used to assess microbial activity, as was the activity of β-glucosidase and alkaline phosphatase. Topsoils under maquis (MP and MQ) were the most fertile, both chemically (high organic carbon contents) and physically (low bulk density, high aggregate stability) and showed by far the largest levels of microbial biomass and activity. These levels in soils under PP, which sustained a successful plantation in terms of tree canopy density but lacked the shrubby understory, were significantly smaller than those of the adjacent shrubland with pines (MP). Redundancy analysis extracted a main axis explaining 67% of the variation of the microbiological soil properties, which was interpreted as an environmental gradient of soil fertility. Along this axis, the samples were separated according to the presence or absence of a maquis dominated by late-successional species; other factors such as soil type, slope position and aspect were less influential. The effects of afforestation practices on the detritus-based system should be considered in the design of future forest restoration strategies in desertification-threatened lands.  相似文献   

11.
Background, Aims, and Scope  An improved understanding of important soil carbon (C) and nutrient pools as well as microbial activities in forest ecosystems is required for developing effective forest management regimes underpinning forest productivity and sustainability. Forest types and management practices can have significant impacts on soil C and nutrient pools as well as biological properties in forest ecosystems. Soil C and nutrient pools were assessed for adjacent natural forest (NF), first rotation (1R) (50-year-old), and second rotation (2R) (1-year-old) hoop pine (Araucaria cunninghamii Ait. ex D. Don) plantations in southeast Queensland of subtropical Australia. Materials and Methods  Five transects spaced 3 m apart with 9 sampling points along each transect were selected (9.6 m × 12.0 m each site), with 45 soil cores (7.5 cm in diameter) collected and separated into 0–10 and 10–20 cm depths. These soils were analysed for total C, total nitrogen (N), C (δ13C) and N (δ15N) isotope composition. The 0–10 cm soils were analysed for pH, CEC, exchangeable cations, total P and total K, and assayed for microbial biomass C and N, respiration, metabolic quotient, potential mineralizable N (PMN), gross N mineralization (M) and immobilization (I). Results  Total C and N in 0–10 cm soils were higher under NF and 1R plantation than under 2R plantation, while they were highest in 10–20 cm soils under NF, followed by the 1R and then 2R plantation. δ13C was lower under NF than under the plantations, while δ15N was higher under NF than under the plantations. Total P was the highest under NF, followed by the 1R and then 2R plantation, while total K was higher under the 2R plantation. No significant differences were detected for pH, CEC, exchangeable cations, microbial C and N, respiration and metabolic quotient among the 3 sites. PMN and M were higher under NF, while I was the highest under the 2R plantation, followed by the NF and then 1R plantation. Discussion  Soil total C and N in 0–10 cm depth were significantly lower under 2R hoop pine plantation than those under NF and 1R hoop pine plantation. There were significant reductions in soil total C and N from NF to 1R and from 1R to 2R hoop pine plantations in 10–20 cm depth. This highlights potential N deficiency in the 2R hoop pine plantations, and application of N fertilizers may be required to improve the productivity of 2R hoop pine plantations. There were no significant differences in other soil chemical and physical properties in 0–10 cm depth among the 3 sites under NF, 1R and 2R hoop pine plantations, except for soil total P and K. Soil microbial biomass C, CO2 respiration and metabolic quotient did not differ among the 3 sites assessed, perhaps mainly due to these biological variables being too sensitive to variations in soil chemical and physical properties and thereby being associated with a larger variability in the soil biological properties. However, soil potential mineralizable N, gross N mineralization and immobilization were rather sensitive to the conversion of NF to hoop pine plantation and forest management practices. Conclusions  Total C and N in the top 20 cm soil were highest under NF, followed by 1R and then 2R hoop pine plantations, indicating that N deficiency may become a growth-limiting factor in the 2R hoop pine plantations and subsequent rotations of hoop pine plantation. The sample size for soil δ13C seems to be much smaller than those for soil total C and N as well as δ15N. The significant reductions in soil total P from NF to 1R and then from 1R to 2R hoop pine plantations highlight that P deficiency might become another growth-limiting factor in the second and subsequent rotations of hoop pine plantations. Soil microbial properties may be associated with large spatial variations due to these biological properties being too sensitive to the variations in soil chemical and physical properties in these forest ecosystems. Recommendations and Perspectives  Soil potential mineralizable N, gross N mineralization and immobilization were useful indices of soil N availability in response to forest types and management practices. The sampling size for soil δ13C was much smaller than the other soil chemical and biological properties due to the different patterns of spatial variation in these soil properties.  相似文献   

12.
The spatial variability of nitrogen (N) mineralization, nitrification, and microbial biomass was investigated using surface soils from various topographic positions at a relatively small watershed with Japanese cedar (Crgptomeria japonica D. Don) plantations. The watershed topography was characterized using a topographic index derived from GIS analysis. The topographic index reasonably reflected the spatial variability of the soil water conditions, total soil carbon (C) and N contents, and exchangeable base concentrations. However, this index was not significantly correlated with the spatial variability of net N mineralization and microbial biomass. Topographic index and soil properties (total soil C and N contents, C / N ratio, exchangeable base concentrations, and clay content) were subjected to principal component analysis to eliminate multiple-collinearity among the variables, and express the variables as new orthogonal variables. Principal component analysis showed that the soil properties could be divided into two groups: PC1 (soil nutrient pools) and PC2 (soil clay content). The topographic index was closely correlated with PC1 and not significantly correlated with PC2. Regression of PC scores on net N mineralization and microbial biomass indicated the relatively high contribution of PC2 to the variability in N mineralization and microbial biomass. This result suggested that not only topographic factors but also the clay content exerted an important influence on the spatial pattern of N mineralization and microbial biomass within a watershed with single species forests.  相似文献   

13.
Experiments were conducted between 2003 and 2008 to examine how N additions influence soil organic C (SOC) and its fractions in forests at different succession stages in the subtropical China. The succession stages included pine forest, pine and broadleaf mixed forest, and old‐growth monsoon evergreen broadleaf forest. Three levels of N (NH4NO3)‐addition treatments comprising control, low‐N (50 kg N ha–1 y–1), and medium‐N (100 kg N ha–1 y–1) were established. An additional treatment of high‐N (150 kg N ha–1 y–1) was established in the broadleaf mixed forest. Soil samples were obtained in July 2008 for analysis. Total organic C (TOC), particulate organic C (POC, > 53 μm), readily oxidizable organic C (ROC), nonreadily oxidizable organic C (NROC), microbial biomass C (MBC), and soil properties were analyzed. Nitrogen addition affected the TOC and its fractions significantly. Labile organic‐C fractions (POC and ROC) in the topsoil (0–10 cm) increased in all the three forests in response to the N‐addition treatments. NROC within the topsoil was higher in the medium‐N and high‐N treatments than in the controls. In the topsoil profiles of the broadleaf forest, N addition decreased MBC and increased TOC, while no significant effect on MBC and TOC occurred in the pine and mixed forests. Overall, elevated N deposition increased the availability of labile organic C (POC and ROC) and the accumulation of NROC within the topsoil irrespective of the forest succession stage, and might enhance the C‐storage capacity of the forest soils.  相似文献   

14.
Ergosterol is a fungus-specific chemical component which has been extensively used to assess the fungal biomass and activity in soils. In the present study, we investigated the soil ergosterol content in a group of Japanese soils differing in management. In addition, the relationships among the soil ergosterol content (SEC), microbial biomass C (MBC), and microbial biomass N (MBN) were also tested in different seasons. Our results showed that the SEC was lower in intensively cropped soils than in pasture and forest soils. In general, no consistent trend was observed for SEC of pasture soils within the same sampling period. However, SEC tended to decrease in most of the soils in autumn, which may be ascribed to the effect of seasonal changes on fungal biomass. No strong evidence could be obtained for the effect of different fertilizers on SEC, which can be due to different management variables and interspecific variations between fungal communities at different soil sites. Our results did not suggest the presence of a noticeable correlation between SEC and MBC or MBN. The ratio of SEC in total biomass C was lower (0.20 and 0.11% in spring and autumn, respectively) compared with the values reported.  相似文献   

15.
Soil organic matter contents, soil microbial biomass, potentially mineralizable nitrogen (N) and soil pH values were investigated in the Ap horizons of 14 field plots at 3 sites which had been under organic farming over various periods. The objective was to test how these soil properties change with the duration of organic farming. Site effects were significant for pH values, microbial biomass C and N, and for potentially mineralizable N at 0—10 cm depth. The contents of total organic C, total soil N, and potentially mineralizable N tended to be higher in soils after 41 versus 3 years of organic farming, but the differences were not significant. Microbial biomass C and N contents were higher after 41 years than after 3 years of organic farming at 0—10 cm depth, and the pH values were increased at 10—27 cm depth. Nine years of organic farming were insufficient to affect soil microbial biomass significantly. Increased biomass N contents help improve N storage by soil micro‐organisms in soils under long‐term organic farming.  相似文献   

16.
Summary The rates of CO2 efflux were measured by an alkali absorption method (using 20 ml 0.5 N NaOH) from soils in four undisturbed sites [two evergreen oak forests, Quercus floribunda Lindl. (tilonj oak), Quercus leucotrichophora A Camus (banj oak), and two evergreen conifer forests, Cedrus deodara Loud. (deodar forest) and Pinus roxburghii Sarg. (chir pine forest)] and three disturbed sites. The sites were located between elevations of 1850 and 2360 m in the Central Himalaya. The seasonal pattern of soil respiration was similar in all the sites with a maximum during the rainy season, intermediate rates during the summer season and the lowest level of activity in winter. The rate of CO2 efflux was higher in broadleaf than in conifer forests, and it was lowest in the disturbed sites. Among the edaphic conditions, soil moisture, N, organic C, pH, soil porosity, and root biomass positively affected total soil respiration. The proportion of root respiration to total soil respiration was higher in the disturbed sites than the undisturbed sites in winter. Conditions in the winter season were less favourable for microbial respiration than for root respiration.  相似文献   

17.
We evaluated the status of the microbial biomass N pool in grassland, and in deciduous and evergreen forest soils in Chiba, central Japan. Microbial biomass N, a labile fraction of total N in the soil, ranged from 6.96 g N m-2 (15 cm depth) in the grassland to 24.8 g in the deciduous and 20.7 g in the evergreen soils, on a landscape basis. Thus the pattern in the grassland and in the forest soils differed. The N flush measured by a fumigation-incubation method indicated that in the grassland soil microbial biomass N was underestimated by a factor of 2.6 compared with the results from a fumigation-extraction method, because of heavy N immobilization in the microbial biomass. This was in contrast to results from the forest soils, which did not immobilize N. Thus, the forest soils were in a steady-state condition compared with the grassland which formed a seral phase in the ecological succession. Simple correlation coefficients indicated a significant positive relationship between biomass N and organic C in the soil and the N concentration in the litter, the main component of organic matter in the soils of the three ecosystems.  相似文献   

18.
The activity and biomass of soil microorganisms were determined in samples at 0—140 cm depth taken from an arable site, where the soil has been developed by erosion and colluvial deposition overlaying a black earth at 70—110 cm depth. The central aim was to get an insight into the breakdown of increasingly old and thus recalcitrant soil organic matter down the profile, effects on the availability of C to microorganisms and the microbial community structure. From 0 to 140 cm depth, microbial biomass C decreased by 96%, biomass N by 97%, the adenylates ATP, ADP, and AMP as well as the basal respiration rate by 89%. No ergosterol was measured at 120—140 cm depth. All soil biological properties decreased in distinct steps after 30 cm and 50 cm depth. At 30—90 cm depth, the amounts of soil organic C and microbial biomass C per hectare of the present colluvium exceeded nearly three‐fold those in undisturbed aeolian loess sediments. The cation exchange significantly affected the relationships between microbial biomass C, biomass N, and the adenylates. As a consequence, none of the ratios between the soil microbial biomass properties revealed constant gradients throughout the profile. The adenylate energy charge (AEC) varied between the different soil layers insignificantly around a mean of 0.71. It was the most stable ratio down the profile showing absolutely no depth gradient, the lowest depth‐to‐depth variation, and also the lowest within depth variability. The other ratios between soil organic C, basal respiration, ergosterol, microbial biomass C and biomass N also did not reveal any marked changes in the microbial community structure.  相似文献   

19.
Ergosterol and microbial biomass C were measured in 26 arable, 16 grassland and 30 forest soils. The ergosterol content ranged from 0.75 to 12.94 g g-1 soil. The geometric mean ergosterol content of grassland and forest soils was around 5.5 g g-1, that of the arable soils 2.14 g g-1. The ergosterol was significantly correlated with biomass C in the entire group of soils, but not in the subgroups of grassland and forest soils. The geometric mean of the ergosterol: microbial biomass C ratio was 6.0 mg g-1, increasing in the order grassland (5.1), arable land (5.4) and woodland (7.2). The ergosterol:microbial biomass C ratio had a strong negative relationship with the decreasing cation exchange capacity and soil pH, indicating that the fungal part of the total microbial biomass in soils increased when the buffer capacity decreased. The average ergosterol concentration calculated from literature data was 5.1 mg g-1 fungal dry weight. Assuming that fungi contain 46% C, the conversion factor from micrograms ergosterol to micrograms fungal biomass C is 90. For soil samples, neither saponification of the extract nor the more effective direct saponification during extraction seems to be really necessary.  相似文献   

20.
Mineralization of soil organic carbon (C) plays a key role in supplying nutrient elements essential to plant growth. Changes of C mineralization of mixed stands of Chinese fir and Michelia macclurei (a broadleaf tree), pure M. macclurei stands, and pure Chinese fir (Cunninghamia lanceolata) stands established in 1983 after clear‐felling of a first‐generation Chinese fir forest were analyzed in Huitong, Hunan Province, China, and compared with those of a stand of native secondary evergreen broadleaf forest (NBF). The results showed that NBF soil had the greatest C mineralization. Mixture of Chinese fir and M. macclurei had no effect on total soil organic C in comparison with pure Chinese fir plantation, but significantly increased C mineralization from soils was detected in this study. This positive influence on C mineralization could be explained by the increase of soil labile C pools and soil microbial biomass and activity. From the analysis of C mineralization, soil microbial properties, and labile organic C, mixtures of broadleaf and Chinese fir can be considered to be an effective sustainable management model for a Chinese fir plantation. Given strong correlations with microbiological and biochemical characteristics of soils and an easier process of determination, hot water extraction, hot water–extractable C (HWC) could be used as an integrated measure of forest soil quality in mid‐subtropics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号