共查询到20条相似文献,搜索用时 15 毫秒
1.
基于GA-BP神经网络高光谱反演模型分析玉米叶片叶绿素含量 总被引:3,自引:0,他引:3
叶绿素是评价玉米健康状况的重要生理生化参数,而快速、准确检测玉米叶片叶绿素含量,是实现玉米长势及健康状况精准诊断的关键。为提高玉米叶片叶绿素含量的高光谱反演精度,以玉米试验小区为基础,测定了东北地区玉米不同生长期的叶片光谱反射率及其对应的叶绿素含量。首先采用一阶微分方法提取光谱特征,构建9种高光谱特征参数(Db、Dy、Dr、λb、λy、λr、SDb、SDy和SDr),并分析一阶微分光谱、高光谱特征参数与叶绿素含量间的相关关系,优选出与叶绿素含量相关性较高的3种特征参数作为自变量,分别为535nm处的一阶微分值、蓝边内最大一阶微分值Db、蓝边面积SDb,叶绿素含量实测值作为因变量,随后采用遗传算法对BP神经网络进行优化,建立BP神经网络(BPNN)和遗传算法优化的BP神经网络(GA-BPNN)反演模型,并对模型进行验证;再结合主成分回归(PCR)和偏最小二乘回归(PLSR)模型进行比较。结果表明:叶绿素含量与一阶微分光谱在535nm处具有最大相关系数(R=-0.738),并且与特征参数Db、SDb呈显著相关,相关系数R分别为-0.732和-0.728;遗传算法可以有效地对BPNN初始权值随机化、易陷入局部极值等不足实现优化,并为其定位出理想的搜索空间;GA-BPNN模型的建模集与验证集R2分别为0.878和0.898,RMSE为0.731,与其他反演模型相比,GA-BPNN模型的稳定性和预测能力均表现最好,可为定量预测玉米叶片叶绿素含量提供一定的理论和技术依据。 相似文献
2.
叶绿素是绿色植被进行光合作用的主要色素,是影响作物产量的重要因素之一,也是评价作物健康状况的重要生化指标。快速、准确、无损地监测作物叶片叶绿素含量,是实现作物长势和健康程度精准监测的关键。为提高作物叶绿素含量反演的精度,以冬小麦试验小区为基础,测量关中地区冬小麦叶片反射率及其对应的叶绿素含量。运用分数阶微分法计算0~2阶步长为0.1的分数阶光谱,通过灰色关联分析法提取出与叶绿素含量关联度大的特征,作为模型的输入参数。最终提取出0.6阶751、760 nm, 0.7阶744、751 nm, 0.8阶738、747 nm, 0.9阶738、750 nm, 1.0阶731、750 nm共10个与叶绿素含量关联度高的波段作为模型的特征波段。为解决BP神经网络(back propagation network)收敛速度慢、易陷入局部极小值的问题,使用遗传算法(genetic algorithm, GA)优化BP神经网络的权值和阈值,利用优化后的模型进行叶绿素含量的预测。结果表明,运用遗传算法优化BP神经网络模型反演精度较高,r2为0.952,均方根误差(RMSE)为3.64... 相似文献
3.
基于人工神经网络的大豆叶面积高光谱反演研究 总被引:26,自引:0,他引:26
【目的】探索不同高光谱模型监测大豆叶面积指数LAI的精度。【方法】实测不同水肥耦合作用下,大豆冠层的高光谱反射率与叶面积指数(Leaf Area Index)数据,对二者进行相关分析;采用敏感波段(801nm,670nm)构建RVI, NDVI, SAVI, OSAVI 和MTVI2植被指数,建立大豆LAI估算模型;最后采用相关系数较大的波段作为神经网络模型的输入变量进行大豆LAI的估算。【结果】大豆LAI与光谱反射率在可见光波段呈负相关、近红外波段呈正相关、红边处相关系数由负变正;微分光谱在三边处与大豆LAI关系密切,在红边处取得最大回归确定性系数(R2 = 0.86)。植被指数可以较为精确反演大豆LAI,确定性系数R2>0.84。人工神经网络模型可以大大提高大豆LAI的估算水平,当隐藏层节点数为2时,R2为0.92,随着隐藏层节点数的增加,R2可高达0.96;在没有黄熟期数据干扰的情况下,神经网络可以进一步提高大豆LAI的反演精度,R2可高达0.99。【结论】与基于植被指数建立的模型相比,神经网络模型可以有效避免因LAI过高而出现的过饱和现象,大大提高了LAI的反演精度。 相似文献
4.
基于思维进化优化BP神经网络的大豆叶片叶绿素含量高光谱反演 总被引:1,自引:0,他引:1
为进一步研究优化神经网络算法在植物生化参量高光谱反演当中的应用问题,运用遗传算法和思维进化算法对BP神经网络进行优化来构建大豆叶片叶绿素含量反演模型。利用实测光谱数据和对应叶绿素数据建立训练数据集,然后分别使用遗传算法和思维进化算法对BP神经网络进行优化训练,将训练好的模型用于叶绿素含量估算。结果表明,基于思维进化优化BP神经网络模型能准确预测叶绿素含量,且模型最稳定,能够解决小样本情况下叶绿素含量估算问题,并保证估算精度,可以作为大豆叶片叶绿素含量估算的一种新的参考方法。 相似文献
5.
6.
针对碳储量回归预测模型存在共线性和精度较低的问题,利用森林资源二类调查数据和SPOT5影像数据对北京市延庆县的杨树林进行碳储量反演研究。先对选取的10个指标进行主成分分析,在此基础上采用径向基函数(RBF)神经网络方法构建碳储量反演模型,用预留测试样本验证,并与实测值进行比较。研究结果表明:SPOT5数据和二类数据可以很好地结合起来用于森林地上碳储量反演研究;PCA-RBF神经网络森林碳储量遥感反演模型拟合精度为99.90%,平均预测精度达到96.71%,预估效果较理想;模型训练完成后,可以应用于延庆县森林地上碳储量反演。 相似文献
8.
以TanDEM-X /TerraSAR-X HH单极化干涉对和GF-2遥感数据为基础,提出结合极化干涉与混合像元分解技术的改进差分法来反演林分平均高,并利用外业数据进行精度验证。结果表明:以植被丰度校正冠层高度模型,林分平均高的估测精度和R2值得到大幅提高,均方根误差也随之降低。因此,本研究提出的方法能有效降低林分低郁闭度产生的混合像元作用对林分平均高反演的影响,提高林分平均高的反演精度。 相似文献
9.
针对遥感影像的神经网络模型对林地叶面积指数(LAI)反演容易陷入局部最优、收敛效率低等问题,提出基于GF-1遥感影像和PROSAIL模型反演数据建立鬣狗算法神经网络模型,并与BP神经网络模型进行对比.结果表明,BP神经网络训练集的均方根误差(RMSE)值为0.140,验证集RMSE值为0.137,测试集决定系数(R2)为0.525;鬣狗神经网络训练集的RMSE值为0.131,验证集RMSE值为0.132,测试集决定系数(R2)为0.703.本研究提出的鬣狗算法,可提升神经网络模型的反演性能,为GF-1卫星在大范围林地LAI反演的应用推广提供了方法思路. 相似文献
10.
11.
12.
高油酸油菜籽品种是当前油菜育种方向之一,为开发高效、无损测定油酸含量的方法,提高油菜高油酸种质资源筛选效率,选用3个油菜品种为材料,分别采集其种子光谱成像信息及油酸含量数据,首先对光谱信息进行11种预处理,确定多元散射校正(MSC)最佳预处理方法,然后基于主成分分析(PCA)、连续投影(SPA)、竞争性自适应重加权采样(CARS)方法对数据进行降维,最后分别建立支持向量机(SVM)、最小二乘支持向量机(LS-SVM)和极限学习机(ELM)3种定量分析模型,对油菜油酸含量进行无损检测。通过改变训练样本的数量来测试模型,为验证模型的稳定性,用相关系数(R)、均方根误差(RMSE)进行效果评价。结果表明,在所有模型中,多元散射校正+竞争性自适应重加权采样+极限学习机(MSC+CARS+ELM)模型预测效果最好,校正集相关系数(Rc)、均方根误差(RMSEc)分别为0.894、1.993 4%,预测集相关系数(Rp)为0.868,均方根误差(RMSEp)为1.069 8%,可更加准确地预测油酸含量,创建一种快速、无损检测油菜种子油酸含量的方法,为利用高光谱技术进行油菜营养品质无损检测提供理论依... 相似文献
13.
随着工业化的不断推进,土壤重金属污染情况十分严重。重金属污染对于环境保护,人类安全都有很大的影响。砷作为一种毒性很强的重金属元素,对其进行反演研究,这对环境保护有着重要意义。传统的土壤重金属含量检测方法多为繁杂的实验室化学处理方法,耗费大量时间且成本高昂。为研发一种快速、准确检测土壤砷含量的方法,首先在可见光-近红外光波段获得原始反射光谱,使用三波段光谱指数分析波段间的相互作用,利用相关系数法获得最优的光谱参数组合,从而提取优质光谱特征。双隐含层极限学习机(TELM)是一种前馈神经网络模型。TELM在单隐含层极限学习机的基础上引入了新的隐含层和学习机制,有较高的性能。但是由于TELM第一隐含层参数是随机获得的,容易导致模型的不稳定,利用粒子群优化(PSO)算法对该层参数进行寻优。PSO是一种经典的智能优化算法,具有很强的全局搜索能力。针对PSO容易陷入局部最优点的缺点,引入新的交叉策略,通过该交叉策略,可以帮助其摆脱局部最优,并提出基于三波段光谱指数和交叉粒子群算法的双隐含层极限学习机混合模型(TPC-TELM)。为验证模型的有效性,将其与多个机器学习模型(如单层极限学习机和TELM等... 相似文献
14.
【目的】 剔除土壤高光谱中包含的大量冗余和无效信息,探明土壤有效磷(SAP)的敏感波段,简化SAP的高光谱估算模型并提高模型的预测精度。【方法】 文章以四川省崇州市西河流域110个土壤样本为研究对象,利用ASD Fieldspec3地物光谱仪在室内条件下测定350~2 500 nm波段范围的土壤高光谱数据。对光谱数据进行预处理后,采用连续投影算法(SPA)和竞争性自适应重加权算法(CARS)优选的波长变量作为建模参数,运用偏最小二乘回归(PLSR)方法建立模型并比较其精度。【结果】 结果表明,标准正态变换预处理方法是SAP的最佳土壤光谱数据预处理方法。基于标准正态变换后的光谱数据,CARS、SPA算法可将预测SAP的关键波段变量分别压缩至54和13个,CARS-PLSR模型与SPA-PLSR模型相比,相关系数由0.894提高到0.945,均方根误差由5.73降低到3.56。【结论】 土壤高光谱数据经标准正态变换后,采用CARS-PLSR算法可有效提高有效磷含量预测的鲁棒性。该结果可为高光谱数据快速反演土壤有效磷含量提供理论依据。 相似文献
15.
土地质量评价能够为黑土地资源的保护和可持续开发利用提供重要参考依据。航空高光谱技术凭借光谱分辨率高、数据覆盖面广、时效性强等优势,在黑土地质量指标调查中已初步显示出应用价值,为了进一步发挥高光谱技术在黑土地质量评价中的作用,提出一种基于航空高光谱的黑土地质量综合评价方法。以黑龙江省海伦地区为例,在裸土期和农作物生长期分别获取CASI/SASI航空高光谱数据,地面同步开展样品采集,通过实验室分析获取养分指标、环境指标和农作物长势指标三大类共15项指标数据。利用偏最小二乘法反演各项评价指标的含量,利用层次分析法建立综合评价模型,并以实际地块为评价单元获得研究区黑土地质量综合评价结果。反演结果表明,有机质的建模精度最高,R2达到0.813,养分和农作物指标的建模精度均超过了0.7,重金属元素的建模精度均超过了0.6,总体上获得了较好的反演效果。评价结果显示研究区地块等级均在二等及以上,其中一等(优质)地块面积占全区的38.38%,二等(良好)地块面积占全区的61.62%,整体土壤质量较高。评价结果与地面验证结果一致率达到97.60%,表明了评价结果的可靠性。研究成果能够为田块尺度的黑土地质量快速评价提供技术支撑。 相似文献
16.
针对东北粳稻叶绿素含量无人机高光谱反演中红边位置特征不明确的问题,基于2019~2020年沈阳农业大学水稻试验基地采集的高光谱数据和地面水稻样本叶绿素数据,开展水稻叶绿素含量红边光谱响应特性分析及反演建模研究.首先,利用线性外推(LE)、线性四点插值(LI)、最大一阶导数(MFD)、多项式拟合(PF)、拉格朗日插值(L... 相似文献
17.
基于改进BP神经网络的高光谱遥感树种信息提取技术 总被引:1,自引:1,他引:1
《四川农业大学学报》2013,(3):264-268
【目的】通过分析树种间的光谱差异及改进分类算法以提高树种信息提取精度。【方法】文章采用安徽省砀山县EO-1 Hyperion影像,通过不同树种光谱信息的差异分析,筛选出区分树种信息的光谱指标,并采用改进的BP神经网络模型完成树种信息提取。【结果】结果表明,原始反射率和一阶微分部分光谱波段可用于树种识别,且一阶微分光谱的差异大于原始反射率;引入动量项和遗传算法改进的BP神经网络模型树种识别精度较传统BP神经网络提高8.5%,Kappa系数提高0.12。【结论】该方法可以实现较为准确的树种信息提取,能够达到对林业工程进行监测的目的,对快速评价工程质量有重要意义。 相似文献
18.
为提高砂姜黑土土壤水分的估测精度,本研究以河南省西平县砂姜黑土为研究对象,通过配制不同含水率土壤样本并在室内进行高光谱测量,对土壤样本高光谱数据平滑(SR)、倒对数[LOG(1/R)]、一阶微分(FD)、多元散射校正(MSC)、去包络线(CR)光谱变换后,结合连续投影算法(SPA)识别最佳特征波段,采用偏最小二乘回归(PLSR)、支持向量机回归(SVR)的机器学习方法和堆叠(Stacking)集成学习方法分别构建土壤含水率反演模型。结果表明:经MSC变换后光谱中土壤含水率相关信息增强最多;SPA算法能对砂姜黑土含水率光谱数据进行降维和特征信息提取;经反射光谱MSC变换后由PLSR和SVR集成的Stacking集成模型决定系数最高(R2=0.963)、均方根误差最小(RMSE=1.7)。研究表明,Stacking集成学习模型有效提升了模型的精度和泛化能力,是砂姜黑土含水率最佳反演模型。 相似文献
19.
20.
[目的]研究水稻叶温与冠层反射光谱间的关系,为水稻叶温的模拟与监测提供理论依据.[方法]利用FieldSpec Pro FR光谱仪和Raynger ST红外温度探测仪测量水稻抽穗期冠层的反射光谱和叶片温度,分析原始反射光谱、一阶微分光谱、归一化植被指数(NDVI)、比值植被指数(DVI)、再归一化差值植被指数(RDVI)和转换型土壤调整指数(TSAVI)与叶温的关系.[结果]叶温的变化直接影响水稻冠层光谱的反射率,影响水稻红边特征.一阶微分光谱与叶温存在极显著相关性(P<0.01,下同),990 nm处相关系数(0.889)最高,885 nm处相关系数(-0.893)最低.选取叶温敏感波段光谱组合计算植被指数,发现RDVI和TSAVI与叶温的关系呈极显著相关,相关系数分别为0.724和0.733.由RDVI和TSAVI建立经验模型,结果显示由TSAVI建立的叶温估算模型效果更好,其验证样本的决定系数为0.610,相对误差为1.97%,均方根误差为2.546.[建议]综合考虑多种预处理方法,最大程度还原光谱信息;优化特征波长的提取,提高建立模型的精度;基于高光谱技术,实现冠层叶温的无损监测. 相似文献