首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In earlier in vitro experiments opioids affected steroidogenesis in porcine luteal and granulosa cells. The present studies were undertaken to examine the effects of FK 33-824 (opioid agonist) alone or in combination with LH, PRL or naloxone (NAL, opioid antagonist) on steroidogenesis in cultured porcine theca cells. Moreover, we have tested beta-endorphin-like immunoreactivity (beta-END-LI) concentrations in culture media under control conditions and following treatments of theca cells with LH, PRL, progesterone (P4), oestradiol (E2) or testosterone (T). FK 33-824 and NAL significantly increased P4 release by theca cells and inhibited stimulatory effect of LH on this steroid output. PRL-induced P4 secretion from the cells was blunted only by FK 33-824. Secretion of androstenedione (A4) and T was essentially elevated in the presence of FK 33-824 and this potentiation of both androgen release was completely abolished by PRL. NAL blocked stimulatory effect of the opioid agonist only in case of T. Secretion of oestradiol and oestrone was completely free from the influence of both the opioid agonist and antagonist. Pig theca cells were able to produce beta-END-LI but none of tested hormones (LH, PRL, P4, E2 and T alone or in combination) significantly affected this production. In conclusion, these data indicate that porcine theca cells may produce beta-END-LI and change their steroidogenesis in response to opioid peptides.  相似文献   

2.
The role of endogenous opioids in controlling luteinizing hormone (LH) secretion was studied by injecting the opioid antagonist naloxone into intact and ovariectomized ewes that were treated with estradiol-17 beta (E2) and progesterone (P4). The existence of a naloxone-reversible inhibition of LH release was examined in five experiments using a total of 52 mature ewes. Naloxone at a dosage of 1 mg/kg disinhibited release of LH and abruptly increased serum concentrations of LH in a variety of experimental models. This naloxone-reversible inhibition of LH secretion was apparent in all experimental models that involved P4-induced inhibition of basal LH secretion but not in one model in which P4 inhibited the LH surge. Specific effects of E2 on naloxone-reversible inhibition of LH varied among experimental models. When prolonged administration of P4 alone appeared to lose its LH-inhibitory potency, E2 restored inhibition of LH as well as the naloxone-reversible state. Whenever E2 acted synergistically to suppress basal LH secretion in models involving brief (5 d) exposure to P4, E2 appeared to antagonize the naloxone-reversible state. In summary, P4-induced suppression of LH secretion appeared to be mediated by endogenous opioids, but the apparent interaction of E2 and opioids in LH suppression varied among experiments.  相似文献   

3.
Opioids were found as factors affecting porcine ovarian steroidogenesis. The mechanism of opioid action, however, on porcine theca interna cells is completely unknown. Therefore, the present study was designed to investigate the possible involvement of two intracellular pathways, phospholipase C/protein kinase C and adenylyl cyclase/protein kinase A, in opioid signal transduction in porcine theca cells treated with mu opioid receptor agonist, FK 33-824. Incubation of the cells for 4 h with FK 33-824 at the dose 1 nM resulted in decreases in inositol phosphate accumulation as well as androstenedione (A(4)), testosterone (T), and estradiol (E(2)) secretions. Protein kinase C (PKC) inhibitors, staurosporine (1-100 nM), D-sphingosine (10-500 nM), and PKCi (100-2000 nM), both added alone and together with the opioid agonist, depressed release of the steroid hormones. PKC activator, phorbol ester (PMA, 1-100 nM), used alone was without effect on theca cell steroidogenesis, but added in combination with FK 33-824 abolished inhibitory influence of the opioid on A(4), T, and E(2) output. The steroid hormone secretion by PKC-deficient theca cells was inhibited by the opioid agonist. FK 33-824 also suppressed PKC activity reducing [(3)H]PDBu specific binding to theca cells, whereas ionomycin (a positive control) increased labeled phorbol ester binding to the cells. In the next experiment, cAMP release from theca cells during 2 and 4 h incubations with FK 33-824 (1-100 nM), naloxone (10 microM; opioid receptor antagonist), and LH (100 ng/mL; a positive control) was examined. FK 33-824 at the dose 1 nM inhibited cAMP secretion during 2 h incubation, but had no effect during longer incubation. LH in a manner independent on incubation time multiplied cAMP release. Protein kinase A inhibitor, PKAi (100-2000 nM), alone and in combination with FK 33-824 (1 nM), inhibited A(4), T, and E(2) secretions by theca cells. PKA activator, 8BrcAMP (10-1000 microM), stimulated the steroid hormone release, but this stimulatory effect was diminished in the presence of FK 33-824. The results allow to suggest that opioid peptides affect porcine theca cell steroidogenesis and their acute action on the cells is connected with the inhibition of phospholipase C/protein kinase C and adenylyl cyclase/protein kinase A signal transduction systems.  相似文献   

4.
The effect of the centrally acting α-adrenoceptor agonist, clonidine, on plasma LH and FSH was studied in oestradiol-primed and unprimed ewes and in oestrous ewes. In unprimed anoestrous ewes, clonidine stimulated LH and FSH release after a lag period of 18 h, and noradrenaline intracarotid injection or i.v. infusions immediately stimulated LH release. In oestradiol-infused anoestrous ewes, clonidine produced either a delay or inhibition of the gonadotrophin surge and noradrenaline i.v. infusion advanced the LH surge. In oestrous ewes treated with clonidine, there was marked delay in the LH surge, but the magnitude of the LH and FSH surges were unaffected. Intravenous administration of α-adrenoceptor blockers, phentolamine and phenoxybenzamine, blocked the oestradiol-induced gondotrophin surge in anoestrous ewes. The effect of phenoxybenzamine on gonadotrophin surge was dose dependent in oestrous ewes. Small doses (4 mg/kg i.v.) of phenoxybenzamine delayed the synchronous LH and FSH surges. There was complete blockade of the LH surge and partial blockade of FSH surges in ewes given phenoxybenzamine (8 mg/kg i.v.) before the expected synchronous gonadotrophin surges. After this experiment, the initial rise of plasma progesterone concentrations did not occur until day 6 of oestrous cycle. Administration of phenoxybenzamine before the expected second FSH surge had no effect on the second FSH surge. Gonadotrophin release induced by gonadotrophin-releasing hormone was attenuated by phenoxybenzamine, but not by clonidine. The results suggest that the LH surge is under α-adrenergic control and the first FSH surge is under partial α-adrenergic control, but the second FSH surge is not under α-adrenergic control. The results also suggest oestradiol modulation of α-adrenergic receptor action.  相似文献   

5.
Experiments were conducted to characterize the ability of the antiestrogen enclomiphene (ENC) to block the effects of estradiol on secretion of LH in ovariectomized ewes. To determine whether ENC could block an estradiol-induced LH surge, ewes (n = 4/group) were administered 10 to 250 mg ENC followed 30 min later by 25 micrograms estradiol. Ten or 25 mg ENC suppressed the estradiol-induced LH surge in one of four ewes, whereas 100- or 250-mg doses suppressed the LH surge in three and four of four ewes, respectively. In ewes that received a single treatment of 100 mg ENC plus 25 micrograms estradiol, serum concentrations of LH remained below 1 ng/ml for 3 wk. Compared with untreated ewes, the number of pituitary GnRH receptors was elevated (P less than .05) at 12 d and 28 d, but pituitary content of LH had decreased (P less than .05) by 28 d in ewes treated with 100 mg ENC. To determine whether ENC could block the inhibitory effects of estradiol on serum concentrations of LH, ewes received injections of .03, .1, 1 or 10 mg ENC every 4 d. Half the ewes treated with each dose also received estradiol implants. Injection of .03, .1 or 1 mg ENC alone did not affect serum concentrations of LH, whereas the 10-mg dose decreased serum concentrations of LH below 1 ng/ml by wk 1 of treatment. No dose prevented the inhibition of serum concentrations of LH caused by estradiol implants. In ovariectomized ewes, ENC was antagonistic to estradiol; it prevented the positive effects of estradiol required to induce an LH surge.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The influence of the suckling stimulus and ovarian secretions on LH response to naloxone was studied in 16 postpartum anestrous beef cows that were assigned randomly to one of four groups (n = 4/group): intact suckled (IS), intact nonsuckled (IN), ovariectomized suckled (OS) or ovariectomized nonsuckled (ON). Ovariectomy (OS + ON) and calf removal (IN + ON) were performed on d 2, 3 or 4 after parturition. Jugular venous blood was collected at 15-min intervals for 4 h before and 4 h after administration of naloxone (1 mg/kg BW, i.v.) on d 14 and d 28 after parturition. Gonadotropin-releasing hormone (5 micrograms, i.v.) was given 3 h after naloxone. Both IN and OS increased (P less than .05) mean pretreatment LH above IS values (mean +/- SE, ng/ml; IS 1.6 +/- .1 vs IN 2.5 +/- .3 and OS 2.7 +/- .4; P less than .01), whereas ON increased (P less than .01) LH (3.7 +/- .3 ng/ml) even further. Mean LH increased (P less than .05) after naloxone administration in all treatment groups. However, magnitude of this response was variable and dependent on ovarian status. Amplitude of the naloxone-induced LH response was greater (P less than .05) for ovariectomized (5.9 +/- 1.1 ng/ml) than for intact groups (2.7 +/- .5 ng/ml). Gonadotropin-releasing hormone increased mean LH concentrations in all groups. We suggest that ovarian secretions and the suckling stimulus contribute to endogenous opioid inhibition of LH during the postpartum interval.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Concentrations of histamine were quantified by an enzymatic isotopic assay in different regions of the brain and pituitary gland of gonadal-intact and chronically ovariectomized ewes during the anestrous season. Sera concentrations of LH were confirmed to be elevated in ovariectomized compared with intact animals immediately before tissues were obtained. Areas of the brain that were examined included cerebral cortex, thalamus, pineal gland, hypothalamus (rostral, medial basal, median eminence), midbrain, cerebellum and brain stem. Concentrations of histamine were greatest within the thalamus, pineal gland, medial basal hypothalamus and median eminence. Histamine within the medial basal hypothalamus was greater (P less than .05) in ovariectomized than in ovarian-intact animals. Further experiments were designed to determine the effect of antihistaminic drugs on secretion of LH. Ovariectomized ewes were treated every 6 h (i.m.) for 24 h with diphenhydramine (an antagonist of the H1-receptor for histamine), cimetidine (an H2-receptor antagonist), a combination of the drugs, or vehicle. Twelve hours after initiation of treatments, animals were injected with estradiol. Diphenhydramine depressed (P less than .01) basal serum concentrations of LH and the positive feedback effect of estradiol on serum concentrations of LH. Cimetidine did not influence the pattern of secretion of LH. Diphenhydramine did not alter LHRH-induced release of LH in ovariectomized ewes or basal serum concentrations of LH in ovarian-intact anestrous ewes. We suggest that histamine acts at the level of the central nervous system through an H1-receptor mechanism to control secretion of LH in female sheep.  相似文献   

8.
Involvement of endogenous opioids in inhibition of luteinizing hormone (LH) release and stimulation of prolactin (PRL) release was investigated by injecting the opioid antagonist naloxone into 18 ewes on d 7 and 8, d 12 and 13, and d 18 and 19 postpartum. Compared with control injections of saline, iv naloxone (1 mg/kg) increased serum concentrations of LH and decreased serum PRL in samples collected 15, 30 and 45 min after each injection. Ewes lambing in the spring (March) or autumn (September and October) that nursed one or two lambs did not differ in their LH and PRL responses to naloxone. Autumn-lambing ewes from which lambs were weaned within 1 d after parturition did not differ from ewes of the autumn-nursed group in any of the following characteristics: 1) serum LH increases following naloxone, 2) basal secretion of LH, 3) postpartum interval to first increase in serum progesterone and 4) relative decrease in serum PRL after naloxone despite large differences in basal PRL secretion. In summary, postpartum expression of a naloxone-reversible inhibition of LH release and stimulation of PRL secretion did not depend on suckling stimuli or differ between autumn and spring parturitions.  相似文献   

9.
Effects of domperidone, a peripheral dopamine receptor antagonist, on secretion of LH and prolactin were studied during the luteal phase and following administration of PGF2 alpha. Since hyperprolactinemia has been reported to inhibit secretion of LH in ewes, effects of thyrotropin-releasing hormone (TRH) also were examined. Ewes 8-10 days post-estrus were assigned to be treated with: 1) vehicle (n = 5); 2) 0.3 mg domperidone (n = 6); 3) 1.0 mg domperidone (n = 6); 4) 3 micrograms TRH (n = 6); or 5) 10 micrograms TRH (n = 6) every 4 hours for 60 hr. Luteal regression was induced with PGF2 alpha at 12 hr after initiation of treatments. During the luteal phase, pulses of LH were more frequent (P less than .05) and the amplitudes of these were higher (P less than .05) in ewes treated with domperidone or TRH than in control ewes. These changes in LH occurred even though each treatment elevated markedly concentrations of prolactin in plasma. After induction of luteal regression, mean of LH and frequency of LH discharges were similar in all groups. However, in ewes treated with the 1.0 mg/4 hr dose of domperidone the pulse amplitude was greater than in the other groups (2.3 vs 1.1 ng/ml). Dose-response relationships and the magnitude of the prolactin release following domperidone or TRH varied with time. Treatments did not affect the timing of the LH surge or the increase in progesterone associated with the subsequent cycle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The objective was to determine the effect of central infusion of insulin and (or) glucose on hypothalamic expression of leptin receptor and pituitary secretion of LH in the ewe. Twenty-two ovariectomized ewes (32 wk of age) were fitted with two lateral cerebroventricular (LCV) cannulae and fed 33% of NRC requirements for 8 wk. Ewes (n> or =5/group) were then infused, via LCV cannulae, with artificial cerebrospinal fluid (aCSF) or aCSF containing physiological concentrations of insulin (INS), glucose (GLU), or INS + GLU; the mass of each increasing linearly from Day 0 (mass = 0 units/h) to Day 8 (mass of INS = 80 mIU/hr and GLU = 10 mg/hr). Jugular serum was collected every 12 min for 4 hr on Days 0, 2, and 4. Ewes treated with INS or INS + GLU had greater (P<0.06) mean concentrations of LH than aCSF treated ewes on Day 2 (13.8+/-1.8 and 12.5+/-1.3 > 8.0+/-3.3 ng/ml). Furthermore, on Day 4, concentrations of LH in INS treated ewes exceeded that (P<0.07) of aCSF treated ewes (14.8+/-2.0 > 7.4+/-3.0 ng/ml). Expression of NPY mRNA did not differ between treatments (P = 0.87). Leptin receptor mRNA expression was dramatically reduced (P<0.0002) in INS+GLU versus aCSF treated ewes. These data provide evidence to suggest that insulin may be an important component of hypothalamic mechanisms regulating secretion of LH and expression of leptin receptors in undernourished ruminants.  相似文献   

11.
Plasma corticosteroid concentrations are altered in pregnancy, during the reproductive cycle and by ovariectomy in many species. This study was designed to examine basal ACTH and cortisol in ewes of four different reproductive statuses: ovariectomized, nonpregnant cycling, nonpregnant noncycling, and pregnant. Blood samples were drawn every 4 hr for 48 hr from ewes during quiet, undisturbed conditions and analyzed for plasma ACTH, cortisol and progesterone concentrations. There were no significant changes in ACTH, cortisol or progesterone over time. Mean progesterone concentrations were significantly greater in the pregnant ewes than in all other ewes, and were greater in cycling ewes than noncycling or ovariectomized ewes. Mean ACTH was significantly greater in pregnant ewes than noncycling ewes, and mean cortisol was significantly greater in cycling ewes than in nonpregnant cycling or noncycling ewes. Ovariectomized ewes also had significantly greater mean cortisol concentrations than cycling ewes. The results demonstrate that there is an increase in basal ACTH and cortisol in ovine pregnancy.  相似文献   

12.
Four experiments were conducted to examine (1) how patterns of luteinizing hormone (LH) change as lambs approach first estrus, (2) whether mimicry of these changes by exogenous LH will initiate events of the pubertal process, (3) aspects of possible roles of the ovary and estradiol in the initiation of an ovulatory surge of LH in prepubertal lambs and (4) the time requirements for the presence of the ovary in induction of that surge of LH.In 19 lambs (Exp. 1), concentrations of LH in plasma were higher at puberty than 7 weeks earlier. Increased concentrations of LH in samples taken every 20 min for 6 hr during the luteal and follicular phases preceding first estrus were attributed to increased amplitude, but not increased frequency, of episodic pulses of LH. In Exp. 2, endocrine events which are included in the natural onset of ovarian cyclic activity (i.e. surge of LH and subsequent rise in progesterone) were initiated in 56, 46, 15, 16, and 36 lambs, receiving either injections of 7.5 μg/hr, 15 μg/hr, 30 μg/2hr, 45 μg/3hr or constant infusions of 15 μg/hr of purified ovine LH, respectively. However, these lambs did not exhibit estrus or cyclic ovarian activity. In Exp. 3, the mechanism by which hourly injections of LH prompted surges of LH was determined to be mediated through ovarian stimulation and not through a direct effect of exogenous LH on the hypothalamo-pituitary axis. All the intact (n=5) but no acutely (two weeks) ovariectomized (n=5) lambs had a preovulatory-like surge in response to exogenous LH. Further, (Exp. 4) it was shown that the ovarian signal must be maintained or evoked within 6 hr preceding the surge of LH, because lambs (n=20) ovariectomized at or 9, 18 or 27 hr after initiation of the exogenous LH with the one exception failed to show a surge of LH. It could not be demonstrated that the ovarian signal involved changes in peripheral concentrations of androstenedione, testosterone or estradiol-17β, although patterns of LH in ovariectomized lambs were responsive to both negative and positive feedback effects of estradiol (n=6, Exp. 3) and in general estradiol levels were increasing prior to the induced surge of LH.  相似文献   

13.
Endogenous opioid peptides mediate the effect of suckling on LH and PRL in the domestic pig. However, the role of opioids in modulating GH during lactation in swine is not known. Primiparous sows that had been immunized against GRF(1-29) conjugated to human serum albumin (GRF-HSA, n = 5) or HSA (n = 4) were used to determine changes in GH after naloxone. Treatments were imposed in all sows on day 21 of lactation when antibody titers were 9100 +/- 1629. All sows received (i.v.) naloxone (0.25 mg/kg) or saline (0.0125 ml/kg) at 15 min intervals for 165 min. Active immunization against GRF-HSA during lactation decreased (P less than 0.05) mean concentration (4.8 +/- 0.2 vs 2.6 +/- 0.1 ng/ml) and frequency (1.5 +/- 0.3 vs 0.4 +/- 0.2 peaks/4 hr). Concentrations of LH and PRL were similar in GRF-HSA and HSA immunized sows. Naloxone suppressed (P less than 0.05) GH in all sows. In HSA sows, naloxone abolished episodic release of GH and decreased average, but not basal, concentrations of GH. In sows immunized against GRF-HSA, naloxone decreased (P less than 0.05) average and basal GH but failed to decrease frequency of GH release. Naloxone failed to alter frequency of LH release. Concentrations of PRL decreased (P less than 0.05) after naloxone in all sows. In conclusion, immunization against GRF-HSA blocked most of the effect of lactation on GH. Blocking opioid receptors with naloxone decreased GH and PRL in all sows. In contrast to previous findings naloxone had no effect on LH. Opioids alter concentrations of GH through a GRF dependent and GRF independent pathway.  相似文献   

14.
The effects of morphine and the opiate receptor antagonist, naloxone, on the secretory pattern of luteinizing hormone (LH) were assessed in male sheep. Morphine infusion (250 mg/hr) abruptly stopped LH pulsatile secretion in castrates (wethers) and decreased mean serum LH concentrations by nearly 70 percent. Response of the pituitary to exogenous LH releasing hormone was not affected by morphine suggesting that the effects of morphine on LH secretion were mediated through the hypothalamus. Estradiol-implanted wethers, characterized by a nonpulsatile LH secretory pattern, responded to intravenous injection of naloxone (20, 50 and 200 mg Lv.) with an immediate release (pulse) of L.H. Similarly, LH release was significantly increased following naloxone infusion (200 mg/hr for four hours) in intact rams and wethers implanted with testosterone or estradiol. In contrast, naloxone infusion altered the pattern of LH secretion in wethers but without affecting mean serum LH concentrations. These results support the notion that LH secretion in male-sheep is tonically regulated by endogenous opiates and further suggests that opioid modulation of the hypothalamic-pituitary-LH axis in sheep involves an interaction with the steroid negative feedback system.  相似文献   

15.
The objectives of our experiments were 1) to determine the effect of N-methyl-D,L-aspartate (NMA), an agonist of the neuroexcitatory amino acids aspartate and glutamate, on growth hormone (GH) release in ovariectomized ewes, and 2) to determine the effect of naloxone, an opioid antagonist, on the GH response to NMA. Jugular blood was collected via venipuncture at 12-min intervals for 2 h before and 2 h after i.v. injection of NMA. In Exp. 1, ewes received either 0, 6, 12 or 24 mg NMA/kg BW dissolved in .9% saline solution (n = 4 per treatment). Growth hormone concentrations were similar (P greater than .1) between groups prior to injection (9.8 +/- .7 ng/ml; mean +/- SEM) and were unaffected (P greater than .1) by saline treatment. In contrast, 6, 12 or 24 mg NMA/kg BW increased mean GH concentration by 210% (P less than .04), 273% (P less than .02) and 234% (P less than .02), respectively. In Exp. 2, ewes received NMA (6 mg/kg BW) 5 min after either saline (n = 4) or naloxone (1 mg/kg BW; n = 4) pretreatment. Serum GH concentrations averaged 7.0 +/- 1.1 ng/ml before pretreatment and increased similarly (238%; P greater than .1) in both groups following NMA. In summary, NMA increased GH concentrations in ovariectomized ewes by some mechanism that does not involve opioid receptors that are antagonized by naloxone.  相似文献   

16.
Two experiments were conducted to evaluate the effects of naloxone, an endogenous opioid receptor antagonist, on LH and FSH secretion in postpartum beef cows. In Experiment 1, 24 cows were divided into three equal groups. On day 15 postpartum, all cows were bled for 8 hr at 10 min intervals to evaluate LH secretory parameters. On day 18 postpartum, three treatments were administered: (a) saline at 0730 and 1130 hr; (b) 275 mg naloxone at 0730 and 1130 hr; (c) naloxone as in (b) above, plus this group was also treated with 50 mg progesterone (P4) twice daily from day 16 to day 19. In each treatment, jugular vein samples were collected at 10 min intervals from 0800 to 1600 hr. On day 19 the same treatments were administered at the same times, however, all cows were given 25 micrograms GnRH at 1200 hr to evaluate the LH secretory response. Naloxone increased mean LH concentration (P less than .05) and tended to increase pulse amplitude and frequency compared to controls. However, the most dramatic difference was due to P4 treatment which suppressed mean LH, pulse amplitude and frequency. Treatments had no effect on LH secretion in response to a 25 micrograms dose of GnRH. In Experiment 2, the effects of suckling on the naloxone response were examined in 16 postpartum cows. On day 21 postpartum, blood was collected at 10 min intervals for 8 hr and then calves were removed from half the cows. After 3 days of calf removal, all cows were sampled at 10 min intervals for 4 hr; then naloxone was injected after each 10 min sample at a dose rate of 200 mg/hr (33 mg per injection). Naloxone treatment and sampling continued for an additional 8 hr. Calf removal alone had very little effect on LH pulsatility. However, naloxone resulted in increased pulse frequency and mean LH compared to the control period. We conclude that LH release in the early postpartum cow is partially regulated by endogenous opioid peptides. We were unable to detect any effects on FSH secretion nor on pituitary sensitivity to exogenous GnRH.  相似文献   

17.
Effects of the opiate agonist, morphine, and antagonist, naloxone, on LH release, courtship behavior and ejaculation frequency of mature, sexually active or sexually inactive rams were investigated. Plasma LH concentrations were monitored from blood samples collected every 15 min for 10 hr (0800 to 1800 hr) from eight rams that were isolated from or in contact with estrous females. Plasma LH concentration was higher (P<.05) in sexually active rams exposed to receptive females compared with hormone concentration of rams isolated from ewes. Intravenous infusion of morphine sulphate (1 mg/kg) into rams 4 and 6 hr after exposure to ewes reduced (P<.05) plasma LH concentration as compared to rams given saline. Morphine did not affect (P>.05) courtship behavior (investigatory sniff, mount attempt, foreleg kick, flehmen, vocalization) but diminished (P<.05) number of ejaculations. In another trial, LH concentrations were higher (P<.05) in seven sexually active rams given naloxone iv or when given to three rams through an intracerebroventricular cannula (icv) as compared to LH response of sexually inactive rams. LH did not differ (P>.05) in seven sexually inactive rams before or after administration of naloxone. Investigatory sniffs by sexually active rams were increased (P<.03) after treatment with the opiate antagonist. Four of the seven sexually active rams had more ejaculations after naloxone compared with the pretreatment period, but mean ejaculation frequency after treatment did not differ (P=.31). Naloxone did not stimulate courtship behavior of sexually inactive males. These data suggest that the effect of opiates on sexual behavior and LH secretion depends upon the inherent level of sexual activity among rams.  相似文献   

18.
Plasma concentrations of luteinizing hormone (LH), follicle stimulating hormone (FSH) and prolactin (PRL) were determined over a 24-h period using radioimmunoassay in sheep injected with corn oil (control) or various doses of zeranol or estradiol-17 beta. Injection of .333, 1 or 10 mg of zeranol caused dose-related increases (P less than .01) in plasma PRL (peak levels at 12 to 18 h) and LH (peak levels at 12 to 20 h) in ovariectomized ewes. Similarly, PRL and LH increased following doses of 33 or 100 microgram of estradiol. Before the LH surge, plasma LH levels were significantly depressed (4 to 8 h). Plasma FSH levels were significantly decreased 4 to 8 h after zeranol and estradiol injection. Slight surges of FSH were observed at times similar to those of LH, but the peak level was never greater than control levels. Injection of 1 mg of zeranol or 100 microgram of estradiol into wethers resulted in a 24-h pattern of PRL secretion not significantly different of LH concentration and significantly prolonged inhibition of FSH secretion. These results indicate similarities in the effects of zeranol and estradiol on anterior pituitary hormone secretion within groups of animals of the same sex or reproductive state. Differences in secretion and plasma concentrations of LH, FSH and PRL due to underlying sexual dimorphism are maintained and expressed even when animals are challenged with structurally different compounds of varying estrogenic potencies.  相似文献   

19.
Suckling by newborns induces a surge of lactogenic hormones, that is prolactin and growth hormone (GH), in mother's body, with endogenous opioid peptide (EOP) participating in generation of this surge. The aim of the current study was to investigate which types of opioid receptors are involved in generation of the GH surge in ewes during suckling. A series of intracerebroventricular infusions of opioid receptors antagonists: naloxone (for all types of receptors), naloxonazine (specific for μ receptor) and 5'-guanidinonaltrindole (GNTI--specific for κ receptor) and the vehicle (control) were performed in nursing sheep during the fifth week of lactation. All infusions were carried out in a serial manner: five 30-min infusions (60 μg/60 μl) from 10:00 to 15:00, at 30-min intervals. The period of the experiment consisted of the non-suckling (10:00-12:30) and suckling (12:30-15:00) periods. Simultaneously, blood samples were collected at 10-min intervals to determine plasma GH concentration by radioimmunoassay. Suckling evoked a rapid increase in GH concentration in control ewes. Naloxone and naloxonazine significantly decreased both the basal GH release in the non-suckling period and the suckling-induced GH surge. Specifically, the suppressive effect concerned either the duration or the amplitude of the GH surge. In contrast, GNTI did not significantly affect the GH release. In conclusion, the EOPs may affect the regulatory process of GH secretion in lactating sheep, especially through μ opioid receptor.  相似文献   

20.
A possible role of endogenous opioid peptides (EOP) in regulating the release of luteinizing hormone (LH) in the absence of ovarian influence was investigated. Experiments were conducted on three lactating Holstein-Friesian dairy cows, 20-27 days after ovariectomy. The cows were bled before and after a single intravenous (i.v.) injection of either 250 mg of naloxone (EOP antagonist) or 300 mg of morphine (EOP agonist) or a combination of the two in Experiments 1, 2 and 3, respectively. The mean and basal LH concentrations and the LH pulse frequency and amplitude were compared before and after each treatment in each cow. Naloxone induced an immediate rise in LH concentration by 60-300% above the preceding baseline values. This rise lasted for 15-30 min in each cow, after which the normal rhythmic LH release continued. One cow (A) suffered discomfort and respiratory distress 15-25 min after naloxone administration and the mean and basal LH concentration dropped significantly. Morphine significantly reduced the mean LH concentration by decreasing the number and amplitude of LH pulses and the basal LH values in two cows, although the decrease in one was not significant. The mean LH concentration in each cow remained unaffected by the combined treatment of morphine and naloxone. In conclusion, the elevation of LH concentration by naloxone, the suppression of LH release by morphine and the reversal by morphine and naloxone of each other's effects suggest that EOP could be involved in the control of LH release in cows in the absence of ovarian influence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号