首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以2个小麦基因型鉴-864(耐性)和扬麦5号(敏感)为材料,采用溶液培养方法研究了铝胁迫下小麦根系伸长、根尖铝含量、根尖细胞壁过氧化物酶活性和H2O2含量的变化。结果表明,随着铝浓度的提高,小麦根系伸长受铝抑制程度加剧,根尖铝含量也明显升高;但敏感基因型根尖铝含量较高,根系伸长受抑程度更为明显。在铝胁迫下,2个小麦基因型根尖可溶态愈创木酚过氧化物酶(GPX)和松柏醇过氧化物酶(CAPX)活性没有显著变化,细胞壁离子键结合态GPX和CAPX的活性则随着铝浓度的提高而显著升高,H2O2含量也呈现类似的趋势;而敏感基因型过氧化物酶活性升高和H2O2积累更为明显。因此,铝胁迫下,小麦敏感基因型根尖细胞壁离子键结合态GPX和CAPX活性升高而引起H2O2积累,促进根系木质化和细胞壁氧化交联,导致根细胞壁刚性提高而伸展能力降低,是其根系伸长受到严重抑制的原因。  相似文献   

2.
硅对减轻水稻的铝胁迫效应及其机理研究   总被引:27,自引:0,他引:27  
通过分析溶液中Al离子形态变化和根内Al的分布 ,探讨Si对减轻水稻Al胁迫的效应及其机理。结果表明 ,pH4.5的溶液培养条件下Al在短时间内即可明显地抑制水稻根系的生长 ,加入不同形态的硅酸可有效地减轻Al对水稻的胁迫 ,根的伸长量接近或达到对照处理的水平。加Si降低了溶液中单质态Al离子的浓度 ,改变了溶液中Al的形态。分子筛柱层析分离和离子交换树脂吸附分析发现 ,溶液中产生了新的Al化合物 ,阳离子交换态Al的比率由 78%降低到 48% ,而交换态Si的比率由 0 %增加到 20%。Al主要聚集于根质外体特别是细胞壁中 ,加入低分子态硅酸增加了根全Al和质外体Al的含量 ,但是却降低了细胞壁Al的含量 ,而加入高分子态硅酸明显地降低了根全Al、质外体、共质体和细胞壁Al的含量  相似文献   

3.
Using an aluminum (Al)‐sensitive maize cultivar, we investigated the influence of Al on the apoplastic solute bypass flow and its relationship with Al‐induced (1 h, 50 μM) callose formation and root growth. We selected the fluorescent probes 8‐hydroxypyrene‐1,3,6‐trisulfonic acid, trisodium salt (MW 524) (HPTS) and dextran‐Texas Red (TR) conjugates (MW 3,000, 10,000, and 40,000) to monitor their apoplastic transport. Confocal laser–scanning microscopy (CLSM) analysis and spectrofluorometric quantification showed Al‐induced callose formation in peripheral root cells within 1 h. Pretreatment of plants with the callose synthesis inhibitor 2‐deoxy‐D‐glucose (DDG) reduced the callose formation by half. Uptake experiments with both HPTS and dextrans showed uniform dye distribution in control root apices. After Al treatment for 1 or 2 h, which inhibited root growth by 32% or 50%, respectively, the dyes accumulated in the epidermal and outer cortical cell layers, especially in the 1–2 mm apical root zone. Al treatment reduced the export of the dyes out of the apical 1 cm treatment zone. This was due to strong sorption of HPTS but not of dextrans by Al‐loaded cell walls. Aluminum treatment reduced loading into the xylem sap particularly of higher–molecular weight dextrans. Pretreatment of roots with DDG and presence of 50 mM mannitol during the Al treatment partially forestalled the inhibitory effect of Al on the dye transport, but only slightly reduced the Al‐induced growth inhibition. Exudation experiments revealed that xylem water flow remained unaffected by the Al treatment of the root tips. The results with dextran suggest that Al binding in cell walls of the root apex inhibits apoplastic bypass flow of higher–molecular weight solutes, which might contribute to Al‐induced inhibition of root growth.  相似文献   

4.
铝胁迫对不同耐铝小麦品种根伸长生长影响的研究   总被引:3,自引:0,他引:3  
为探讨铝胁迫抑制根生长的机理,以耐铝型小麦品种ET8和铝敏感型ES8为试验材料,研究了铝胁迫对小麦根相对伸长率,根尖细胞显微结构的影响以及细胞壁木质素含量及苯丙氨酸解氨酶(PAL)、肉桂醇脱氢酶(CAD)、过氧化物酶(POD)活性的变化。结果表明,ET8和ES8经50μmol/L铝胁迫6、122、4 h后,根相对伸长率随铝胁迫时间延长而变小。利用植物显微技术发现,ET8和ES8经50μmol/L胁迫24 h后,根尖伸长区皮层细胞变扁平,细胞间隙变小,细胞壁褶皱,并呈齿轮状交合;ES8细胞受伤害程度较ET8显著。经50μmol/L铝胁迫6、12、24 h后,ET8和ES8根尖细胞长度受铝胁迫的程度随时间延长而加强,根尖细胞相对长度与根相对伸长率呈显著正相关的关系(r=0.9911**)。50μmol/L铝胁迫24 h后,ET8和ES8根尖苯丙氨酸解氨酶(PAL)、肉桂醇脱氢酶(CAD)、过氧化物酶(POD)活性及细胞壁木质素合成显著增加。上述结果表明,铝胁迫通过增加苯丙氨酸解氨酶、肉桂醇脱氢酶、过氧化物酶活性,促进根尖细胞壁木质素合成,加快细胞的木质化,细胞壁延展性变小,从而抑制细胞的伸长,减小根的生长。由于铝胁迫下ES8中木质素合成显著高于ET8,且根尖细胞结构受破坏较ET8显著,造成铝胁迫下ES8根生长受抑制比ET8显著,是ET8较ES8耐铝胁迫的主要原因。  相似文献   

5.
研究了耐铝性明显差异的2个小麦基因型西矮麦1号(耐性)和辐84系(敏感)根系对铝毒胁迫的反应与根尖细胞壁组分以及细胞壁对铝的吸附和解吸的关系。结果表明,30mol/L.AlCl3可迅速抑制小麦根系伸长,但对辐84系根系伸长的抑制更为明显,且小麦根系相对伸长率随着铝浓度的提高而急剧降低。在30mol/L.AlCl3处理24h后,西矮麦1号根系伸长的抑制率为33.3%,而辐84系根系伸长的抑制率高达70.9%。小麦距根尖0~10.mm根段的铝含量和细胞壁中果胶糖醛酸含量显著高于10~20.mm根段,且前者对铝的累积吸附量明显大于后者;在0~10.mm根段,敏感基因型果胶含量高于耐性基因型,其根尖含铝量及根尖细胞壁对铝的吸附量都要大于后者。采用1.0.mol/L.NH3.H2O对细胞壁预处理2.h降低果胶甲基酯化程度后,耐性和敏感基因型根尖细胞壁对铝的累积吸附量分别降低了17.1%和20.9%,但对铝的累积解吸率没有影响。由此可见,小麦根尖是铝毒的主要位点,细胞壁果胶含量和果胶甲基酯化程度可能是导致不同小麦基因型根尖细胞壁对铝吸附量、铝积累量的差异及其对铝毒胁迫反应的差异的重要原因。  相似文献   

6.
【目的】研究镉(Cd)处理下水稻根系细胞壁果胶对Cd胁迫的响应,进一步深化Cd安全水稻材料根系细胞壁Cd的固持机制。【方法】以Cd安全水稻材料D62B为研究对象,普通材料Luhui17为对照进行水培试验。设4个Cd质量浓度处理:0 mg/L (CK)、0.5 mg/L (Cd0.5)、1.0 mg/L (Cd1)、2.0 mg/L (Cd2)。在水稻分蘖期采集根系样品,分析细胞壁多糖中果胶、半纤维1、半纤维2以及残渣部分的Cd含量,测定果胶糖醛酸含量、果胶酯化度、果胶甲酯酶(PME)活性、根系过氧化氢(H2O2)含量以及细胞壁过氧化物酶(POD)活性,进而分析根系细胞壁果胶对Cd的响应特征。【结果】1) Cd胁迫下,D62B和Luhui17根系细胞壁果胶合成增加,根系细胞壁低酯化和高酯化果胶糖醛酸含量均表现为D62B高于Luhui17。Cd处理下D62B根系细胞壁低酯化和高酯化果胶糖醛酸含量较对照分别增加了13.21%~71.82%和22.10%~64.27%,Luhui17分别增加了24.14%~137.86%和13.12%~41.26%。...  相似文献   

7.
The present study examined the action of nitric oxide (NO) on the germination process of rice seeds and early root growth under aluminum (Al) stress. Seeds and seedlings of two rice genotypes, with different levels of sensitivity to aluminum stress, were examined after treatment with Al and NO or only with Al. Further, the histochemical localization of Al and NO was performed on the root tissues. In both genotypes, NO was able to neutralize the inhibitory Al effects on germination. In the roots of seedlings, a reduction of Al toxicity as mediated by NO was indicated by an increased root elongation and a reduction of Al accumulation on the root surface in the Al hematoxylin complexation, irrespective of the genotype. The histolocalization of NO in roots using diaminofluorescein diacetate (DAF‐2DA) and confocal microscopy revealed endogenous Al‐induced levels of NO. It is concluded that NO can alleviate Al stress in the seedlings of the studied rice genotypes by improving germination and early root growth and is likely to play a role in a specific stress‐signaling pathway.  相似文献   

8.
Lupin (Lupinus angustifolius L.) and pea (Pisum sativum L.) differ substantially in their root growth at pH≥6. The mechanisms underlying such a variation are not fully understood. The H+ buffering capacity of isolated cell wall and calcium binding property of intact roots of these two species were compared under various experimental conditions. The shape of the H+/OH titration curves of cell wall for lupin and pea showed no major discrepancy except with differed magnitudes. There appeared to be two H+‐titratable groups in root cell wall of both species—below pH 6 and above 8. The wall H+ buffering capacity of pea roots was lower at pH 4–5, but was greater at pH above 5.5 than that of lupin roots. The fractionation of apoplastic calcium demonstrated that the proportion of easily exchangeable Ca2+ was greater while that of tightly bound Ca2+ was smaller in pea roots than in lupin roots. In addition, Ca2+ in cell wall was more easily exchanged by H+ in pea than in lupin roots. The results suggest that the different sensitivity in root growth at pH≥6 of lupin and pea is related to the difference in H+ buffering and Ca2+ exchange capacities in the root apoplast of these species, and that the greater sensitivity of lupin roots to pH≥6 is partly due to a higher threshold of H+ concentration required for cell wall loosening.  相似文献   

9.
Residue quality is a key factor governing biodegradation and the fate of C in soil. Most investigations of relationships existing between crop residue quality and soil decomposition have been based on determining the relative proportions of soluble, cellulose, hemicellulose and lignin components. However, cell wall cohesion is increased by tight interconnections between polysaccharides and lignin that involve cross-linking agents (phenolic acids). The aim of this study was to determine the role of lignin composition and phenolic acids on short- to medium-term decomposition of maize roots in soil. Sixteen maize genotypes, presenting a range of chemical characteristics related to root lignin and phenolic acids, were used. The main components were characterized by Van Soest (VS) extraction and cell wall acid hydrolysis, and the non-condensed Syringyl and Guaicyl lignin monomers, esterified phenolic acids and etherified phenolic acids were determined. Maize roots were then incubated in soil under controlled conditions (15 °C, −80 kPa moisture) for 796 days. Results showed that VS extraction over-estimated the structural hemicellulose content and that VS lignin was more recalcitrant than Klason lignin. The tremendous effect of cell wall chemical characteristics was shown by marked variations (almost two-fold differences in C mineralization), between the 16 maize roots. Decomposition was controlled by soluble residue components in the short term whereas lignin and the interconnections between cell wall polymers were important in the long-term. Notably the cell wall domain rich in non-condensed lignin and esterified phenolic acids was prone to decomposition whereas the presence of etherified ferulic acids seemed to hamper cell wall decomposition.  相似文献   

10.
铝毒胁迫下植物的响应机制   总被引:1,自引:0,他引:1  
孙清斌  沈仁芳  尹春芹  赵学强 《土壤》2008,40(5):691-697
铝(Al)毒胁迫会引起植物一系列的生理生化响应。本文针对Al毒胁迫下植物的不同响应机制展开了综述,分别介绍了根系有机酸的分泌、根表黏胶物质、细胞壁成分的变化及pH和酚类物质的变化与抗Al性的关系,尤其以细胞壁胼胝质的形成为重点给予了详细的论述。最后结合Al毒的研究现状,为未来相关领域的研究提出了自己的一些看法。  相似文献   

11.
In order to understand how salicylic acid (SA) is involved in modulating rice responses to cadmium (Cd) toxicity, particularly in Cd immobilization, a series of hydroponic experiments were conducted to examine changes in cell wall composition, activities of the enzymes related to lignin synthesis including phenylalanine ammonia-lyase (PAL), peroxidase (POD), and polyphenol oxidase (PPO), subcellular Cd distribution, levels of hydrogen peroxide (H2O2), malondialdehyde (MDA), and lignin and non-protein thiols (NPT) in rice roots under Cd stress with or without the pretreatment of SA. Results showed that Cd treatment decreased root biomass by 40% compared with the control (no Cd treatment) and pretreatment with SA significantly mitigated the Cd-induced inhibition of root growth. There was no significant difference in root cell wall composition or lignification between the treatment with Cd alone and the treatment with Cd with SA. No effects were observed for SA pretreatment on the activities of PAL, POD, or PPO under Cd stress. Furthermore, soluble Cd concentrations in root cells were significantly higher in the treatment with Cd with SA than in the treatment with Cd alone. However, H2O2 and MDA concentrations in rice roots were significantly lower but NPT levels were higher in the treatment with Cd with SA than in the treatment with Cd alone, which indicated that SA alleviated Cd-induced oxidative damage. It seems to suggest that SA-mediated enhancement of Cd tolerance was not due to enhanced Cd retention in the cell wall but to enhanced Cd bindings with thiols (─SH) group. The effects of SA-enhanced Cd tolerance were discussed with regard to H2O2 signaling pathways.  相似文献   

12.
Distribution of aluminum (Al) within plant components and Al-induced changes in cell wall polysaccharides in root tips of Eucalyptus camaldulensis Dehnh. seedlings were compared with those of Melaleuca cajuputi Powell. In E. camaldulensis , 0.5 mM Al (pH 4.2 for 40 d) reduced plant dry weight by 50%, increased callose concentration in the root tips and induced leaf necrosis. In comparison with M. cajuputi , Al concentrations were higher in roots and leaves of E. camaldulensis on both a fresh weight basis and in the cell sap, but were lower in the cell wall. Al increased pectin, hemicellulose and cellulose concentration in the cell walls of E. camaldulensis root tips. Al-induced leaf necrosis and growth reduction in E. camaldulensis is discussed in the context of potentially toxic concentrations of Al in plant tissue and changes in polysaccharide content which could reduce water and nutrient uptake and cell wall extensibility in roots.  相似文献   

13.
Monolignol polymerization rate and apoplastic pH and may influence the formation of lignin and its interactions in cell walls. Primary maize walls were artificially lignified by gradual "end-wise" or rapid "bulk" polymerization of coniferyl alcohol at pH 4 or 5.5. Lignification efficiency was greatest for end-wise polymers at pH 5.5 (90-98%), intermediate for bulk polymers formed at either pH (54-82%), and lowest for end-wise polymers at pH 4 (41-53%). End-wise polymers had about 2.2-fold more ether inter-unit linkages and 70% fewer end-groups than bulk polymers. Low pH enhanced the formation of ether linkages in end-wise but not in bulk polymers. Differences in lignin structure did not influence the enzymatic degradability of cell walls, but lowering apoplastic pH from 5.5 to 4.0 during lignification reduced cell wall degradability by 25%. Further studies indicated this pH-dependent depression in degradability was related to cell wall cross-links formed via lignin quinone methide intermediates.  相似文献   

14.
Thyme (Thymus vulgaris L.) and rosemary (Rosmarinus officinalis L.) clonal lines, which were previously isolated from a heterogeneous seed population by plant tissue culture techniques, have been targeted as potential plants for phytoremediation of organic pollutants such as azo dyes and related aromatic compounds. Three thyme clonal lines and three rosemary clonal lines were tested for the ability to grow on hormone-free medium containing 0.01% of azo dye Poly S-119. The results showed that dye tolerance was associated with reduced phenolics and enhanced peroxidase activity in these clonal lines. There was a clear inverse correlation between total phenolics and peroxidase activity in these plants in response to Poly S-119. The tolerance of these clonal lines showed variations at different growing stages. These observations suggested that the peroxidase activity was inducible. Because peroxidases are involved in lignification, wound healing, aromatic compound degradation, pathogen defense, and stiffening, the results suggest that azo dye stimulated the defense response of thyme and rosemary clonal plants by increasing the peroxidase activity. Stereomicroscopic observations revealed that the azo dye was sequestered within the growing axis of the plant roots, which may also enhance the polymerization of azo dye onto the cell wall with the help of enhanced peroxidase activity.  相似文献   

15.
小麦的铝毒及耐性   总被引:11,自引:2,他引:11  
为探明Al的毒性和忍耐机理 ,比较了Scout 66和Atlas 66Al敏感和抗性的 2个小麦品种的根对Al的积累模式、根细胞壁对Al的吸附以及Al诱导的有机酸的分泌。结果表明 ,Al对Scout 6 6根伸长的抑制作用较Atlas 66明显。根系吸收的Al主要积累于 0至 5mm根尖处。Scout 6 6的根尖及Al处理后分离的根尖细胞壁对Al的积累量大于Atlas 6 6。但是 ,Al处理前分离根尖细胞壁 ,Al处理后细胞壁对Al的吸附量两品种间无显著差异。Al可诱导Atlas 6 6的根系分泌苹果酸 ,而Scout 6 6的分泌物中未发现Al诱导的有机酸。这些结果表明 ,Atlas 6 6的根尖及其细胞壁较Scout 66积累较少的Al,这种差异与Al诱导的有机酸分泌有关 ,而与根尖细胞壁固有的吸附Al的能力无关  相似文献   

16.
Peroxidase enzymes have been found in soluble, ionically bound, and covalently bound forms and have been implicated in several physiological processes in plants. This paper investigates the effect of aphid infestation on soluble and bound-cell wall peroxidase activity and bound-cell wall isoform changes of barley plants. Peroxidase activity was measured in control plants and plants infested with the aphid Schizaphis graminum (Rondani). The activity of soluble peroxidases increased with time of infestation, older plants being more affected than younger ones. The increase in bound-cell wall peroxidase activity as a function of age was higher in infested than in control plants, being higher in ionically bound than in covalently bound peroxidases. When the aphids were removed from plants, the activities of both types of peroxidases decreased to control levels. Isoelectrofocusing analyses of the ionically bound peroxidases showed changes in the isoform pattern. A new isoform was induced by infestation. The activities of all covalently bound isoforms increased after infestation. The physiological implications of these changes are discussed.  相似文献   

17.
用一氧化氮供体硝普钠(sodium nitroprusside,SNP)处理铝胁迫下的黑麦和小麦幼苗,探讨铝胁迫和铝胁迫下外源NO对黑麦和小麦根尖细胞壁铝吸附的影响。结果表明:铝显著抑制黑麦和小麦根的伸长生长,小麦受抑制更为严重;SNP处理可缓解铝对黑麦和小麦根伸长生长的抑制作用,1 mmol/L SNP处理最有效。小麦根尖对铝的吸附量和吸附速率显著高于黑麦的,1 mmol/L SNP处理显著降低小麦和黑麦细胞壁对铝的吸附量,使根尖铝含量显著下降。铝与根尖细胞壁的结合是导致植物铝毒害的重要原因,而降低根尖细胞壁对铝的吸附是外源NO缓解铝毒害的重要机制。  相似文献   

18.
Distribution of aluminum (Al) within plant components and Al-induced changes in cell wall polysaccharides in root tips of Eucalyptus camaldulensis Dehnh. seedlings were compared with those of Melaleuca cajuputi Powell. In E. camaldulensis, 0.5 mM Al (pH 4.2 for 40 d) reduced plant dry weight by 50%, increased callose concentration in the root tips and induced leaf necrosis. In comparison with M. cajuputi, Al concentrations were higher in roots and leaves of E. camaldulensis on both a fresh weight basis and in the cell sap, but were lower in the cell wall. Al increased pectin, hemicellulose and cellulose concentration in the cell walls of E. camaldulensis root tips. Al-induced leaf necrosis and growth reduction in E. camaldulensis is discussed in the context of potentially toxic concentrations of Al in plant tissue and changes in polysaccharide content which could reduce water and nutrient uptake and cell wall extensibility in roots.  相似文献   

19.
As the various components of the cadmium (Cd) root sink have not been clearly described, there is a need to precisely measure the respective contributions of apoplast and symplast to short‐term root Cd uptake and to explain the linear component of the absorption isotherms. A new method of fractionating Cd in roots was applied to two plant species with contrasting abilities to accumulate Cd: maize (Zea mays) and a Cd‐hyperaccumulating ecotype of alpine pennycress (Noccaea caerulescens). Their roots were exposed for 1 h to increasing concentrations of labeled Cd. Series of desorption baths were used to obtain the root apoplastic Cd in combination with a brief freezing step in liquid nitrogen to separate the intracellular metal from the apoplastic one. The apoplastic uptake accounted for 15% to 82% and for 48% to 96% of the total Cd uptake of maize and of alpine pennycress roots, respectively. In the case of maize, the concentration‐dependent symplastic net flux fitted a biphasic Michaelis‐Menten function, while in the case of alpine pennycress, a Michaelis‐Menten‐plus‐linear function proved a better fit. The second component of the symplastic net flux may reflect absorption through a low‐affinity transport system. Short‐term Cd uptake by roots is dominated by the high‐affinity transport system for exposure concentrations below 1 μM for maize and 0.2 μM for alpine pennycress, while cell‐wall binding prevailed for higher exposure concentrations.  相似文献   

20.
Abstract

Silicon (Si) is the second most abundant element in soil and effectively counteracts the effects of various abiotic stresses, such as drought, heavy metal toxicity and salinity, on plants. In the present study the ameliorating effects of Si nutrition supplied as 2?mmol?L?1 sodium silicate were investigated on hydroponically grown canola (Brassica napus L.) plants under salinity stress (i.e. 150?mmol?L?1 sodium chloride). Salinity decreased plant growth parameters such as tissue fresh and dry weights. These decreases were accompanied by increased lignin contents, Na+ ion accumulation, increased lipid peroxidation and decreased chlorophyll contents in plants. Silicon nutrition, however, enhanced plant growth parameters and led to the prevention of lignin and the Na+ accumulation in shoots, reduced levels of lipid peroxidation in the roots and higher levels of chlorophyll. As a result of salinity, catalase activity in the whole plant and both soluble and cell wall peroxidase activities in the shoots decreased. Silicon nutrition, however, increased the reactive oxygen species scavenging capacity of salt-stressed plants through increased catalase and cell wall peroxidase activities. Thus, silicon nutrition ameliorated the deleterious effects of salinity on the growth of canola plants through lower tissue Na+ contents, maintaining the membrane integrity of root cells as evidenced by reduced lipid peroxidation, increased reactive oxygen species scavenging capacity and reduced lignification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号