首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Twenty-seven seed samples belonging to the lettuce cultivars most frequently grown in Lombardy (northwestern Italy), in an area severely affected by Fusarium wilt of lettuce, were assayed for the presence ofFusarium oxysporum on a Fusarium-selective medium. Isolations were carried out on subsamples of seeds (500 to 1500) belonging to the same seed lots used for sowing, and either unwashed or disinfected in 1% sodium hypochloride. The pathogenicity of the isolates ofF. oxysporum obtained was tested in four trials carried out on lettuce cultivars of the butterhead type, very susceptible to Fusarium wilt. Nine of the 27 samples of seeds obtained from commercial seed lots used for sowing in fields affected by Fusarium wilt were contaminated byF. oxysporum. Among the 16 isolates ofF. oxysporum obtained, only one was isolated from disinfected seeds. Three of the isolates were pathogenic on the tested cultivars of lettuce, exhibiting a level of pathogenicity similar to that of the isolates ofF. oxysporum f.sp.lactucae obtained from infected wilted plants in Italy, USA and Taiwan, used as comparison. The results obtained indicate that lettuce seeds are a potential source of inoculum for Fusarium wilt of lettuce. The possibility of isolatingF. oxysporum f.sp.lactucae, although from a low percent of seeds, supports the hypothesis that the rapid spread of Fusarium wilt of lettuce observed recently in Italy is due to the use of infected propagation material. Measures for prevention and control of the disease are discussed. http://www.phytoparasitica.org posting Dec. 16, 2003.  相似文献   

2.
Cucumber mosaic virus (CMV) was isolated from a mosaic diseased plant of Eucharis grandiflora. The virus caused mosaic symptoms on leaves and slight distortion of flower petals in E. grandiflora by either mechanical or aphid inoculation. The virus was identified as a strain of CMV subgroup I from its biological and serological characteristics.  相似文献   

3.
A smut-like disease was found on the leaves of Sagittaria latifolia in Japan. Spore balls collected from the leaves of S. latifolia and S. trifolia var. edulis were used to cross-inoculate leaves of pathogen-free plants of the two species to identify the pathogen. Spots and swellings formed on leaves of the two species 10 days after inoculation. These symptoms were quite similar to those of the leaf smut disease of S. trifolia var. edulis caused by Doassansia horiana, and the spore balls were characteristic of the fungus. Therefore, the authors conclude that D. horiana caused leaf smut disease on S. latifolia. Received 18 January 2000/ Accepted in revised form 14 May 2000  相似文献   

4.
A new disorder exhibiting flower crinkle on Phalaenopsis orchids bearing white flowers has been observed in Taiwan, China and Japan for several years. This disorder decreased the flower longevity and was considered as a physiological syndrome. The objective of this study was to identify and characterize the real causal agent of this new Phalaenopsis disorder. Five plants of Phalaenopsis hybrids “V3” (Phal. Yukimai × Phal. Taisuco Kochdian) with flower crinkle symptoms were collected and tested by enzyme-linked immunosorbent assay with antisera against 18 viruses. The extract of leaves and flowers from one diseased plant (96-Ph-16) reacted positively only to antiserum against Odontoglossum ringspot virus (ORSV), while those from the other four plants (96-Ph-7, 96-Ph-17, 96-Ph-18 and 96-Ph-19) reacted positively to the antisera against ORSV and Cymbidium mosaic virus (CymMV). Five ORSV isolates, one each from flowers of those five diseased Phalaenopsis orchids, were established in Chenopodium quinoa. A CymMV culture was isolated from the flowers of one of the ORSV/CymMV mix-infected Phalaenopsis orchids (96-Ph-19). To determine the causal agent of the flower crinkle disease, healthy Phalaenopsis seedlings were singly or doubly inoculated with the isolated ORSV and/or CymMV. Results of back inoculation indicated that ORSV is the sole causal agent of the crinkle symptom on petals of Phalaenopsis orchid. The CP gene of the ORSV isolates from this study shared 97.3–100% nucleotide identity and 96.2–100% amino acid identity with those of 41 ORSV isolates available in GenBank. This is the first report demonstrating ORSV as the sole virus causing flower crinkle disease on Phalaenopsis orchids.  相似文献   

5.
In 2017, leaf spots were found on lettuce growing in fields in Songkhla Province, southern Thailand. The fungus isolated from the spot lesions on the leaves was identified as Curvularia aeria (Bat., J.A.Lima and C.T.Vasconc.) Tsuda based on morphological characteristics and DNA sequences of the ITS region of the rRNA gene. After a conidial suspension of the isolate was sprayed on lettuce seedlings, the leaf spots developed on lettuce seedlings, and the fungus was reisolated; leaves of plants inoculated with water did not develop spots. This is the first report of C. aeria causing leaf spot on lettuce.  相似文献   

6.
Field studies were conducted to assess the population and the spatial dynamics of the predatory bugMacrolophus costalis Fieber (Hemiptera: Miridae) and of its prey, the aphidMyzus persicae (Sulzer) (Hemiptera: Aphidoidea), on tobacco. From an untreated tobacco field in Tithorea (central Greece), tobacco leaves were collected from the upper and the lower half of the plants from June until September, in 1999 and 2000. The numbers ofM. costalis andM. persicae individuals per leaf were counted. Most aphids were observed during July and August (early and mid season), with densities dropping markedly in September. In contrast,M. costalis population densities increased late in the season (September). Significantly higher numbers of aphids were found on the upper half of the plants than on the lower half. In contrast, significantly moreM. costalis individuals were observed on the lower half. Iwao’s Regression Analysis was used in order to characterize the spatial pattern of the two species. According to this model, in both sampling seasons, aphids andM. costalis nymphs displayed an aggregated spatial pattern, whileM. costalis adults were found to be randomly distributed among sampling units. Although moreM. costalis individuals were recorded on leaves with relatively high aphid densities, this species did not react numerically to changes in prey density. In addition, a significant number of bugs were found on leaves with low aphid densities or no aphids at all. http://www.phytoparasitica.org posting Dec. 18, 2002.  相似文献   

7.
This study examines the effects of a vegetable fungicide on sugar beet powdery mildew (Erysiphe betae) and cucumber powdery mildew (Erysiphe cichoracearum). The formulations consisting of a dispersion of Brassicaceae meal in vegetable or mineral oils on infected leaves of sugar beet, reared in the greenhouse, and of musk melons cultivated under plastic tunnels, were tested in comparison to each oil taken separately. Both formulations containing Brassicaceae meals, caused 94% of conidia to be distorted while for the untreated group only 2% were distorted. Furthermore, the leaf area infected by E. betae was 56% for untreated plants and 2.7 and 9.9% respectively, for plants treated with meal containing mineral and vegetable oil. Vegetable oil considered separately or with Brassicaceae meals showed no phytotoxicity, while the formulations based on mineral oil showed a significantly lower fresh and dry weight on tomato plants. The low level or absence of phytotoxicity of plants treated with vegetable oil formulations suggests that to improve the efficacy of powdery mildew control, they could be used mixed with sulphur. The efficiency of the vegetable formulations in the powdery mildew control observed during these trials encourages further investigation on other parasitic fungi and foliar pathogens.  相似文献   

8.
In maize endosperm, a cytosolic albumin, b-32, with a molecular weight of 32 kDa is synthesised in temporal and quantitative coordination with the deposition of storage proteins. This protein has homology with several previously characterised Ribosome-Inactivating Proteins (RIPs). To verify if the maize plant expressing b-32 in various tissues has an increased tolerance to fungal pathogens, transgenic plants were obtained through genetic transformation using a chimeric gene containing the b-32 coding sequence downstream of a constitutive 35SCaMV promoter. A set of four independent homozygous progenies expressing b-32, were selected for a detailed analysis of b-32 expression in leaves and for pathogenicity tests. A differential b-32 content in leaf protein extracts was recorded in the transgenic progenies. Proteomic investigations on protein leaf extracts were carried out; the overlapping of the two-dimensional electrophoresis maps demonstrated the presence in a transgenic progeny, of additional spots, identified as b-32 and as a protein for herbicide resistance, in comparison to the negative control. Transgenic progenies were tested in bioassays to evaluate the response to Fusarium attack in leaf tissues. Preliminary experiments supported the choice of bioassay parameters for a reliable evaluation of transgenic progenies. The negative control was most susceptible to Fusarium verticillioides attack, compared to transgenic progenies. The data obtained indicate that maize b-32 was an effective antifungal protein by reducing Fusarium infection progression. Additionally, the reduction in Fusarium attack symptoms was related to b-32 concentration in leaf tissues.  相似文献   

9.
Insect-borne viruses promote several changes in plant phenotype, which can modify plant-vector interactions in favor of virus survival and dissemination. Although co-infections commonly occur in the field, little is known about their effects on interactions with the vector. The ecological interactions between Barley Yellow Dwarf Virus (BYDV) and its aphid vector, Rhopalosiphum padi, have been investigated extensively, but the vector’s behavior in more complex scenarios has yet to be examined. We assessed olfactory response and performance of R. padi to wheat singly and doubly infected by the pathogenic fungus Giberella zeae and BYDV. Non-viruliferous aphids preferred odors of BYDV-infected wheat over healthy wheat, as previously reported in the literature, and they were still preferentially attracted to BYDV-infected plant during co-infection. However, around 35% more non-viruliferous aphids chose healthy wheat over G. zeae-infected wheat. Viruliferous aphids did not show any preference to the treatments. BYDV-infected wheat was a superior host than healthy wheat for the aphids whose population increased in 25%. We observed a synergistic effect of the co-infected wheat, which was the best host for aphids, and promoted an elevation of 42% on population growth. Our results indicate that co-infection might be beneficial for virus spread as does not interfere with aphid olfactory preference and provides greater colony growth than in singly infected plants.  相似文献   

10.
In July 2006, black rot was observed on the leaves of 4-leaf-stage seedlings of salt-wort (Salsola komarovii) in Yamagata Prefecture, Japan. We isolated two single-conidial isolates from the diseased leaves. Although colony appearance of the isolates was different from that of each other, both isolates were identified as Colletotrichum truncatum by morphology and molecular similarity. After inoculation of healthy salt-wort plants with the isolates, the isolates were reisolated from symptomatic plants. We thus propose a new disease, anthracnose of salt-wort.  相似文献   

11.
Sixty-nine tomato genotypes representing nine Solanum species were evaluated for resistance to Cucumber mosaic virus (CMV) subgroup IA and its aphid vector Myzus persicae. Resistance was assessed by visual scoring of symptoms in the field under natural conditions, and in the greenhouse by artificial inoculations through aphid M. persicae and mechanical transmissions in the year 2007 and 2009. Considerable variation in responses was observed among the evaluation methods used. Field evaluations were found liable to errors as different levels were observed for the same genotypes in the different years, however mechanical inoculation was found to be the most useful in identifying CMV subgroup IA resistance, in contrast aphid transmission was most useful in identifying insect transmission resistance. All genotypes observed as highly resistant to CMV subgroup IA in the field or through vector transmission became systemically infected through mechanical inoculations. Using mechanical inoculation, six genotypes (TMS-1 of S. lycopersicum, LA1963 and L06049 of S. chilense, LA1353, L06145 and L06223 of S. habrochaites) were found resistant and another six (L06188 and L06238 of S. neorickii, L06219 of S. habrochaites, L05763, L05776 and L06240 of S. pennellii) were found tolerant showing mild symptoms with severity index (SI) ranging 1-2 and with delayed disease development after a latent period (LP) of 18–30 days. However, these genotypes were found to be resistant to highly resistant in the field and through inoculation by M. persicae; and they also supported low population levels of M. persicae except TMS-1. Another nine genotypes (LA2184 of S. pimpinellifolium L., LA2727 of S. neorickii, LA0111, L06221, L06127 and L06231 of S. peruvianum L., LA1306, L06057 and L06208 of S. chmielewskii) showing a susceptible response after mechanical inoculation were highly resistant, resistant and tolerant after M. persicae transmission. The resistant genotypes, identified in the present study can be exploited in the breeding programmes aimed at developing tomato varieties resistant to CMV subgroup IA and broadening the genetic base of CMV-resistant germplasm. The differences observed between mechanical and aphid transmission suggests that one should consider both evaluation methods for tomato germplasm screening against CMV subgroup IA.  相似文献   

12.
The feeding behavior of the melon aphidAphis gossypii Glover (Homoptera: Aphididae) was monitored using the electrical penetration graph (EPG) technique on different melon (Cucumis melo L.) genotypes showing resistance to the aphid. The aphid-resistant genotypes used were PI-161375 and PI-414723, sources of theVat andAgr genes, respectively. TGR-1551, a newC. melo accession from Zimbabwe, was also tested. Our goal was to localize the tissues where the resistance factors are expressed and to determine if the resistance mechanisms operating in the three aphid-resistant accessions were the same. Our results indicated that the three selected lines have resistant factors located at the epidermis, mesophyll and vascular tissues. However, the behavior ofA. gossypii on TGR-1551 was different from the two other resistant accessions, as indicated by a longer phloem salivation phase (E1 phase). Many of the E1 phases observed for aphids feeding on TGR-1551 were not followed by phloem ingestion (E2 phase). These results suggest that TGR-1551 has a resistance mechanism that preventsA. gossypii from initiating ingestion from the phloem. Preference tests under free choice conditions also showed that aphids rejected accessions TGR-1551 or PI-414723 faster than PI-161375. Our results support the hypothesis thatAgr andVat are coding for different kinds of resistance strategies. Comparisons of aphid life history parameters also indicated that TGR-1551 is a very promising new source to breed for resistance againstA. gossypii. http://www.phytoparasitica.org posting Jan. 16, 2002.  相似文献   

13.
A botanical natural product,AkseBio2, was evaluated under laboratory conditions for its oviposition deterrent, ovicidal and larvicidal (nymphicidal) effects against the pear psyllaCacopsylla pyri (L.) (Hemiptera: Psyllidae). The product exhibited a strong oviposition deterrent effect for winterform and summerform females and caused a reduction in the total number of eggs laid in both choice and no-choice assays. Significant mortalities in freshly laid eggs (0–48 h) and various nymphal stages of the pest were recorded in toxicity assays. At a concentration of 0.1% (formulation), the highest biological activity of the product was recorded against the young (1st and 2nd) nymphal stages (up to 87.4% mortality) in comparison with the other biological stages of the pest. It was less active against the older (3rd-5th) nymphs, causing 62.1% mortality at the same concentration. In assays with non-target organisms, a significant negative effect was not observed. There were no significant changes on treated plants up to 7 days after treatment in any trial, nor was there any phytotoxicity on plant tissue as a result ofAkseBio2 treatments. The results suggest that the product can be used in psylla control instead of synthetic insecticides and may serve as an integrated pest management (IPM) component in pear orchards. http://www.phytoparasitica.org posting July 14, 2004.  相似文献   

14.
Severe spotting, blight and drop of leaves caused by Colletotrichum dematium were found on potted plants of Polygonatum falcatum, a liliaceous ornamental, in open fields in Kagawa Prefecture, Japan, in May 2001. This new disease was named anthracnose of P. falcatum. Keisuke Tomioka, Jouji Moriwaki, Toyozo Sato contributed equally to this work. The fungal isolate and its nucleotide sequence data obtained in this study were deposited in Genebank, National Institute of Agrobiological Sciences and the DDBJ/EMBL/GenBank databases under accessions MAFF239500 and AB334523, respectively.  相似文献   

15.
Severe rot of leaves, peduncles and flowers caused by Gibberella zeae (anamorph: Fusarium graminearum) was found on potted plants of hyacinth (Hyacinthus orientalis), a liliaceous ornamental, in greenhouses in Kagawa Prefecture, Japan, in January 2001. This disease was named “Fusarium rot of hyacinth” as a new disease because only the anamorph, F. graminearum, was identified on the diseased host plant. The authors contributed equally to this work. The fungal isolate and its nucleotide sequence data obtained in this study were deposited in the Genebank, National Institute of Agrobiological Sciences and the DDBJ/EMBL/GenBank databases under the accession numbers MAFF239499 and AB366161, respectively.  相似文献   

16.
Plants defend themselves against microbial invasions by detecting conserved molecules, collectively called pathogen-associated molecular patterns (PAMPs). PAMPs-triggered basal resistance is the first inducible layer of plant defense. Here we found that Ralstonia solanacearum strain RS1002 can efficiently grow and cause disease in ecotype Columbia-0 of the model plant Arabidopsis thaliana in a manner dependent on the Hrp type III secretion system (T3SS). The extent of disease symptoms caused by R. solanacearum was reduced in plants pretreated with ΔhrpY mutant deficient in the functional Hrp T3SS. Pretreatment with a boiled extract (BE) from R. solanacearum had a similar inhibitory effect on disease development or bacterial multiplication in both Arabidopsis and several solanaceous plants. Simultaneous inoculations with BE and R. solanacearum did not induce BE-mediated resistance, nor did a BE treatment with proteinases. These results indicate that host plants recognize an unknown proteinaceous PAMP in the BE to induce disease resistance and that the Hrp T3SS of R. solanacearum can suppress it. From an analysis using Arabidopsis mutants lacking PAMP receptors, the elongation factor Tu of R. solanacearum was shown to partially contribute to BE-mediated basal resistance in Arabidopsis plants.  相似文献   

17.
In late 2003, a new disease appeared in protected bean crops in southeastern Spain, causing a decrease of over 50% in production. Several samples of affected plants were collected and analyzed and the agent of this disease was identified as the bacterium Erwinia aphidicola, which had never been described as a pathogen previously. We attempted to determine the possible bacterium transmission through seeds, using 120 commercial bean seeds from the same batch as that used in an affected farm, and 120 seeds from the fruiting plants of the same farm. Seed coats, cotyledons and leaves of plants originating from them, were taken and analyzed. Several of the developed symptoms on plants from commercial and fruiting plant seeds were internervial chlorosis, necrotic pits and rough roots and they coincided with those observed on affected crops. Bacteria present in commercial seed cotyledons were isolated and analyzed by biochemical and molecular tests. Results confirmed the presence of Erwinia aphidicola in four analyzed seeds; moreover, Bacillus simplex/Bacillus muralis, Pseudomonas mendocina, Pseudomonas putida and Paenibacillus polymyxa were also identified.  相似文献   

18.
A new leaf rot disease was found on the leaves of figmarigold (Lampranthus spectabile). The causal organism, identified as Pythium aphanidermatum was found to cause the same symptoms after artificial inoculation and was then reisolated from the inoculated plants. We propose to name the disease Pythium rot of figmarigold.  相似文献   

19.
The potential role of 10 frequently occurring weed species found amongst Spanish lettuce crops as host plants for the two viruses associated with the lettuce big-vein disease, Lettuce big-vein associated virus (LBVaV) and Mirafiori lettuce big-vein virus (MLBVV), was studied. The results showed that both viruses can infect naturally growing Sonchus oleraceus (common sowthistle) plants, the unique susceptible species detected among the analysed weeds. The sequences of the coat protein (CP) genes of the LBVaV and MLBVV isolates recovered from S. oleraceus plants were determined. Phylogenetic studies revealed a very close relationship between the CP sequences from these weed isolates and those from Spanish lettuce. Moreover, we showed that S. oleraceus can act as a source of lettuce infection by means of Olpidium brassicae, the vector fungus of both viruses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号