首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although seed dispersal is a key process determining the regeneration and spread of invasive plant populations, few studies have explicitly addressed the link between dispersal vector behavior and seedling recruitment to gain insight into the invasion process within an urban garden context. We evaluated the role of bird vectors in the dispersal of pokeweed (Phytolacca americana), a North American herb that is invasive in urban gardens in China. Fruiting P. americana attracted both generalist and specialist bird species that fed on and dispersed its seeds. The generalist species Pycnonotus sinensis and Urocissa erythrorhyncha were the most frequent dispersers. Seedling numbers of P. americana were strongly associated with the perching behavior of frugivorous birds. If newly recruited bird species use seedling‐safe perching sites, the P. americana will regenerate faster, which would enhance its invasive potential. Based on our observations, we conclude that the 2 main bird vectors, P. sinensis and U. erythrorhyncha, provide potential effective dispersal agents for P. americana. Our results highlight the role of native birds in seed dispersal of invasive plants in urban gardens.  相似文献   

2.
The distributions of small rodents in mountainous environments across different elevations can provide important information regarding the effects of climate change on the dispersal of plant species. However, few studies of oak forest ecosystems have compared the elevational patterns of sympatric rodent diversity, seed dispersal, seed bank, and seedling abundance. Thus, we tested the differences in the seed disperser composition and abundance, seed dispersal, seed bank abundance, and seedling recruitment for Quercus wutaishanica along 10 elevation levels in the Taihang Mountains, China. Our results provide strong evidence that complex asymmetric seed dispersal and seedling regeneration exist along an elevational gradient. The abundance of rodents had a significant negative correlation with the elevation and the seed removal rates peaked and then declined with increasing elevation. The seed removal rates were higher at middle and lower elevations than higher elevations but acorns were predated by 5 species of seed predators at middle and lower elevations, and thus, there was a lower likelihood of recruitment compared with those dropped beneath mother oaks at higher elevations. More importantly, the number of individual seeds in the seed bank and seedlings increased with the elevation, although dispersal services were reduced at sites lacking rodents. As conditional mutualists, the rodents could possibly act as antagonistic seed predators rather than mutualistic seed dispersers at low and middle elevations, thereby resulting in the asymmetric pattern of rodent and seedling abundance with increasing elevation to affect the community assembly and ecosystem functions on a large spatial scale.  相似文献   

3.
Masting is an evolutionary strategy used by plants to promote seed survival and/or seed dispersal under animal predation, but its effects on seedling establishment in field condition are rarely tested by long-term experiments incorporating combined effects of seed and animal abundance. Here, we tracked seed production, rodent-mediated seed dispersal, and seedling establishment in Armeniaca sibirica from 2005 to 2014 in a warm-temperate forest in northern China, and examined the effects of seed abundance and per capita seed availability on seed fate and seedling recruitment rate. Our results showed that seed abundance or per capita seed availability generally benefited the seedling recruitment of A. sibirica through increasing dispersal intensity, supporting predator dispersal hypothesis. However, seedling recruitment showed satiated or even dome-shaped association with per capita seed availability, suggesting the benefit to trees would be decreased when seed abundance were too high as compared to rodent abundance (a satiated effect). Our results suggest that the predator dispersal and satiation effects of masting on seedling recruitment can operate together in one system and conditionally change with seed and animal abundance.  相似文献   

4.
By tracking the fate of individual seeds from 6 frugivore‐dispersed plants with contrasting seed traits in a fragmented subtropical forest in Southwest China, we explored how rodent seed predation and hoarding were influenced by seed traits such as seed size, seed coat hardness and seed profitability. Post‐dispersal seed fates varied significantly among the 6 seed species and 3 patterns were witnessed: large‐seeded species with a hard seed coat (i.e. Choerospoadias axillaries and Diospyros kaki var. silvestris) had more seeds removed, cached and then surviving at caches, and they also had fewer seeds predated but a higher proportion of seeds surviving at the source; medium‐sized species with higher profitability and thinner seed coat (i.e. Phoebe zhennan and Padus braohypoda) were first harvested and had the lowest probability of seeds surviving either at the source or at caches due to higher predation before or after removal; and small‐seeded species with lower profitability (i.e. Elaeocarpus japonicas and Cornus controversa) had the highest probability of seeds surviving at the source but the lowest probability of seeds surviving at caches due to lower predation at the source and lower hoarding at caches. Our study indicates that patterns of seed predation, dispersal and survival among frugivore‐dispersed plants are highly determined by seed traits such as seed size, seed defense and seed profitability due to selective predation and hoarding by seed‐eating rodents. Therefore, trait‐mediated seed predation, dispersal and survival via seed‐eating rodents can largely affect population and community dynamics of frugivore‐dispersed plants in fragmented forests.  相似文献   

5.
Seed dispersal and subsequent recruitment is the template on which forest regeneration takes place. Hence, considering the scale over which ecological processes occur is key for understanding the overall impact of various dispersal agents. To explore leafcutter ant (Atta colombica) dispersal effectiveness in space and time, seed movement and subsequent recruitment of a large‐seeded predominately vertebrate‐dispersed tree, Simarouba amara (Aubl. Simaroubaceae), was investigated on Barro Colorado Island, Panama. At each of 218 reproductive‐sized adults (≥20 cm diameter at breast height), presence or absence of a leafcutter ant colony was noted, with extensive checks for Atta activity taking place at or in close proximity to seed and seedling transects, which extended 4 cardinal directions for 30 m from each reproductive female tree (n= 74). Only at 2 S. amara trees were nests observed, and in these areas a dense S. amara seedling carpet was observed. Although nearby nest and dump sites might increase local S. amara recruitment in the short term, mortality at these sites is complete or nearly so. Hence, the seed dispersal effectiveness by leafcutter ants appears to be ephemeral and likely contributes inconsequentially to the long‐term recruitment and distribution patterns of the species. This finding highlights the importance of evaluating disperser effectiveness at ecologically relevant spatiotemporal scales.  相似文献   

6.
Although food availability and the abundance of seed predators have been postulated to affect seed dispersal, it is not clear how seed‐eating animals modify their scatter‐hoarding strategies in response to different levels of interspecific competition. We placed paired germinated and ungerminated acorns of Quercus mongolica on 30‐cm high platforms to exclude potential interspecific competition of the predominant larder hoarders Apodemus peninsulae and Myodes rufocanus, to investigate seed dispersal by a predominant scatter‐hoarder, Tamias sibiricus, in the field in north‐eastern China. Our results showed that T. sibiricus ate more acorns in situ in the absence of interspecific competition. In the presence of interspecific competition of A. peninsulae and C. rufocanus, however, more acorns were scatter‐hoarded by T. sibiricus. Regardless of interspecific competition, germination of acorns showed no significant effects on seed dispersal patterns, inconsistent with the “seed perishability hypothesis” that animals avoid hoarding seeds with high perishability. Exclusion of interspecific competition, though relatively increasing the per capita seed abundance, appears to reduce seed dispersal, scatter‐hoarding and seedling establishment. Therefore, we propose that moderate interspecific competition rather than competition exclusion may benefit seed scatter‐hoarding and seedling establishment.  相似文献   

7.
Plants produce nutritious, fleshy fruits that attract various animals to facilitate seed dispersal and recruitment dynamic. Species-specific differential selection of seed size by multiple frugivorous disperser assemblages may affect the subsequent germination of the ingested seeds. However, there is little empirical evidence supporting this association. In the present study, we documented conflicting selection pressures exerted on seed size and germination by five frugivorous carnivores on a mammal-dispersed pioneer tree, the date-plum persimmon (Diospyros lotus), in a subtropical forest. Fecal analyses revealed that these carnivores acted as primary seed dispersers of D. lotus. We also observed that seed sizes were selected based on body mass and were species-specific, confirming the “gape limitation” hypothesis; three small carnivores (the masked palm civet Paguma larvata, yellow-throated marten Martes flavigula, and Chinese ferret-badger Melogale moschata) significantly preferred to disperse smaller seeds in comparison with control seeds obtained directly from wild plants whereas the largest Asiatic black bears (Ursus thibetanus) ingested larger seeds. Seeds dispersed by medium-sized hog badgers (Arctonyx albogularis) were not significantly different from control seeds. However, regarding the influence of gut passage on seed germination, three arboreal dispersal agents (martens, civets, and bears) enhanced germination success whereas terrestrial species (ferret-badgers and hog badgers) inhibited the germination process compared with undigested control seeds. These conflicting selection pressures on seed size and germination may enhance the heterogeneity of germination dynamics and thus increase species fitness through diversification of the regeneration niche. Our results advance our understanding of seed dispersal mechanisms and have important implications for forest recruitment and ecosystem dynamics.  相似文献   

8.
Seed handling by primary frugivores can influence secondary dispersal and/or predation of post‐dispersal seeds by attracting different guilds of ground‐dwelling animals. Many studies have focused on seeds embedded in feces of mammals or birds; however, less is known about how ground‐dwelling animals treat seeds regurgitated by birds (without pulp and not embedded in feces). To compare the effect of differential seed handling by primary dispersers on secondary seed removal of Chinese yew (Taxus chinensis var. mairei), we conducted a series of exclosure experiments to determine the relative impact of animals on the removal of defecated seeds (handled by masked palm civet), regurgitated seeds (handled by birds) and intact fruits. All types of yew seeds were consistently removed at a higher rate by rodents than by ants. Regurgitated seeds had the highest removal percentage and were only removed by rodents. These seeds were probably eaten in situ without being secondarily dispersed. Defecated seeds were removed by both rodents and ants; only ants might act as secondary dispersers of defecated seeds, whereas rodents ate most of them. We inferred that seeds regurgitated by birds were subjected to the highest rates of predation, whereas those dispersed in the feces of masked palm civets probably had a higher likelihood of secondary dispersal. Seeds from feces attracted ants, which were likely to transport seeds and potentially provided a means by which the seeds could escape predation by rodents. Our study highlighted that primary dispersal by birds might not always facilitate secondary dispersal and establishment of plant populations.  相似文献   

9.
Some rodents gather and store seeds. How many seeds they gather and how they treat those seeds is largely determined by seed traits such as mass, nutrient content, hardness of the seed coat, presence of secondary compounds, and germination schedule. Through their consumption and dispersal of seeds, rodents act as agents of natural selection on seed traits, and those traits influence how rodents forage. Many seeds that are scatter‐hoarded by rodents are pilfered, or stolen, by other rodents, and seed traits also likely influence pilfering rates and seed fates of pilfered seeds. To clarify coevolutionary relationships between rodents and the plants that they disperse, one needs to understand the role of seed traits in rodent foraging decisions. We compared how the seeds of 4 species of plants that are dispersed by scatter‐hoarding animals and that differ in value (singleleaf piñon pine, Pinus monophylla; desert peach, Prunus andersonii; antelope bitterbrush, Purshia tridentata; Utah juniper, Juniperus osteosperma) were pilfered and recached by rodents. One hundred artificial caches of the 4 seed species (25 per species) were prepared, and removal by rodents was monitored. Rodents pilfered high‐value seeds more rapidly than the other seeds. Desert peach seeds, which contain toxic secondary compounds, were more frequently recached. Relatively low value seeds like Utah juniper and antelope bitterbrush were pilfered more slowly and were sometimes left at cache sites, and seeds of the latter species were transported shorter distances to new cache sites. The background density of seeds also appeared to influence the relative value of seeds.  相似文献   

10.
Studies from both tropical and temperate systems show that scatter‐hoarding rodents selectively disperse larger seeds farther from their source than smaller seeds, potentially increasing seedling establishment in larger‐seeded plants. Size‐biased dispersal is evident in many oaks (Quercus) and is true both across and within species. Here, we predict that intraspecifc variation in seed size also influences acorn dispersal by the Blue Jay (Cyanocitta cristata Linnaeus), but in an opposite manner. Blue Jays are gape‐limited and selectively disperse smaller acorn species (e.g. pin oaks [Quercus palustris Münchh]), but often carry several acorns in their crop during a single dispersal event. We predict that jays foraging on smaller acorns will load more seeds per trip and disperse seeds to greater distances than when single acorns are carried in the bill. To test this, we presented free‐ranging Blue Jays with pin oak acorns of different sizes over a 2‐year period. In each of 16 experimental trials, we monitored the birds at a feeding station with remote cameras and determined the number of acorns removed and the distance acorns were dispersed when cached. Jays were significantly more likely to engage in multiple seed loading with smaller seeds in both years of the study. During the second year, these smaller acorns were dispersed farther than larger acorns, and during the first year, larger acorns were dispersed farther, revealing an inconsistent response to seed size during our study. We suggest that in some circumstances, multiple seed loading by Blue Jays may favor dispersal in some plant species.  相似文献   

11.
Sexual size dimorphism is a key evolutionary feature that can lead to important biological insights. To improve methods of sexing live birds in the field, we assessed sexual size dimorphism in Nigerian local turkeys (Meleagris gallopavo) using multivariate techniques. Measurements were taken on 125 twenty-week-old birds reared under the intensive management system. The body parameters measured were body weight, body length, breast girth, thigh length, shank length, keel length, wing length and wing span. Univariate analysis revealed that toms (males) had significantly (P < 0.05) higher mean values than hens (females) in all the measured traits. Positive phenotypic correlations between body weight and body measurements ranged from 0.445 to 0.821 in toms and 0.053–0.660 in hens, respectively. Three principal components (PC1, PC2 and PC3) were extracted in toms, each accounting for 63.70%, 19.42% and 5.72% of the total variance, respectively. However, four principal components (PC1, PC2, PC3 and PC4) were extracted in hens, which explained 54.03%, 15.29%, 11.68% and 6.95%, respectively of the generalised variance. A stepwise discriminant function analysis of the eight morphological traits indicated that body weight, body length, tail length and wing span were the most discriminating variables in separating the sexes. The single discriminant function obtained was able to correctly classify 100% of the birds into their source population. The results obtained from the present study could aid future management decisions, ecological studies and conservation of local turkeys in a developing economy.  相似文献   

12.
羊草(Leymus chinesis)是我国北方草原区优势种之一,具有重要的经济价值和生态价值。然而,种子休眠严重、发芽率低是当前困扰羊草建植与利用的关键问题。2,4-表油菜素内酯(EBR)是常用的植物调节剂,可以促进种子萌发和种苗生长。本研究以采集的野生羊草种子为材料,采用2,4-表油菜素内酯和赤霉素(GA3)溶液浸泡法,开展激素处理效应研究。结果表明,2,4-表油菜素内酯对羊草种子萌发及种苗根伸长有显著促进作用(P0.05)。与对照相比,2,4-表油菜素内酯处理后羊草种子发芽率提高2~4倍,种苗根长增加35%~40%,而且不同浓度间存在显著差异(P0.05)。与此同时,还发现2,4-表油菜素内酯和赤霉素(GA3)之间存在显著正互作效应(P0.05)。与单一的赤霉素和油菜素内酯处理相比,2,4-表油菜素内酯 0.10 μg·g-1+GA3 200 μg·g-1组合处理后羊草种子发芽率可提高30%,种苗长度增加49.14%,根长增加51.34%。以上结果说明,2,4-表油菜素内酯对羊草种子萌发及其种苗生长有显著促进作用(P0.05),而且2,4-表油菜素内酯与赤霉素存在互作效应,适宜配合使用后效果更好,综合考虑萌发率、种苗等因素,以2,4-表油菜素内酯 0.10 μg·g-1+GA3 200 μg·g-1和2,4-表油菜素内酯 0.01 μg·g-1 +GA3 200 μg·g-1 效果最好。  相似文献   

13.
The plant–disperser–fruit pest triads involve 3 interacting animals or groups (plants, vertebrates and seed parasites), and the dispersal of both seeds and seed parasites, which can both benefit from endozoochory via defecation or regurgitation by frugivorous vertebrates. However, we have very limited knowledge about the ecological and evolutionary consequences of these plant–disperser–fruit pest triads. Across central Northern China, several seed wasps (mainly Eurytoma plotnikov attack Pistacia chinensis fruits, and seed wasp larvae can develop, diapause and finally emerge as adults inside a seed during the following 1–3 years. In this study, we experimentally investigated whether frugivorous birds discriminated P. chinesis fruits with or without seed parasites, and whether bird endozoochory (by defecation or regurgitation) affected larval survival of seed parasites. The infestation rate by seed parasites was 37% of the P. chinesis fruit crop but with up to 48% of aborted fruits. We found that all 5 bird species can discriminate and then reject all unhealthy fruits (including aborted and insect‐infested). However, 4 of the 5 bird species, in particular bulbul species, consumed 15–41% of aborted and insect‐infested fruits as complementary food only when these unhealthy fruits were provided. Moreover, all larva of seed parasites remained alive after bird defecation or regurgitation. In conclusion, our study demonstrates that endozoochory by frugivorous birds could lead to potential dispersal of seed parasites of P. chinensis but with a very low probability.  相似文献   

14.
Local extinction or population decline of large frugivorous vertebrates as primary seed dispersers, caused by human disturbance and habitat change, might lead to dispersal limitation of many large‐seeded fruit trees. However, it is not known whether or not scatter‐hoarding rodents as secondary seed dispersers can help maintain natural regeneration (e.g. seed dispersal) of these frugivore‐dispersed trees in the face of the functional reduction or loss of primary seed dispersers. In the present study, we investigated how scatter‐hoarding rodents affect the fate of tagged seeds of a large‐seeded fruit tree (Scleropyrum wallichianum Arnott, 1838, Santalaceae) from seed fall to seedling establishment in a heavily defaunated tropical forest in the Xishuangbanna region of Yunnan Province, in southwest China, in 2007 and 2008. Our results show that: (i) rodents removed nearly all S. wallichianum seeds in both years; (ii) a large proportion (2007, 75%; 2008, 67.5%) of the tagged seeds were cached individually in the surface soil or under leaf litters; (iii) dispersal distance of primary caches was further in 2007 (19.6 ± 14.6 m) than that in 2008 (14.1 ± 11.6 m), and distance increased as rodents recovered and moved seeds from primary caches into subsequent caching sites; and (iv) part of the cached seeds (2007, 3.2%; 2008, 2%) survived to the seedling stage each year. Our study suggests that by taking roles of both primary and secondary seed dispersers, scatter‐hoarding rodents can play a significant role in maintaining seedling establishment of S. wallichianum, and are able to at least partly compensate for the loss of large frugivorous vertebrates in seed dispersal.  相似文献   

15.
1. In two partridge species, the grey partridge (Perdix perdix) and chukar (Alectoris chukar), from hatching up to 120?d, the growth rate and development of body mass, wing, tarsus, and bill length were measured and fitted by Gompertz equations.

2. As a typical precocial species, partridges hatched with relatively well developed legs and bills, and wing growth followed a gradual development of thermoregulation.

3. Gompertz growth constants for body mass growth were 0·039 and 0·038 for grey partridges and chukars, respectively.

4. The allometric relationship between tarsus length and body mass followed a geometric similarity (1/3 power) in both grey partridges and chukars.  相似文献   

16.
The role that the environment plays in vector-borne parasite infection is one of the central factors for understanding disease dynamics. We assessed how Neotropical bird foraging strata and habitat preferences determine infection by parasites of the genera Haemoproteus, Plasmodium, Leucocytozoon, and Trypanosoma and filarioids, and tested for phylogenetic signal in these host–parasite associations. We performed extensive searches of the scientific literature and created a database of hemoparasite surveys. We collected data on host body mass, foraging strata, habitat preference, and migratory status, and tested if host ecological traits predict each hemoparasite occurrence and prevalence using a phylogenetic Bayesian framework. Species of Plasmodium tend to infect birds from tropical forests while birds from altitudinal environments are likely to be infected by species of Leucocytozoon. The probability of a bird being infected by filarioid or Trypanosoma is higher in lowland forests. Bird species that occur in anthropic environments and dry habitats of tropical latitudes are more susceptible to infection by species of Haemoproteus. Host foraging strata is also influential and bird species that forage in the mid-high and canopy strata are more prone to infection by species of Haemoproteus and filarioids. We also identified phylogenetic signal for host–parasite associations with the probability of infection of Neotropical birds by any hemoparasite being more similar among more closely related species. We provided a useful framework to identify environments that correlate with hemoparasite infection, which is also helpful for detecting areas with potential suitability for hemoparasite infection due to land conversion and climate change.  相似文献   

17.
The seed predator satiation hypothesis states that high seed abundance can satiate seed predators or seed dispersers, thus promoting seed survival. However, for rapidly germinating seeds in tropical forests, high seed abundance may limit dispersal as the seeds usually remain under parent trees for long periods, which may lead to high mortality due to rodent predation or fungal infestations. By tracking 2 species of rapidly germinating seeds (Pittosporopsis kerrii, family Icacinaceae; Camellia kissi, family Theaceae), which depend on dispersal by scatter‐hoarding rodents, we investigated the effects of seed abundance at the community level on predation and seed dispersal in the tropical forest of Xishuangbanna Prefecture, Southwest China. We found that high seed abundance at the community level was associated with delayed and reduced seed removal, decreased dispersal distance and increased pre‐dispersal seed survival for both plant species. High seed abundance was also associated with reduced seed caching of C. kissi, but it showed little effect on seed caching of P. kerrii. However, post‐dispersal seed survival for the 2 plant species followed the reverse pattern. High seed abundance in the community was associated with higher post‐dispersal survival of P. kerrii seeds, but with lower post‐dispersal survival of C. kissi seeds. Our results suggest that different plant species derive benefit from fluctuations in seed production in different ways.  相似文献   

18.
Seed dispersal is essential for plant recruitment and the maintenance of biodiversity. Colobine monkeys are primarily folivorous, but they also consume fruits and are often assumed to be seed predators. Although they are known to be epizoochorous seed dispersers, their role as endozoochorous seed dispersers needs reassessment. We examined potential endozoochory in golden snub-nosed monkeys (Rhinopithecus roxellana) at Dalongtan in Shennongjia National Park, central China, by assessing potential germination of ingested seeds (n = 1806, 9 species) from fecal samples. Intact seeds were in almost all fecal samples (ranging from 5–130 seeds), and ingested seeds were from small seeded species (seed width <4.5 mm). The 2 most abundant species were Actinidia arguta (73%) and Rosa caudata (15%). The fruits of A. arguta were unripe when ingested (i.e. effective seed predation) and the ingested seeds did not germinate in the trials. Therefore, ingestion of unripe seeds does not lead to effective seed dispersal. However, germination rates of defecated R. caudata (9%) were greater than control seeds (6% and 0%), demonstrating potential endozoochorous seed dispersal. Thus, colobine monkeys do indeed disperse mainly small-seeded from multi-seeded fruits through potential endozoochory and this process enhances the recruitment of seedlings.  相似文献   

19.
Although many studies have been carried out on plant–animal mutualistic assemblages, the roles of functional traits and taxonomy in determining both whether interactions involve mutualisms or predation and the structure of such assemblages are unclear. We used semi‐natural enclosures to quantitatively assess the interaction strengths between seeds of 8 sympatric tree species and 4 rodent species in a tropical forest in Xishuangbanna, Yunnan, Southwest China. We found 2 clusters of species in the seed–rodent network represented by 2 genera in the Fagaceae (Castanopsis, Lithocarpus). Compared to seeds of 3 Castanopsis species, seeds with heavy weight, hard coat or caloric content (including 3 Lithocarpus species) were eaten less and more frequently hoarded by rodents. In turn, hoarded seeds showed less predation and more mutualism with rodents. Our results suggest that seed traits significantly affected the hoarding behavior of rodents, and, consequently, the occurrence of mutualisms and predation as well as assemblage structure in the plant–animal seed dispersal system. Taxonomically‐related species with similar seed traits as functional groups belong to the same substructures in the assemblage. Our results indicate that both seed traits and taxonomic relationships may simplify thinking about seed dispersal systems by helping to elucidate whether interactions are likely to be dominated by predation or mutualism.  相似文献   

20.
Animal-mediated seed dispersal is an important ecological process in which a strong mutualism between animals and plants can arise. However, few studies have examined how a community of potential seed dispersers interacts with sympatric seed trees. We employed a series of experiments in the Qinling Mountains in both semi-natural enclosure and the field to assess the interactions among 3 sympatric rodent species and 3 Fagaceae tree seeds. Seed traits all showed similar tannin levels but markedly different physical traits and nutritional contents. We found that seeds with heavy weight, thick coat, and high nutritional contents were less likely to be eaten in situ but more often to be eaten after dispersal or hoarded by rodents. These results support both the handling time hypothesis and the high nutrition hypothesis. Surprisingly, we also found that rodents, maybe, preferred to consume seeds with low levels of crude fiber in situ, and to harvest and hoard those with high levels of crude fiber for later consumption. The sympatric rodent species, Cansumys canus, the largest rodent in our study, harvested and hoarded more Quercus variabilis seeds with high physical and nutritional traits, while Apodemus draco, the smallest rodent, harvested more Q. serrata seeds with low physical and nutritional traits, and Niviventer confucianus harvested and hoarded more Q. aliena seeds with medium physical and nutritional traits. Our study demonstrates that different seed traits play different roles in influencing the seed fate and the shaping of mutualism and predation interactions within a community of rodent species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号