首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
夹带剂对超临界CO2萃取结晶穿心莲内酯的影响   总被引:1,自引:0,他引:1  
以穿心莲内酯粗品和高纯品(纯度分别为30%和95%)为原料,采用超临界CO2萃取结晶法,考察了乙醇、丙酮、异丙醇与乙酸乙酯四种夹带剂对超临界CO2萃取结晶穿心莲内酯的结晶率、纯度、晶型和形貌等的作用规律.结果:因乙酸乙酯分离纯化综合效果较好,且既能与前处理工序中选择的浸提溶剂相统一,减少采用多种溶剂存在的污染,又能保持晶体优良晶型和结晶品质,所以优先选择了乙酸乙酯为夹带剂.  相似文献   

2.
压力、温度对穿心莲内酯超临界CO2萃取-结晶的影响   总被引:1,自引:3,他引:1  
以穿心莲浸膏为原料,进行了穿心莲内酯的超临界CO2萃取结晶分离纯化。考察了单因素参数压力、温度对穿心莲内酯纯度、结晶量等的影响。结果表明:超临界CO2萃取结晶穿心莲内酯的纯度在结晶板上呈梯度分布;在25 MPa以下,压力升高,结晶板上部晶体纯度升高,而结晶量先增后减;在结晶板下部穿心莲内酯的纯度和结晶量都是先升高后降低;温度在一定范围内能提高晶体纯度,且有利于缩短萃取结晶时间。  相似文献   

3.
响应曲面法建立超临界CO2萃取结晶穿心莲内酯工艺模型   总被引:2,自引:1,他引:2  
以穿心莲内酯含量为30%的穿心莲浸膏为试验原料,采用响应曲面分析法(Response Surface Methodology,RSM)建立了超临界CO2萃取结晶穿心莲内酯结晶率的二次多项数学模型,验证了数学模型的有效性,并探讨了萃取结晶压力、温度、时间对结晶率的作用规律.根据该模型进行了工艺参数的优选,以结晶率为指标,试验所得穿心莲内酯超临界CO2萃取结晶优化工艺条件为:压力20.88 MPa,温度50.27℃,时间97.02 min,该条件下结晶率高达74.77%.  相似文献   

4.
夹带剂对超临界CO2萃取结晶穿心莲内酯的影响   总被引:2,自引:0,他引:2  
以穿心莲内酯粗品和高纯品(纯度分别为30%和95%)为原料,采用超临界CO2萃取结晶法,考察了乙醇、丙酮、异丙醇与乙酸乙酯四种夹带剂对超临界CO2萃取结晶穿心莲内酯的结晶率、纯度、晶型和形貌等的作用规律。结果:因乙酸乙酯分离纯化综合效果较好,且既能与前处理工序中选择的浸提溶剂相统一,减少采用多种溶剂存在的污染,又能保持晶体优良晶型和结晶品质,所以优先选择了乙酸乙酯为夹带剂。  相似文献   

5.
穿心莲内酯超临界CO2重结晶工艺初探   总被引:1,自引:0,他引:1  
采用单因素实验法探讨超临界CO2重结晶压力、温度、时间对穿心莲内酯的纯度和结晶率的影响,并借助扫描电镜进行晶体形貌考察,利用高效液相色谱仪进行纯度检测.结果表明,采用超临界CO2重结晶技术得到的穿心莲内酯晶体形貌更加细小,并呈絮状分布在结晶板上;选择较佳纯化工艺参数为重结晶压力14 MPa,温度55℃,时间60 min,CO2流量20 L/min时,得到的穿心莲内酯纯度达90%以上,结晶率超过45%.  相似文献   

6.
响应曲面法建立超临界CO2萃取结晶穿心莲内酯工艺模型   总被引:1,自引:0,他引:1  
以穿心莲内酯含量为30%的穿心莲浸膏为试验原料,采用响应曲面分析法(Response Surface Methodology,RSM)建立了超临界CO2萃取结晶穿心莲内酯结晶率的二次多项数学模型,验证了数学模型的有效性,并探讨了萃取结晶压力、温度、时间对结晶率的作用规律。根据该模型进行了工艺参数的优选,以结晶率为指标,试验所得穿心莲内酯超临界CO2萃取结晶优化工艺条件为:压力20.88 MPa,温度50.27℃,时间97.02 min,该条件下结晶率高达74.77%。  相似文献   

7.
超临界CO2流体萃取杏仁油工艺研究   总被引:15,自引:5,他引:15  
该研究以单因素试验和正交试验相结合的方法对苦杏仁脂肪油的超临界CO2萃取工艺进行了研究.确定了超临界CO2萃取杏仁油的最佳工艺为:萃取压力35 MPa、萃取温度50 ℃、CO2流量24 L/h、粒径60目、萃取时间2 h.各因素影响杏仁的得率的顺序为:粒径>时间>萃取压力>CO2流量>萃取温度.最佳工艺验证试验的杏仁油的得率为52.98%.本研究的结果为下一步综合、无毒、高效地开发利用苦杏仁奠定了基础.  相似文献   

8.
超临界CO2萃取万寿菊花中叶黄素的研究   总被引:5,自引:1,他引:5  
采用超临界CO2萃取技术,研究了从万寿菊花中萃取叶黄素的工艺条件.对影响超临界CO2萃取叶黄素的各种因素,包括分离参数、原料含水率、粉碎粒径,超临界萃取温度、压力、流速、时间等因素进行了考察,得到较佳的萃取工艺条件为:原料含水率10.92%,粒径40目,萃取温度60℃,压力30 MPa,CO2流速15 L/h,分离釜Ⅰ温度40℃,压力6 MPa,分离釜Ⅱ温度20℃,时间为6 h.  相似文献   

9.
超临界CO2静态膨胀-动态循环萃取灵芝孢子油   总被引:1,自引:3,他引:1  
为了直接从未破壁的灵芝孢子中萃取油脂,在超临界CO2动态循环萃取之前引入静态膨胀工艺,考察了各膨胀因素对灵芝孢子油萃取率的影响。试验结果表明,膨胀压力越高,膨胀时间越短,静态萃取时间越长,越有利于灵芝孢子油的萃取,而膨胀温度过高或过低均不利于灵芝孢子油的萃取。超临界CO2静态膨胀-动态循环萃取灵芝孢子油的优化工艺为:膨胀压力30MPa,膨胀时间30s,膨胀温度70℃,静态萃取时间20min,在此条件下灵芝孢子油的萃取率达94.3%。  相似文献   

10.
采用超临界CO2技术萃取烘烤花生中挥发性物质,用固相微萃取-气相色谱质谱联用(SPME-GC-MS)技术鉴定萃取物的风味组分,并将样品偏差值和感官评价相结合,评价萃取物香气协调性变化,综合进行萃取条件的优化,以建立一种烘烤花生风味物质的提取方法.结果显示,萃取压力25MPa,萃取温度55℃,萃取时间120min;超临界CO2萃取能萃取出烘烤花生中近85%的挥发性风味组分,该条件下超临界CO2萃取物风味轮廓感官上与烘烤花生原始风味接近.采用样品偏差值可以定量评价超临界萃取烘烤花生中风味物质香气协调性的变化.  相似文献   

11.
为了扩大喷雾干燥技术在生物物料微粒制备方面的应用,在自行设计的实验台上,以超临界CO2为干燥介质进行了乙基纤维素微粒的制备.研究了喷嘴出口直径、气液比、溶液浓度、温度、压力对微粒粒径及其粒径分布的影响.实验结果表明:改变工艺参数,可在较大范围内调控微粒大小,所制微粒平均粒径为1.07~9.84μm;气液出口为8 mm的喷嘴所得微粒粒径比4 mm的要小且分布变窄、粒度均匀;气液比对微粒粒径的影响存在一个粒径最大值;高浓度溶液所得微粒粒径比低浓度溶液大,粒径分布略有变宽;随温度升高,微粒粒径增大,高温时所得微粒的粒径分布比低温时宽;随压力增加,微粒粒径减小,高压时所得微粒的粒径分布比低压时略有变窄.  相似文献   

12.
表面活性剂对超临界CO_2萃取人参中皂苷的影响   总被引:2,自引:0,他引:2  
为了改善超临界CO2萃取在极性物质方面存在的局限性,在其体系中引入特定表面活性剂和助表面活性剂,考察了它们对超临界CO2萃取人参中皂苷的影响。试验结果发现,表面活性剂和助表面活性剂的加入均可显著提高超临界CO2萃取人参中皂苷的萃取率,其改善效果与它们的种类和加入量有关。在司盘80、吐温80、聚乙二醇辛基苯基醚和琥珀酸二(2-乙基己基)酯磺酸钠4种表面活性剂中,以琥珀酸二(2-乙基己基)酯磺酸钠的改善效果最好,其次是聚乙二醇辛基苯基醚和吐温80,而司盘80最差。在3种助表面活性剂对琥珀酸二(2-乙基己基)酯磺酸钠/超临界CO2反相微乳萃取人参皂苷的改善效果方面,以乙醇效果最好,其次是正戊醇,正丁醇效果最差。在萃取压力32MPa、萃取温度45℃、萃取时间4h和CO2流量2.5L/h的条件下,AOT和乙醇的加入量以0.036g/mL较好,此时人参皂苷的萃取率达15.9%,是没加表面活性剂和助表面活性剂下的13.3倍。  相似文献   

13.
为提高脱皮双低菜籽低温压榨饼的附加值,采用Box-Behnken响应面设计优化超临界CO2萃取脱皮双低菜籽低温压榨饼中油脂的工艺,研究萃取压力、温度和时间对油脂提取率的影响,并对萃取得到的油和粕的品质进行检测。结果表明:萃取温度对油脂提取率的影响显著(P0.05);萃取压力和时间对油脂提取率的影响极显著(P0.001),且交互作用非常显著(P0.01);最佳工艺参数为萃取温度40℃、压力28 MPa和时间120 min,此条件下菜籽油的提取率为95.08%。超临界萃取的油色泽较浅,酸价与过氧化值都优于正已烷工艺,磷脂质量分数为0.051 mg/g约是正已烷工艺的1/32,维生素E和总酚含量较高;超临界萃取的脱脂粕蛋白溶解度高,颜色较浅,硫甙含量较少,品质明显优于正已烷脱脂粕。研究结果可为脱皮双低菜籽低温压榨饼的高值化利用提供数据参考。  相似文献   

14.
Process parameter optimization for the supercritical CO(2) extraction of rye bran to obtain alkylresorcinols (AR) was studied by carrying out a two-level fractional design experiment. Four parameters, temperature, CO(2) flow rate, cosolvent percentage, and extraction time, presumed to influence the extraction process, were analyzed. A tentative fractionation of the crude extract was also carried out and is discussed. The best extracts were achieved when the CO(2) flow rate and extraction time or temperature and cosolvent addition were kept high. It was found that temperature increase was not statistically significant within the range of the study performed, and the extraction time was thus the most important factor. A preliminary fractionation process in two cyclone separators yielded two fractions, one rich in AR components with higher molecular weights and the other rich in AR components with low molecular weight.  相似文献   

15.
Ground fruits of the common juniper (Juniperus communis L.), with a particle size range from 0.250-0.400 mm, forming a bed of around 20.00 +/- 0.05 g, were extracted with supercritical CO(2) at pressures of 80, 90, and 100 bars and at a temperature of 40 degrees C. The total amount of extractable substances or global yield (mass of extract/mass of raw material) for the supercritical fluid extraction process varied from 0.65 to 4.00% (wt). At each investigated pressure, supercritical CO(2) extract fractions collected in successive time intervals over the course of the extraction were analyzed by capillary gas chromatography, using flame ionization (GC-FID) and mass spectrometric detection (GC-MS). More than 200 constituents were detected in the extracts, and the contents of 50 compounds were reported in the work. Dependence of the percentage yields of monoterpene, sesquiterpene, oxygenated monoterpene, and oxygenated sesquiterpene hydrocarbon groups on the extraction time was investigated, and conditions that favored the yielding of each terpene groups were emphasized. At all pressures, monoterpene hydrocarbons were almost completely extracted from the berries in the first 0.6 h. It was possible to extract oxygenated monoterpenes at 100 bar in 0.5 h and at 90 bar in 1.2 h. Contrary to that, during an extraction period of 4 h at 80 bar, it was possible to extract only 75% of the maximum yielded value of oxygenated monoterpene at 100 bar. Intensive extraction of sesquiterpenes could be by no means avoided at any pressure, but at the beginning of the process (the first 0.5 h) at 80 bar, they were extracted about 8 and 3 times slower than at 100 and 90 bar, respectively. Oxygenated sesquiterpenes were yielded at fast, constant extraction rates at 100 and 90 bar in 1.2 and 3 h, respectively. This initial fast extraction period was consequently followed by much slower extraction of oxygenated sesquiterpenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号