首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Swine secretory carbonic anhydrase VI (CA‐VI) was purified from swine saliva and an antibody to CA‐VI was generated. A specific and sensitive enzyme‐linked immunosorbent assay (ELISA) has been developed for the measurement of swine CA‐VI. The assay can detect as little as 5 ng/mL of swine CA‐VI. Typical standard curves were determined for a range of CA‐VI solutions (7.8 to 500 ng/mL). The coefficients of variation for these solutions were less than 5%. When 500, 250 or 100 ng/mL of swine CA‐VI was added to swine sera, the recoveries were 102.0%, 109.7% and 100.2%, respectively. The concentrations of CA‐VI in the saliva (26.2 ± 30.4 µg/mL), sera (3.3 ± 4.9 ng/mL), bile (153.0 ± 114.0 ng/mL), seminal plasma (124.0 ± 39.0 ng/mL) and parotid gland (441.3 ± 90.0 µg/g wet tissue), submaxillary gland (88.1 ± 124.4 µg/g wet tissue), sublingual gland (58.6 ± 24.6 µg/g wet tissue) and gallbladder (2.4 ± 1.3 µg/1g wet tissue) were determined by ELISA. The concentration of CA‐VI in colostrum was 163.3 ± 101.4 ng/mL and did not decrease within 10 days following parturition. An immunohistochemical reaction to anti‐CA‐VI antiserum was observed in the columnar epithelial cells lining the gallbladder. These data suggest that secretory CA‐VI plays various roles in pH regulation and the maintenance of ion and fluid balance.  相似文献   

2.
A tulathromycin concentration and pharmacokinetic parameters in plasma and lung tissue from healthy pigs and Actinobacillus pleuropneumoniae (App)‐infected pigs were compared. Tulathromycin was administered intramuscularly (i.m.) to all pigs at a single dose of 2.5 mg/kg. Blood and lung tissue samples were collected during 33 days postdrug application. Tulathromycin concentration in plasma and lung was determined by high‐performance liquid chromatography with tandem mass spectrometry (LC‐MS/MS) method. The mean maximum plasma concentration (Cmax) in healthy pigs was 586 ± 71 ng/mL, reached by 0.5 h, while the mean value for Cmax of tulathromycin in infected pigs was 386 ± 97 ng/mL after 0.5 h. The mean maximum tulathromycin concentration in lung of healthy group was calculated as 3412 ± 748 ng/g, detected at 12 h, while in pigs with App, the highest concentration in lung was 3337 ± 937 ng/g, determined at 48 h postdosing. The higher plasma and lung concentrations in pigs with no pulmonary inflammation were observed at the first time points sampling after tulathromycin administration, but slower elimination with elimination half‐life t1/2el = 126 h in plasma and t1/2el = 165 h in lung, as well as longer drug persistent in infected pigs, was found.  相似文献   

3.
The penetration of oxytetracycline (OTC) into the oral fluid and plasma of pigs and correlation between oral fluid and plasma were evaluated after a single intramuscular (i.m.) dose of 20 mg/kg body weight of long‐acting formulation. The OTC was detectable both in oral fluid and plasma from 1 hr up to 21 day after drug administration. The maximum concentrations (Cmax) of drug with values of 4021 ± 836 ng/ml in oral fluid and 4447 ± 735 ng/ml in plasma were reached (Tmax) at 2 and 1 hr after drug administration respectively. The area under concentration–time curve (AUC), mean residence time (MRT) and the elimination half‐life (t1/2β) were, respectively, 75613 ng × hr/ml, 62.8 hr and 117 hr in oral fluid and 115314 ng × hr/ml, 31.4 hr and 59.2 hr in plasma. The OTC concentrations were remained higher in plasma for 48 hr. After this time, OTC reached greater level in oral fluid. The strong correlation (= .92) between oral fluid and plasma OTC concentrations was observed. Concentrations of OTC were within the therapeutic levels for most sensitive micro‐organism in pigs (above MIC values) for 48 hr after drug administration, both in the plasma and in oral fluid.  相似文献   

4.
The aim of this study was to determine serum levels of natriuretic peptide precursors (NT‐proANP and NT‐proBNP) during pregnancy in brachycephalic bitches. Fifteen healthy multiparous bitches were selected for this prospective study. Serum levels of NT‐proANP and NT‐proBNP were measured during anoestrous and at 14, 35, 42, 49 and 56 days (2nd, 5th, 6th, 7th and 8th weeks) of pregnancy. Fourteen animals had normal gestations, and one bitch developed single foetus syndrome. The natriuretic peptide levels of this animal were not included in this study; however, it is important to report that its NT‐proANP levels were four times greater than those of normal patients. There was no significant difference (p = 0.072) in NT‐proBNP levels between anoestrous (0.20 ± 0.10 ng/ml) and the different pregnancy weeks (0.27 ± 0.12 ng/ml). There was a positive correlation (p < 0.0001) between NT‐proANP and gestational age, and the levels of this marker increased significantly (p < 0.0001) during the 6th (0.26 ± 0.06 ng/ml), 7th (0.28 ± 0.04 ng/ml) and 8th weeks (0.29 ± 0.05 ng/ml) when compared to anoestrous (0.18 ± 0.02 ng/ml). NT‐proANP serum levels are correlated with gestational development and may be indicative of cardiovascular adaptation in canine brachycephalic pregnancy.  相似文献   

5.
An experiment was conducted to investigate the effect of plasma concentrations of the metabolic hormones [Growth hormone (GH), insulin and insulin‐like growth factor –I (IGF‐I)] and nutritional metabolites (Glucose, cholesterol, total protein, albumin, globulin, urea and creatinine) on the resumption of post‐partum ovarian activity in sixteen Friesian–Sanga cows grazing extensively on native grassland. Blood samples were taken from cows from week 1 to 16 post‐partum. Cows were classified as having resumed ovarian activity when a plasma progesterone concentration of ≥ 1.0 ng/ml was recorded for two consecutive weekly samples. Based on the resumption of ovarian activity, cows were classified as early‐cycling, late‐cycling or non‐cycling. The concentrations of the metabolic hormones were measured from week 1 to 10, while those of the nutritional metabolites were measured during week 1, 3, 5, 7 and 9 during the study period. The concentrations of the metabolic hormones, GH and insulin were similar (p > 0.05) in the three ovarian activity groups, likewise the concentrations of the nutritional metabolites, glucose, total protein, globulin, urea and creatinine. Plasma IGF‐I concentration was higher (p < 0.001) in early‐cycling (18.7 ± 0.74 ng/ml) than in late‐cycling (12.4 ± 0.75 ng/ml) and non‐cycling (10.4 ± 0.91 ng/ml) cows. Plasma cholesterol concentrations were significantly lower (p < 0.05) in early‐cycling (1.94 ± 0.15 mmol/l) compared with late‐cycling (2.48 ± 0.12 mmol/l) and non‐cycling (2.61 ± 0.11 mmol/l) cows. For plasma albumin concentrations, the levels recorded for early‐cycling cows were higher (40.7 ± 2.85 g/l) than in late‐cycling (34.4 ± 1.97 g/l) and non‐cycling (33.6 ± 2.66) cows. The results suggest that cows with lower plasma concentrations of IGF‐I and albumin, but higher plasma cholesterol concentrations were at risk of delayed resumption of post‐partum ovarian activity.  相似文献   

6.
Resveratrol has generated interest in cats due to reported health benefits. Cats have low activity of β‐glucuronidase, and we hypothesized they could not form two common resveratrol metabolites, resveratrol‐3‐O‐glucuronide and resveratrol‐4′‐O‐glucuronide. Resveratrol, 3 mg/cat/day, was given orally to intact male (= 5) and female cats (= 5) for 4 weeks. A control group (8 intact males) was used for comparison. Plasma and urine were collected weekly and analysed using high‐pressure liquid chromatography coupled with tandem mass spectrometry. Resveratrol and resveratrol‐3‐O‐sulphate, but no glucuronide metabolites, were detected in plasma and urine. Median (range 10–90th percentile) plasma resveratrol for control and treatment groups was 0.46 ng/ml (0.02–1.74 ng/ml) and 0.96 ng/ml (0.65–3.21 ng/ml). Median (range) plasma resveratrol‐3‐O‐sulphate for control and treatment groups was 6.32 ng/ml (2.55–10.29 ng/ml) and 11.45 ng/ml (1.47–53.29 ng/ml). Plasma resveratrol differed from control in week 4, while plasma resveratrol‐3‐O‐sulphate was different in all weeks (p < 0.05). Median (range) urine resveratrol for control and treatment groups was 0.28 ng/ml (0.05–1.59 ng/ml) and 19.98 ng/ml (8.44–87.54 ng/ml). Median (range) urine resveratrol‐3‐O‐sulphate for control and treatment groups was 26.71 ng/ml (10.50–75.58 ng/ml) and 108.69 ng/ml (11.83–231.05 ng/ml). All time points for urine resveratrol and resveratrol‐3‐O‐sulphate were significantly different from control (p < 0.05), except for weeks 1, 3 and 4 for resveratrol. The results support our hypothesis that cats are unlikely able to glucuronidate resveratrol, most likely due to a reduction in the activity of β‐glucuronidase.  相似文献   

7.
We compared the pharmacokinetics of ivermectin premix and ivermectin microspheres in pigs after single and multiple administration regimes. In the single-dose experiments, 24 piglets were randomly divided into three groups and given ivermectin at 0.3 mg/kg using (a) 1.0% ivermectin administered subcutaneously, (b) 0.25% ivermectin premix orally, and (c) 0.25% ivermectin microspheres orally. In the multiple-dose experiment, 6 pigs in two equal groups received ivermectin premix and microspheres orally at 0.3 mg/kg for 7 consecutive days to monitor the valley plasma levels. The plasma samples were detected by fluorescence high-performance liquid chromatography, and concentration–time data were fitted to a noncompartmental model. After oral administration of ivermectin microspheres at a single dose, the elimination rate constant (Kel), the half-life (t1/2), the peak time (Tmax), the mean residence time (MRT), and the peak concentration (Cmax) were 0.012 ± 0.0031/hr, 59.94 ± 20.18 hr, 9.50 ± 0.93 hr, 55.96 ± 11.40 hr, and 37.75 ± 3.45 ng/ml, respectively. The Cmax of microspheres was not statistically different (p > .05) compared with that of premix groups (39.81 ± 5.83 ng/ml). Moreover, the AUC of the microcapsule groups was increased from 1,129.76 ± 245.62 to 1,607.33 ± 343.35 hr ng/ml compared with the premix groups, and the relative bioavailability increased by an average of 17.53% after oral administration with ivermectin microspheres. Multiple-dose administration also indicated pigs fed with ivermectin microspheres can get a higher minimum steady-state concentration and a longer maintenance time than ivermectin premix.  相似文献   

8.
The aims of this study were to establish optimal doses of doxycycline (dox) against Haemophilus parasuis on the basis of pharmacokinetic–pharmacodynamic (PK‐PD) integration modeling. The infected model was established by intranasal inoculation of organism in pigs and confirmed by clinical signs, blood biochemistry, and microscopic examinations. The recommended dose (20 mg/kg b.w.) was administered in pigs through intramuscular routes for PK studies. The area under the concentration 0‐ to 24‐hr curve (AUC0–24), elimination half‐life (T½ke), and mean residence time (MRT) of dox in healthy and H. parasuis‐infected pigs were 55.51 ± 5.72 versus 57.10 ± 4.89 μg·hr/ml, 8.28 ± 0.91 versus 9.80 ± 2.38 hr, and 8.43 ± 0.27 versus 8.79 ± 0.18 hr, respectively. The minimal inhibitory concentration (MIC) of dox against 40 H. parasuis isolates was conducted through broth microdilution method, the corresponding MIC50 and MIC90 were 0.25 and 1 μg/ml, respectively. The Ex vivo growth inhibition data suggested that dox exhibited a concentration‐dependent killing mechanism. Based on the observed AUC24 hr/MIC values by modeling PK‐PD data in H. parasuis‐infected pigs, the doses predicted to obtain bacteriostatic, bactericidal, and elimination effects for H. parasuis over 24 hr were 5.25, 8.55, and 10.37 mg/kg for the 50% target attainment rate (TAR), and 7.26, 13.82, and 18.17 mg/kg for 90% TAR, respectively. This study provided a more optimized alternative for clinical use and demonstrated that the dosage 20 mg/kg of dox by intramuscular administration could have an effective bactericidal activity against H. parasuis.  相似文献   

9.
The pharmacokinetic behaviours of amoxicillin (AMX) and clavulanic acid (CA) in swine were studied after either an intravenous or oral administration of AMX (10 mg/kg) and CA (2.5 mg/kg). The concentrations of these two medicines in swine plasma were determined using high‐performance liquid chromatographic‐tandem mass spectrometry, and the data were analysed using a noncompartmental model with the WinNonlin software. After intravenous administration, both substances were absorbed rapidly and reached their effective therapeutic concentration quickly. CA was eliminated more slowly compared with AMX. Moreover, the distribution volume of AMX was larger than that of CA, suggesting that AMX could penetrate tissues better. After oral administration of the granular formulation, no significant difference was observed in the mean elimination half‐life value between AMX and CA. The mean maximal plasma concentrations of AMX and CA, reached after 1.14 and 1.32 hr, were 2.58 and 1.91 μg/m, respectively. The mean oral bioavailability of AMX and CA was 23.6% and 26.4%, respectively. After oral administration, the T>MIC50 for three common respiratory pathogens was over 6.12 hr. Therefore, oral administration could be more effective in the clinical therapy of pigs, especially when administered twice daily.  相似文献   

10.
The effect of exposure to different UVb compact lamps on the vitamin D status of growing bearded dragons (Pogona vitticeps) was studied. Forty‐two newly hatched bearded dragons (<24 h old) were allocated to six treatment groups (n = 7 per group). Five groups were exposed to different UVb compact lamps for two hours per day, with a control group not exposed to UVb radiation. At 120 days of age, blood samples were obtained and concentrations of 25(OH)D3, Ca, P and uric acid were determined. In addition, plasma 25(OH)D3 concentration was determined in free‐living adult bearded dragons to provide a reference level. Only one treatment resulted in elevated levels of 25(OH)D3 compared to the control group (41.0 ± 12.85 vs. 2.0 ± 0.0 nmol/L). All UVb‐exposed groups had low 25(OH)D3 plasma levels compared to earlier studies on captive bearded dragons as well as in comparison with the free‐living adult bearded dragons (409 ± 56 nmol/L). Spectral analysis indicated that all treatment lamps emitted UVb wavelengths effective for some cutaneous vitamin D synthesis. None of these lamps, under this regime, appeared to have provided a sufficient UVb dose to enable synthesis of plasma 25(OH)D3 levels similar to those of free‐living bearded dragons in their native habitat.  相似文献   

11.
Knowledge gained regarding the biochemical processes that occur during sperm collection, processing and freezing‐thawing might improve current sperm cryopreservation techniques. In our present study, we determined the effect of cryopreservation on the total protein concentration (TP) and the activities of certain enzymes in semen samples from the beluga (Huso huso). The TP content of the seminal plasma of fresh semen was 0.47 ± 0.026 g/l, and the TP after cryopreservation was 1.86 ± 0.6 g/l. The activities of acid phosphatase (0.82 ± 0.042 U/l), lactate dehydrogenase (234.4 ± 19.4 U/l), arylsulfatase (143.1 ± 32.5 U/l) and β‐N‐acetylglucosaminidase (58.39 ± 4.14 U/l) in the seminal plasma of fresh semen were significantly lower than those in the supernatant of frozen‐thawed semen samples (7.43 ± 0.64, 3224.6 ± 167.2, 422.6 ± 21.3 and 90.2 ± 5.37 U/l respectively). These parameters may be useful as biomarkers for estimating damage to the cell membrane of spermatozoa caused by freezing‐thawing.  相似文献   

12.
Lysine is the first‐limiting amino acid (AA) in typical swine diets and plays very important roles in promoting growth performance of pigs. This research was conducted to study the effects of dietary lysine on blood plasma concentrations of protein, carbohydrate, and lipid metabolites of pigs. Eighteen crossbred finishing pigs (nine barrows and nine gilts; initial BW 92.3 ± 6.9 kg) were individually penned in an environment controlled barn. Pigs were assigned to three dietary treatments according to a randomized complete block design with gender as block and pig as experimental unit (6 pigs/treatment). Three corn and soybean meal‐based diets were formulated to contain total lysine at 0.43%, 0.71%, and 0.98% (as‐fed basis) for Diets I (lysine deficient), II (lysine adequate), and III (lysine excess) respectively. After 4 weeks on trial, jugular vein blood was collected and plasma was separated. The plasma concentrations of total protein, albumin, urea nitrogen (UN), triglyceride, total cholesterol, and glucose were determined using an ACE Clinical Chemistry System (Alfa Wassermann, Inc., West Caldwell, NJ, USA). Data were analysed using the GLM Procedure with PDIFF (adjust = T) option of SAS. No differences (> 0.10) were found between barrows and gilts for any of the metabolites measured. While there were no differences (> 0.10) between pigs fed Diets II and III in plasma concentrations of UN, albumin, and total cholesterol, the concentration of albumin in these pigs was higher (< .05) than that of pigs fed Diet I, and the concentrations of UN and total cholesterol in these pigs were lower (< .05) than that of pigs fed Diet I. There were no differences (> 0.10) among the three dietary treatments in plasma concentrations of total protein, triglycerides, and glucose. These findings indicated that the plasma metabolite profile can be affected by changing dietary lysine content only. Thorough understanding how the plasma metabolite profile is alternated by dietary lysine will facilitate nutrient management for more sustainable swine production.  相似文献   

13.
Methylprednisolone acetate (MPA) is commonly administered to performance horses, and therefore, establishing appropriate withdrawal times prior to performance is critical. The objectives of this study were to describe the plasma pharmacokinetics of MPA and time‐related urine and synovial fluid concentrations following intra‐articular administration to sixteen racing fit adult Thoroughbred horses. Horses received a single intra‐articular administration of MPA (100 mg). Blood, urine, and synovial fluid samples were collected prior to and at various times up to 77 days postdrug administration and analyzed using tandem liquid chromatography‐mass spectrometry (LC‐MS/MS). Maximum measured plasma MPA concentrations were 6.06 ± 1.57 at 0.271 days (6.5 h; range: 5.0–7.92 h) and 6.27 ± 1.29 ng/mL at 0.276 days (6.6 h; range: 4.03–12.0 h) for horses that had synovial fluid collected (group 1) and those that did not (group 2), respectively. The plasma terminal half‐life was 1.33 ± 0.80 and 0.843 ± 0.414 days for groups 1 and 2, respectively. MPA was undetectable by day 6.25 ± 2.12 (group 1) and 4.81 ± 2.56 (group 2) in plasma and day 17 (group 1) and 14 (group 2) in urine. MPA concentrations in synovial fluid remained above the limit of detection (LOD) for up to 77 days following intra‐articular administration, suggesting that plasma and urine concentrations are not a good indicator of synovial fluid concentrations.  相似文献   

14.
This study was performed to evaluate plasma concentrations of anti‐Mullerian hormone (AMH) and the ovarian antral follicle population (AFP) in different genetic groups. Cyclic heifers (13 Bubalus bubalis [Murrah]; 15 Bos taurus [Holstein] and 10 Bos indicus [Gyr]) were maintained under the same management and were synchronized with two doses of 150 μg IM d‐cloprostenol administered 14 days apart. After the second d‐cloprostenol treatment, heifers had their ovaries scanned daily by ultrasound to define the day of ovulation. On the same day, the AFP was determined and a plasma sample was collected to measure AMH. Murrah heifers had less AFP (25.6 ± 2.1 follicles; p = 0.01) and plasma AMH concentration (0.18 ± 0.03 ng/ml; p < 0.001) than Gyr (60.0 ± 12.2 follicles and 0.60 ± 0.12 ng/ml of AMH); however, data were similar when compared to Holstein (35.9 ± 6.8 follicles and 0.24 ± 0.06 ng/ml of AMH) heifers. Regardless of genetic background, there was a positive relationship between the AFP and plasmatic AMH concentration (Murrah [r = 0.62; p < 0.01], Holstein [r = 0.66; p < 0.001] and Gyr [r = 0.88; p < 0.001]). Also, when heifers were classified according to high‐ or low‐AMH concentration based on the average within each genetic group, high‐AMH heifers had greater (p < 0.0001) AFP than low‐AMH heifers. In conclusion, both Murrah and Holstein heifers presented lower plasma AMH concentration and AFP when compared to Gyr.  相似文献   

15.
Dermorphin is a μ‐opioid receptor‐binding peptide that causes both central and peripheral effects following intravenous administration to rats, dogs, and humans and has been identified in postrace horse samples. Ten horses were intravenously and/or intramuscularly administered dermorphin (9.3 ± 1.0 μg/kg), and plasma concentration vs. time data were evaluated using compartmental and noncompartmental analyses. Data from intravenous administrations fit a 2‐compartment model best with distribution and elimination half‐lives (harmonic mean ± pseudo SD) of 0.09 ± 0.02 and 0.76 ± 0.22 h, respectively. Data from intramuscular administrations fit a noncompartmental model best with a terminal elimination half‐life of 0.68 ± 0.24 (h). Bioavailability following intramuscular administration was variable (47–100%, n = 3). The percentage of dermorphin excreted in urine was 5.0 (3.7–10.6) %. Excitation accompanied by an increased heart rate followed intravenous administration only and subsided after 5 min. A plot of the mean change in heart rate vs. the plasma concentration of dermorphin fit a hyperbolic equation (simple Emax model), and an EC50 of 21.1 ± 8.8 ng/mL was calculated. Dermorphin was detected in plasma for 12 h and in urine for 48 or 72 h following intravenous or intramuscular administration, respectively.  相似文献   

16.
Tylvalosin (TVN) is a water soluble macrolide used in swine production to treat enteric, respiratory, and arthritic pathogens. There is limited data on its distribution to synovial fluid beyond gavage studies, which do not represent field conditions. This study measured water disappearance, TVN concentration in the medicated water, daily dose, and concentrations of TVN and 3‐O‐acetyltylosin (3AT) in the synovial fluid and plasma of treated pigs over the administration period. The study emphasized understanding variation in tissue TVN concentrations within the context of a field setting. Sixty finisher pigs were housed individually with individual waterers. Six pigs were randomly allocated to the following time points for sample collection: 0, 48, 60, 72, 84, 96, 102, 108, 114, and 120 hr on medication. TVN was administered daily in the water for 5 days. Water disappearance and medicated water concentration were measured daily. At each time point, six pigs were euthanized and plasma and synovial fluid were collected for analysis. Median TVN synovial fluid concentrations ranged between <1 ng/ml (hour 0) to 3.6 ng/ml (hour 84). There was substantial variation between individual pigs for water disappearance (mean 4.36L and range 0–7.84). Median TVN water concentration was 59 ppm (range 38–75 ppm).  相似文献   

17.

The present research work entitled “Correlation of testicular ultrasonography, testicular biometry, serum testosterone levels and seminal attributes in pre- and post-pubertal age for breeding soundness evaluation in Osmanabadi bucks” was undertaken in 18 healthy Osmanabadi bucks from the Instructional Livestock Farm Complex, Bombay Veterinary College, Mumbai, Maharashtra. The body weight (kg), scrotal circumference (cm) and testicular biometry (cm) of post-weaning 18 Osmanabadi male kids was recorded every 15 days from weaning, i.e., 120?±?10 days along with serum testosterone (ng/ml) by radioimmunoassay method at monthly intervals for the next 6 months. Semen was collected six times on the seventh month onward during post-pubertal age at 15-day interval from 18 bucks. The semen was evaluated for macroscopic and microscopic tests. The body weight increased from 14.45?±?0.67 to 19.57?±?0.70 kg from four to nine and a half months of age. The average daily body weight gain was 31.27 g. Maximum body weight gain was 01.19?±?0.16 kg from 5 to 6 followed by 01.15?±?0.16 kg from 4 to 5 months of age. The scrotal circumference increased from 17.22?±?0.56 to 19.03?±?0.55 cm from four to nine and a half months of age with maximum increased between 4 and 5 followed by 6 and 7 months of age. The testicular length, width and thickness of right and left testicles were recorded by ultrasonography method. There was increase in mean right and left testicular length, width and thickness from 5.25?±?0.19 to 5.84?±?0.18 and 5.49?±?0.21 to 6.16?±?0.20; 2.99?±?0.12 to 3.32?±?0.12 and 3.10?±?0.13 to 3.44?±?0.12 and 2.97?±?0.12 to 3.16?±?0.12 and 3.06?±?0.12 to 3.31?±?0.11 cm, respectively by ultrasonography, between four to nine and a half months of age. Testicular length, width and thickness gain was at maximum in 5 to 6 months of age. Left testicular length was more than the right testis. Before puberty, there was sudden gain in body weight, testicular length and width. However, scrotal circumference showed significant increase after puberty. Body weight had highest correlation with ultrasonographic left testicular thickness (r?=?1) followed by scrotal circumference, ultrasonographic right and left testicular width, left testicular length, right testicular length and thickness and least by right testicular thickness (r?=?0.95). The semen was thin to thick in consistency and average semen density was 3.10?±?0.05. Average semen volume was 0.81?±?0.02 ml, mass activity, initial motility, live and dead sperm count, abnormal sperm count and sperm concentration were 3.45?±?0.13, 76.16?±?1.16 and 75.16?±?1.28% and 24.84?±?1.28, 12.30?±?0.50% and 2631.04?±?45.74 million/ml, respectively in 18 bucks in six collection at 15 days. There was significant rise in semen volume, mass activity, initial motility and concentration at 8.5 months and live count, density at 9 months of age which indicates the age of sexual maturity is 8.5 to 9 months in Osmanabadi bucks. The body weight had highest positive correlation with mass activity (r?=?98) followed by initial motility, live sperm count and total sperm concentration, semen volume (r?=?76). The scrotal circumference had highest positive correlation with initial motility (r?=?98) followed by live sperm count, total sperm count, mass activity, semen volume (r?=?86). On the other hand, body weight and scrotal circumference were negatively correlated with abnormal and dead sperm count. The mean testosterone concentration increased from 0.02?±?0.004 to 5.75?±?0.80 ng/ml between four and half to nine and half months of age, respectively. There was significant rise (p?<?0.01) up to 1.38?±?0.28 ng/ ml at 6.5 months, i.e., age of puberty and up to 5.75?±?0.80 ng/ml at 9.5 months, i.e., age of sexual maturity. Testosterone had highest positive correlation with testicular length followed by testicular width, length, body weight and scrotal circumference, mass activity, live sperm count, initial motility, while it had highest negative correlation with dead and abnormal sperm count. From the present research work, it was concluded that the scrotal circumference, testicular length, width and thickness increased with increasing body weight. Before puberty, there was sudden gain in body weight, testicular length and width. However, scrotal circumference increased significantly at post-pubertal age. So testicular length, body weight, testicular width in pre pubertal age and scrotal circumference post-pubertal age can be used as indicator for selection of Osmanabadi bucks for breeding purpose. On the other hand, the semen parameters should consider only after 8.5 to 9 months of age for selection of Osmanabadi bucks for breeding.

  相似文献   

18.
Ribavirin (RBV) is a synthetic guanosine analog that is used as a drug against various viral diseases in humans. The in vitro antiviral effects of ribavirin against porcine viruses were demonstrated in several studies. The purposes of this study were to evaluate the adverse effects and pharmacokinetics of ribavirin following its intramuscular (IM) injection in pigs. Ribavirin was formulated as a double‐oil emulsion (RBV‐DOE) and gel (RBV‐Gel), which were injected into the pigs as single‐dose IM injections. After injection of RBV, all of the pigs were monitored. The collected serum and whole blood samples were analyzed by liquid chromatography–tandem mass spectrometry and complete blood count analysis, respectively. All of the ribavirin‐treated pigs showed significant decreases in body weight compared to the control groups. Severe clinical signs including dyspnea, anorexia, weakness, and depression were present in ribavirin‐treated pigs until 5 days postinjection (dpi). The ribavirin‐treated groups showed significant decrease in the number of red blood cells and hemoglobin concentration until 8 dpi. The mean half‐life of the RBV‐DOE and RBV‐Gel was 27.949 ± 2.783 h and 37.374 ± 3.502 h, respectively. The mean peak serum concentration (Cmax) and area under the serum concentration–time curve from time zero to infinity (AUCinf) of RBV‐DOE were 8340.000 ± 2562.577 ng/mL and 16 0095.430 ± 61 253.400 h·ng/mL, respectively. The Cmax and AUCinf of RBV‐Gel were 15 300.000 ± 3764.306 ng/mL and 207526.260 ± 63656.390 h·ng/mL, respectively. The results of this study provided the index of side effect and pharmacokinetics of ribavirin in pigs, which should be considered before clinical application.  相似文献   

19.
The pharmacokinetic parameters of moxidectin (MXD) after intravenous and pour‐on (topical) administration were studied in sixteen pigs at a single dose of 1.25 and 2.5 mg/kg BW (body weight), respectively. Blood samples were collected at pretreatment time (0 hr) over 40 days. The plasma kinetics were analyzed by WinNonlin 6.3 software through a noncompartmental model. For intravenous administration (n = 8), the elimination half‐life (λZ), the apparent volume of distribution (Vz), and clearance (Cl) were 10.29 ± 1.90 days, 89.575 ± 29.856 L/kg, and 5.699 ± 2.374 L/kg, respectively. For pour‐on administration (n = 8), the maximum plasma drug concentration (Cmax), time to maximum plasma concentration (Tmax), and λZ were 7.49 ng/ml, 1.72, and 6.20 days, respectively. MXD had a considerably low absolute pour‐on bioavailability of 9.2%, but the mean residence time (MRT) for pour‐on administration 10.88 ± 1.75 days was longer than 8.99 ± 2.48 days for intravenous administration. These results showed that MXD was absorbed via skin rapidly and eliminated slowly. The obtained data might contribute to refine the dosage regime for topical MXD administration.  相似文献   

20.
The neurokinin‐1 (NK) receptor antagonist, maropitant citrate, mitigates nausea and vomiting in dogs and cats. Nausea is poorly understood and likely under‐recognized in horses. Use of NK‐1 receptor antagonists in horses has not been reported. The purpose of this study was to determine the pharmacokinetic profile of maropitant in seven adult horses after single intravenous (IV; 1 mg/kg) and intragastric (IG; 2 mg/kg) doses. A randomized, crossover design was performed. Serial blood samples were collected after dosing; maropitant concentrations were measured using LC‐MS/MS. Pharmacokinetic parameters were determined using noncompartmental analysis. The mean plasma maropitant concentration 3 min after IV administration was 800 ± 140 ng/ml, elimination half‐life was 10.37 ± 2.07 h, and volume of distribution was 6.54 ± 1.84 L/kg. The maximum concentration following IG administration was 80 ± 40 ng/ml, and elimination half‐life was 9.64 ± 1.27 hr. Oral bioavailability was variable at 13.3 ± 5.3%. Maropitant concentrations achieved after IG administration were comparable to those in small animals. Concentrations after IV administration were lower than in dogs and cats. Elimination half‐life was longer than in dogs and shorter than in cats. This study is the basis for further investigations into using maropitant in horses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号