首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crossbred cows (n = 1073) from five locations had oestrous cycles synchronized with 100 μg of GnRH IM and insertion of controlled internal drug release device (CIDR) on Day 0 followed by 25 mg of PGF IM and CIDR removal on Day 7. Kamar® patches were placed on all cows at CIDR removal. Cows were observed three times daily for oestrus after PGF administration. In the Ovsynch‐CIDR group, cows detected in oestrus (n = 193) within 48 h after PGF were inseminated using the AM–PM rule. Among these cows, 80 received and 113 did not receive a second GnRH at 48 h after PGF. Cows (n = 345) not detected in oestrus received a second GnRH at 48 h after PGF on Day 9, and fixed‐time AI 16 h after the GnRH on Day 10. In the CO‐Synch‐CIDR group, cows detected in oestrus (n = 224) within 48 h after PGF were inseminated using the AM–PM rule. Among these cows, 79 received and 145 did not receive a second GnRH at 64 h after PGF. Cows (n = 311) not detected in oestrus received a second GnRH on Day 10 at the time of AI, 64 h after PGF. The AI pregnancy rates were not different between the Ovsynch‐CIDR and CO‐Synch‐CIDR groups (p = 0.48). There were no differences in the AI pregnancy rates for cows inseminated at a fixed time (p = 0.26) or at detected oestrus (p = 0.79) between the treatment groups. Among cows inseminated in oestrus, there were no differences in the AI pregnancy rates between cows that received or did not receive the second GnRH (p = 0.47). In conclusion, acceptable AI pregnancy rates can be achieved with or without inclusion of oestrus detection in the Ovsynch‐CIDR and CO‐Synch‐CIDR protocols. Among cows detected in oestrus, cows that received a second GnRH yielded similar pregnancy rates when compared with cows that did not receive the second GnRH.  相似文献   

2.
The effect of two insemination policies after synchronization of oestrus on reproductive performance in two groups of cows was investigated. Oestrus was synchronized by two treatments with prostaglandin F2 alpha (PGF2 alpha) at a 14-day interval. Cows in Group 1 (n = 234) were inseminated twice on appointment 66 and 90 h after the second treatment. Cows in Group 2 (n = 222) were intensively watched for signs of oestrus after the synchronization protocol and inseminated on observed oestrus. Cows with abnormal discharge after synchronization were excluded from breeding and inseminated later during the study period. Service rate within 1 week after synchronization was higher in Group 1 than in Group 2 (89.3 versus 67.1%). Conception rates on first service did not differ between groups (33.2 versus 30.0%). Days to first service and days open were shorter in Group 1 (P < 0.05). The number of cows culled for infertility did not differ between the groups. Endometritis 14-20 days post-partum decreased the percentage of cows pregnant at the end of the study period in both groups but did not have a significant effect on conception rates and days open. It is concluded that additional inseminations required in the timed artificial insemination protocol were economically justified by the reduction in days open in comparison with insemination on observed oestrus after synchronization.  相似文献   

3.
We compared synchronization and pregnancy rates, and the increase in blood progesterone concentrations during luteal development, between (1) Ovsynch plus an intravaginal controlled internal drug release (CIDR) device protocol followed by timed embryo transfer (timed ET), and (2) a conventional estrus synchronization method using PGF(2 alpha) and ET in suckled postpartum Japanese Black beef cows. Cows in the PGF group (n=18) received a PGF(2 alpha) analogue when a CL was first palpated per rectum at 10-d intervals after 1 to 2 month postpartum. Cows (n=11), which showed estrus (Day 0) within 5 d of the PGF(2 alpha), and had a CL on Day 7, received ET. Cows in the Ovsynch+CIDR group (n=19) underwent the Ovsynch protocol plus a CIDR for 7 d (GnRH analogue and CIDR on Day-9, PGF(2alpha) analogue with CIDR removal on Day-2, and GnRH analogue on Day 0), with ET on Day 7. The ovulation synchronization (100%) and embryo transfer (100%) rates in the Ovsynch+CIDR group were greater (P<0.01) than the estrus synchronization (66.7%) and the embryo transfer (61.1%) rates in the PGF group. The postpartum interval at ET in the Ovsynch+CIDR group (62.5 +/- 2.5 d) was shorter (P<0.01) than in the PGF group (74.9 +/- 3.9 d). The pregnancy rate in the Ovsynch+CIDR group (57.9%) did not differ significantly from that in the PGF group (50.0%). Plasma progesterone concentrations were not significantly different in the two groups on Days 0, 1, 2, 5, 7, 14 and 21. In summary, higher synchronization and transfer rates, and shorter postpartum interval to ET, can be achieved with timed ET following the Ovsynch plus CIDR protocol than after estrus with the single PGF(2 alpha) treatment followed by ET in suckled postpartum recipient beef cows. Pregnancy rates were similar. Also, the increase in blood progesterone concentrations during luteal development following ovulation synchronized by the Ovsynch plus CIDR protocol was similar to that after estrus induced by the PGF(2 alpha) treatment.  相似文献   

4.
This report reviews the most recent developments in prostaglandin‐based oestrous synchronization programmes for postpartum dairy cows and addresses the efficiency of controlled breeding protocols based on such developments for cows with abnormal ovarian conditions. A double prostaglandin protocol applied 11–14 days apart seems to be capable of bringing most cows to oestrus. Because of varying oestrus onset times, improved conception rates are obtained following artificial insemination (AI) at detected oestrus rather than fixed‐time AI in prostaglandin‐treated cows. The administration of oestradiol or human chorionic gonadotrophin, or both these hormones, after prostaglandin treatment, improves the synchrony of oestrus yet does not enhance the conception rate. Progesterone‐based treatments for oestrous synchronization are considered the most appropriate for non‐cyclic or anoestrous postpartum dairy cows; prostaglandin alone being ineffective because of the absence of a mature corpus luteum in these cows. Improved oestrus synchrony and fertility rate have been reported using short‐term progesterone treatment regimes (7–9 days) with or without oestradiol benzoate combined with the use of a luteolytic agent given 1 day before, or at the time of, progesterone withdrawal. The ovulation synchronization (Ovsynch) protocol, based on the use of gonadotrophin releasing hormone and prostaglandin, was developed to coordinate follicular recruitment, CL regression and the time of ovulation. This protocol allows fixed time insemination and has proved effective in improving reproductive management in postpartum dairy cows. However, timed AI following Ovsynch seems to have no beneficial effects in heifers, because of an inconsistent follicle wave pattern, and in anoestrous cows, given their lack of prostaglandin responsive CL. To date, there are several prostaglandin based, fixed‐time insemination oestrous synchronization protocols for use in early postpartum dairy cows with ovarian disorders such as ovarian cysts and acyclicity.  相似文献   

5.
The objective of these studies was to evaluate whether exposing primiparous, suckled beef cows to the biostimulatory effect of bulls alters breeding performance associated with an estrus synchronization protocol that included GnRH followed 7 d later by PGF(2alpha) and fixed-time AI (TAI). This was a composite analysis of 3 experiments that evaluated (1) the effects of bull exposure at different days after calving (yr 1); (2) the biostimulatory effects of bull excretory products (yr 2); and (3) the biostimulatory effects of familiar and unfamiliar bulls (yr 3) on the resumption of ovarian cycling activity. In all studies, cows were exposed (biostimulated; n = 94) or not exposed (nonbiostimulated; n = 67) to bulls or excretory products of bulls for at least 60 d before the beginning of the estrus synchronization protocol. Average calving day did not differ among years and was 52 +/- 5 d. Year did not affect the proportions of biostimulated and nonbiostimulated cows that were cycling at the beginning of the estrus synchronization protocol; however, a greater (P < 0.001) proportion of biostimulated than nonbiostimulated cows were cycling at this time. In each year, cows were given GnRH followed by PGF(2alpha) 7 d later. Cows were observed for estrus twice daily (am and pm) after PGF(2alpha). Cows that exhibited estrus before 54, 60, and 64 h after PGF(2alpha) were inseminated by AI 12 h later in yr 1, 2, and 3, respectively. Cows that failed to show estrus were given GnRH and TAI at 62, 72, and 72 h after PGF(2alpha) in yr 1, 2, and 3, respectively. Conception rates were determined by transrectal ultrasonography 35 d after TAI in each year. The percentages of cows that exhibited estrus after PGF(2alpha) and before TAI, the interval from PGF(2alpha) to estrus, and the percentages of cows inseminated 12 h after estrus or at TAI did not differ between biostimulated and nonbiostimulated cows and were 51%, 54.7 +/- 7.3 h, 35%, and 65%, respectively. Conception rates for cows bred by AI 12 h after estrus did not differ between biostimulated and nonbiostimulated cows; however, the TAI conception rate was greater (P < 0.05) for biostimulated cows (57.6%) than for nonbiostimulated cows (35.6%). We conclude that TAI conception rates in an estrus synchronization protocol that includes GnRH followed 7 d later by PGF(2alpha) may be improved by the biostimulatory effect of bulls in postpartum, primiparous cows.  相似文献   

6.
An ultrasound assessment of follicle turnover following two different protocols for synchronization of oestrus and ovulation, as well as an assessment of achieved synchronization between ovulation and AI and conception rates in nulliparous and pluriparous buffaloes were carried out during months of increasing day length. Nulliparous buffaloes (n = 30) were subjected only to Ovsynch protocol whereas pluriparous buffaloes (n = 31) were assigned to Ovsynch (n = 14) or to PRID-pregnant mare serum gonadotrophin (PMSG) (n = 17) protocol according to the presence of functional CL confirming cyclic and acyclic conditions. Ultrasound examination of ovarian follicular dynamics at critical days in the course of synchronization treatments was employed to monitor the fate of the largest available follicles at the beginning of treatments. Such available dominant follicle would persist throughout the protocol as ovulating follicle (no-follicle shift) or would regress giving way to a new follicle to become dominant and ovulate (follicle shift). Furthermore, ultrasound monitoring would determine the degree of synchronization of ovulation and final outcome represented by pregnancy rates. Pregnancy rate following Ovsynch protocol was 40% (12/30) and 42.8% (6/14) in nulliparous and pluriparous buffaloes respectively (p = 0.8575). Most ovulations were synchronized and recorded at AI and the following day in nulliparous (24/30; 80%) and pluriparous (12/14; 85.7%) buffaloes respectively (p = 1.000). A follicle shift was recorded in 14 of 30 (46.6%) and 11 of 14 (78.5%) in nulliparous and pluriparous buffaloes respectively (p = 0.0466). Among established pregnancies: eight derived from follicle shift (66.6%) and four from no-follicle shift (33.3%) in nulliparous buffaloes, p = 0.0729 whereas in pluriparous buffaloes five (83.3%) derived from follicle shift and one from no-follicle shift (16.6%), p = 0.6154. Collectively, from 18 pregnancies in nulliparous and pluriparous buffaloes following Ovsynch protocol, 13 derived from follicle shift (72.2%) and five from no-follicle shift (27.7%), p = 0.0860. Pregnancy rate in pluriparous buffaloes following PRID-PMSG protocol was 70.5% (12/17). The majority of ovulations were synchronized and recorded at first, second AI and following day (13/17; 76.4%). A follicle shift occurred in 15/17 buffaloes (88.2%) and among the 12 recorded pregnancies, 11 derived from follicle shift (91.6%), p = 0.5147. In conclusion, pregnancy rates following Ovsynch protocol were similar in nulliparous and pluriparous cyclic buffaloes. A progestagen treatment on acyclic buffaloes but still displaying some ovarian follicular dynamics, resulted in significantly higher pregnancy rate compared with Ovsynch (p = 0.0376). According to the time of scheduled AI, a high degree of synchronized ovulations were recorded following the implementation of both protocols.  相似文献   

7.
We examined the relations between plasma insulin-like growth factor (IGF) -I concentrations during treatment with CIDR-based or Ovsynch protocol for timed AI and conception and plasma steroid concentrations in early postpartum Japanese Black beef cows. Cows in the control group (Ovsynch; n = 21) underwent Ovsynch protocol (GnRH analogue on Day 0, PGF(2alpha) analogue on Day 7, and GnRH analogue on Day 9), with AI on Day 10, approximately 20 h after the second GnRH treatment. Cows in the Ovsynch+CIDR group (n = 22) received Ovsynch protocol plus a CIDR for 7 days (starting on Day 0). Cows in the further treatment group (EB+CIDR+GnRH; n = 22) received 2 mg of estradiol benzoate (EB) on Day 0 in lieu of the first GnRH treatment, followed by the same treatment as in the Ovsynch+CIDR protocol. Plasma IGF-I concentrations were determined on Days -7, 0, 7, 9 and 17. Conception rates were improved in the CIDR-combined groups (both CIDR-treated groups were combined) relative to Ovsynch group (P < 0.05) for cows with low IGF-I concentrations (<1,000 ng/ml) on Days -7, 0, and 7, but improved conception rate produced by the CIDR-based protocols did not occur in cows with a high IGF-I concentration (> or =1,000 ng/ml). Plasma estradiol-17beta concentrations increased from Day 0 to 7 (P < 0.05) and were unchanged from Day 7 to 9 in the Ovsynch group with low IGF-I concentrations on Day 0, while they were unchanged from Day 0 to 7 and increased from Day 7 to 9 (P < 0.05) in the Ovsynch group with high IGF-I concentrations on Day 0 and in the CIDR-combined group. Plasma progesterone concentrations in the Ovsynch group with low IGF-I concentrations on Day 0 were higher on Day 14 than in the Ovsynch group with high IGF-I concentrations on Day 0 and in the CIDR-combined group (P < 0.05). In conclusion, CIDR-based protocols may improve conception relative to Ovsynch in early postpartum beef cows with lower plasma IGF-I concentrations at the start of the protocols. This improvement is probably due to prevention of premature increases of estradiol-17beta and progesterone concentrations, which occurred in cows with low IGF-I concentrations treated with Ovsynch, by the CIDR treatment.  相似文献   

8.
Beef cows (n = 473) from two locations were stratified by breed, postpartum interval, age, and AI sire and were randomly allotted to one of four treatments for synchronization of ovulation. Ovulation synchronization protocols included the Ovsynch protocol with (n = 114) or without (n = 123) 48-h calf removal from d 7 to 9 (d 0 = 1st GnRH injection) or the CO-Synch protocol with (n = 119) or without (n = 117) 48-h calf removal from d 7 to 9. The Ovsynch protocol included administration of GnRH (100 microg; i.m.) on d 0, PGF2alpha (25 mg; i.m.) on d 7, GnRH (100 microg; i.m.) on d 9, and timed insemination on d 10. The CO-Synch protocol included administration of GnRH (100 microg; i.m.) on d 0, PGF2alpha (25 mg; i.m.) on d 7, and GnRH (100 microg; i.m.) with timed insemination on d 9. Blood samples were collected from all cows on d -10 and d 0 for analysis of serum progesterone. Cows with at least one serum progesterone concentration greater than 1 ng/mL were considered to be cyclic at the time of treatment. Conception rates of cows that received the CO-Synch + calf removal, Ovsynch + calf removal, CO-Synch, or Ovsynch protocol (63, 61, 54, and 52%, respectively) were not different (P = 0.50). Conception rates were not different (P = 0.80) among CO-Synch- and Ovsynch-treated cows; however, both estrual status and 48-h calf removal affected conception rates. Conception rates of cyclic cows (66%) were greater (P = 0.01) than those of anestrous cows (53%), regardless of which synchronization protocol was used. When data were pooled across synchronization protocol, conception rates of cows with 48-h calf removal (62%) were greater (P = 0.09) than conception rates of cows without calf removal (53%). The CO-Synch + calf removal protocol induces a fertile ovulation in cyclic and anestrous cows, requires handling cattle just three times, results in high conception rates from timed insemination, and should be a useful program for synchronization of ovulation in beef cows.  相似文献   

9.
The objectives of this study were 1) to determine the effects of adding a CIDR to the Ovsynch protocol on plasma concentrations of estradiol-17β and progesterone and conception in dairy cows with cystic ovarian diseases and 2) to examine associations among the estradiol-17β and progesterone concentrations and conception. Cows were diagnosed as having cystic ovarian diseases if they were found to have a cystic follicle (diameter ≥25 mm) without a corpus luteum by two palpations per rectum with an interval for 7 to 14 days. They were treated with either the Ovsynch (GnRH on Day 0, PGF(2α) on Day 7 and GnRH on Day 9, with AI on Day 10; n=15) or Ovsynch+CIDR protocol (Ovsynch protocol plus a CIDR from Day 0 to Day 7; n=23). Plasma estradiol-17β concentrations were determined on Days 0, 7 and 9, and plasma progesterone concentrations were determined on Days 0, 7, 9 and 17. The plasma estradiol-17β and progesterone concentrations at all of the days examined and conception rates did not differ significantly between the two timed AI protocols. The progesterone concentrations on Day 17 and conception rates were lower (P<0.05) for cows with low concentrations of estradiol-17β (<2 pg/ml) on Day 9 than for cows with high concentrations of estradiol-17β (≥2 pg/ml). The present study suggests that, in dairy cows with cystic ovarian diseases, addition of a CIDR to the Ovsynch protocol had no remarkable effects on plasma estradiol-17β and progesterone concentrations during and after the treatments or on conception after timed AI. This study indicates that the low plasma estradiol-17β concentration at the second administration of GnRH in the protocols can be a predictor for impaired luteal formation and lower likelihood of pregnancy in dairy cows with cystic ovarian diseases.  相似文献   

10.
The objective was to compare pregnancy per artificial insemination (P/AI) with conventional (CS) or sex‐sorted semen (SS) in dairy cows subjected to one of the three timed AI protocols. Cows (n = 356) were randomly assigned to synchronization with Ovsynch (OVS), Presynch–Ovsynch (PO) or Double‐Ovsynch (DO) and inseminated on Day 77 ± 3 postpartum with either frozen‐thawed SS (n = 182) or CS (n = 184) of the same bull. More cows were cyclic at the beginning of breeding Ovsynch increased (p < 0.01) with presynchronization and it was greater for DO than PO (OVS = 78.5%, PO = 85.1%, DO = 95.6%). Overall, P/AI for SS and CS increased with presynchronization (p < 0.05) on Days 31 (OVS = 35.5%, PO = 47.1%, DO = 48.3%) and 62 (OVS = 30.1%, PO = 43.8%, DO = 43.9%). Regardless of synchronization treatments, insemination with SS reduced P/AI (p < 0.02) on Days 31 (38.1% vs. 50.6%) and 62 (34.5% vs. 45.6%) compared with CS. No interaction was observed between synchronization treatment and type of semen for P/AI, although in cows receiving CS, P/AI was numerically greatest for PO (OVS = 42.0%, PO = 59.3%, DO = 49.0%), and in cows receiving SS, it was numerically greatest for those inseminated following DO (OVS = 27.9%, PO = 35.5%, DO = 47.6%). Thus, presynchronization improved P/AI in cows inseminated with sex‐sorted or conventional semen.  相似文献   

11.
Lactating dairy cows (n = 667) at random stages of the oestrous cycle were assigned to either ovsynch (O, n = 228), heatsynch (H, n = 252) or control (C, n = 187) groups. Cows in O and H groups received 100 μg of GnRH agonist, i.m. (day 0) starting at 44 ± 3 days in milk (DIM), and 500 μg of cloprostenol, i.m. (day 7). In O group, cows received 100 μg of GnRH (day 9) and were artificially inseminated without oestrus detection 16–20 h later. In H group, cows received 1 mg oestradiol benzoate (EB) i.m., 24 h after the cloprostenol injection and were artificially inseminated without oestrus detection 48–52 h after the EB injection. Cows in C group were inseminated at natural oestrus. On the day of artificial insemination (AI), cows in all groups were assigned to subgroups as follows: human Chorionic Gonadotrophin (O‐hCG) (n = 112), O‐saline (n = 116), H‐hCG (n = 123), H‐saline (n = 129), C‐hCG (n = 94) and C‐saline (n = 93) subgroups. Cows in hCG and saline subgroups received 3000 IU hCG i.m. and or 10 ml saline at day 5 post‐AI (day 15), respectively. Pregnancy status was assessed by palpation per rectum at days 40 to 45 after AI. The logistic regression model using just main effects of season (summer and winter), parity (primiparous and pluriparous), method1 (O, H and C) and method2 (hCG and saline) showed that all factors, except method1, were significant. Significant effects of season (p < 0.01), hCG and parity (p < 0.01), and a trend of parity and season (p < 0.1) were detected. A clear negative effect of warm period on first service pregnancy rate was noted (p < 0.01). The pregnancy rate was the lowest in the H protocol during warm period (p < 0.05). Treatment with hCG 5 days after AI significantly improved pregnancy rates in those cows that were treated with the H protocol compared with saline treatments (41.5% vs 24.8%; p < 0.01). O and H were more effective in primiparous than in pluriparous cows (46.1% vs 29.9%; p < 0.1 and 43.6% vs 24.6%; p < 0.01). First service pregnancy rates were higher in primiparous hCG‐treated than in pluriparous hCG‐treated cows (57.9% vs 32.3%; p < 0.01). The pregnancy rate was higher for the hCG‐treated cows compared with saline‐treated cows during warm period (37.9% vs 23.6%; p < 0.001).  相似文献   

12.
Induction of ovulation for timed artificial insemination (TAI) with the Ovsynch protocol was evaluated in 49 anoestrous and lactating Bos taurus x Bos indicus cows. Palpation per rectum and transrectal ultrasonography were used on Days -30, -20, -10 and 0 (start of treatment) to confirm anoestrus but with the presence of follicles > or = 10 mm, and every other day during treatment to determine ovarian activity. Cows were randomly assigned to: (1) Ovsynch (n = 24; Day 0, 200 microg GnRH; Day 7, 150 microg PGF2alpha; Day 9, 200 microg GnRH + TAI 16 to 20 h later) and (2) control (n = 25; no treatment). Rates of ovulation for the first GnRH injection, detection of a corpus luteum (CL) at PGF2alpha injection, pregnancy and induction of cyclicity were greater (P < 0.05) with Ovsynch. There was no effect of body condition score (P > 0.05). In conclusion, the Ovsynch protocol was not effective in obtaining acceptable pregnancy rate for TAI, but it was effective for induction of cyclicity in anoestrous and lactating Bos taurus x Bos indicus cows under tropical conditions.  相似文献   

13.
The objective of this study was to determine the effect of timing of artificial insemination on pregnancy rates, calving rates, abortion rates, twinning rates, and calf gender ratio after synchronization of ovulation with Ovsynch protocol in Holstein dairy cows. The ovulation of 219 lactating Holstein dairy cows was synchronized using the Ovsynch protocol. Therefore, cows received an injection of GnRH followed by an injection of prostaglandin F 7 days later and a second treatment with GnRH 2 days later. Cows were artificially inseminated at 0, 12, or 24 h after the second injection of GnRH. Reproductive performance did not differ between cows inseminated at 0 h (n?=?82), 12 h (n?=?66), or 24 h (n?=?71) after the last injection of GnRH (pregnancy rate: 0 h 48 %, 12 h 47 %, 24 h 52 %; abortion rate: 0 h 5 %, 12 h 0 %, 24 h 11 %; calving rate: 0 h 43 %, 12 h 47 %, 24 h 41 %; twinning rate: 0 h 2 %, 12 h 0 %, 24 h 0 %; calf gender ratio (F/M): 0 h 61:39 %, 12 h 48:52 %, 24 h 39:61 %; P?>?0.05). Pregnancy rates for cows inseminated in postpartum times of 50–75, 76–100, and >100 days within the first and ≥3 parities were statistically similar (P?>?0.05), but pregnancy rates for cows inseminated at different postpartum times of 50–75, 76–100, and >100 days within the second parity were different (P?<?0.01). In general, pregnancy rates of cows inseminated at different postpartum times (P?<?0.01) and parities (P?<?0.001) differed. The findings of the current study showed that rates of pregnancy, abortion, calving, and twinning of Holstein dairy cows subjected to artificial insemination at different times after synchronization were similar. These results also indicate that the timing of artificial insemination after synchronization did not influence calf gender ratio. Furthermore, pregnancy rates of Holstein dairy cows inseminated after synchronization were significantly influenced by postpartum time and parity number.  相似文献   

14.
The objective of this project was to report the effects of season and age on conception rate amongst Italian Mediterranean Buffalo subjected to an Ovsynch/Resynch (O/R) reproductive management protocol. The study utilized nulliparous (heifers), primiparous buffalo cows (PBC) and multiparous buffalo cows (MBC). The primiparous and multiparous groups were subjected to the synchronization protocol throughout the entire year, but heifers were synchronized and inseminated only during the spring/summer seasons. The conception rate obtained following the OvSynch oestrus synchronization protocol, applied during spring, was 68.4% for heifers, 83.3% for PBC and 67.7% for MBC. The overall total conception rates following the complete O/R protocol were 84.27%, 94.4% and 79%. Conception rates achieved during summer were heifers 52%, PBC 47.2% and MBC 49%, whilst overall conception rates following the full O/R protocol were 72%, 69.8% and 58.2% respectively. In the autumn seasons, PBC conceived 58.9% and MBC 52.1% following initial Ovsynch, which improved to total overall conception rates of 87.5% and 78.7% following the full O/R protocol. Similarly, in the winter season, PBC experienced a conception rate of 47.5% following Ovsynch and 72.5% after a follow-up Resynch. MBC experienced 60.0% and 74.4% conception following Ovsynch and full O/R, respectively, during winter. Total conception rates during all seasons were quite acceptable following the O/R protocol. There was a significant decrease from spring to summer in conception rate for all parity groups, but heifers were not a severely affected as older buffalo cows. This finding agrees with that of other investigators indicating that heifer fertility is not as negatively impacted by long photoperiod and higher ambient temperature as that of older animals. The O/R protocol as utilized in this study is an effective means of reproductive management for dairy buffalo cows and is effective for improving fertility during out-of-season breeding.  相似文献   

15.
The efficiency of treatments for unobserved oestrus and their effect on the reproductive performance of a dairy cattle herd with low oestrous detection rate till 60 days post‐partum (dpp), attributed to the declivous and slippery concrete floor were investigated. The herdsman requested advice in order to improve the mean days open of the herd, but no investments were allowed because a new unit was about to be built. Due to the low oestrus detection rate of the herd, the breeding policy was to inseminate at the first detected post‐partum oestrus. Cows were examined at 20–30 dpp to assess uterine involution, ovarian activity and prevalence of reproductive disorders and, at 60 dpp if no previous oestrus was detected. Each examination included palpation per rectum, ultrasound scanning and collection of a blood sample for plasma progesterone (P4) measurement. Cows with unobserved oestrus till 60 dpp were allocated either to a treatment group (n=139) or to a control group (n=139). Three treatments were used: (a) injection of PGF (PG) upon detection of a corpus luteum (CL; n = 30), cows not observed in oestrus being re‐injected 11–12 days later. AI was at oestrus; (b) PRID (n=35) or Crestar (n=74) devices kept in situ for 12 and 9 days, respectively, were associated to an injection of PG and of equine chorionic gonadotrophin (eCG) at device removal. Cows were double‐fixed time‐inseminated at 48 and 72 h after device removal. All treated cows were examined at 48–72 h after treatment to confirm oestrus. The percentage of cows detected in oestrus up to 60 dpp remained unchanged through the trial (35 and 47% for years before intervention: 1994–95; 51 and 48% for years of intervention: 1996–97). In contrast, the oestrous detection rate was high both in treated (93%) and control (100%) cows. This possibly resulted from an improvement in the oestrous detection efficiency of the herd's personnel and from examination of cows at 48–72 h after treatment. Treated and control cows had identical conception rate (CR; 36 and 37%, respectively) and reproductive performance. However, the mean days open of the herd in 1996 was significantly improved in comparison with previous years (mean ± SEM: 134 ± 6, 126 ± 5, 110 ± 4 and 114 ± 5 days, for years 1994, 1995, 1996 and 1997, respectively, p < 0.05, ANOVA ). Conception rate to AI up to 40 dpp was significantly reduced, compared with the period between 60 and 100 dpp but, mean days open were significantly improved in cows inseminated up to 60 dpp, compared with thereafter (p < 0.05).  相似文献   

16.
The objective of this study was to determine if factors associated with the biostimulatory effect of bulls alter breeding performance of primiparous, suckled beef cows using a progestin-based estrous synchronization protocol. We tested the hypotheses that the estrous synchronization response and AI pregnancy rates differ among cows exposed to bulls, continuously exposed to bull urine, and exposed to fence-line contact with bulls or cows not exposed to bulls or bull urine. Data were collected from 3 experiments performed over consecutive years. Cows were assigned to the following treatments: bull exposure (BE; n = 26) or no bull exposure (NB; n = 25) in Exp. 1, bull urine exposure (BUE; n = 19) or steer urine exposure (SUE; n = 19) in Exp. 2, and fence-line contact with bulls (BFL; n = 26) or no bull exposure (NB; n = 26) in Exp. 3. Synchronization protocols in each experiment included the use of a controlled internal drug release device (d -10), PGF(2alpha) (d -3), and GnRH and fixed-time AI (TAI; d 0). Cows that were observed in estrus by 60 h after PGF(2alpha) were inseminated 12 h later. Cows not observed in estrus by 60 h after PGF(2alpha) were TAI at 72 h and given GnRH (100 mug). Pregnancy was determined by ultrasonography 35 d after TAI. In Exp. 1, 2, and 3, cows were exposed directly to bulls, bull urine, or bull fence-line contact for 35, 64, and 42 d, respectively. Data were analyzed between treatments within each experiment. The proportion of estrous cycling cows did not differ between treatments at the beginning of each experiment; however, more (P < 0.05) BE and BFL cows were estrous cycling at the beginning of the estrous synchronization protocol than NB cows in Exp. 1 and 3. The proportion of cows that showed estrus and interval to estrus after PGF(2alpha) did not differ between treatments in Exp. 1 and 3. However, in Exp. 2, more BUE cows tended (P = 0.09) to have shorter intervals to estrus and to exhibit estrus after PGF(2alpha) than SUE cows. Overall, AI pregnancy rates were greater (P < 0.05) for BE and BUE cows than for NB and SUE cows in Exp. 1 and 2, respectively. There was no difference in AI pregnancy rates between BFL and NB cows in Exp. 3. The presence of bulls and exposure to bull urine appeared to improve breeding performance of primiparous beef cows using a progestin-based estrous synchronization protocol, whereas fence-line bull exposure was insufficient to cause this biostimulatory effect. We propose that a novel urinary pheromone of bulls may be responsible for the enhancement of fertility in the primiparous, postpartum cow.  相似文献   

17.
Conception rates after Ovsynch have been higher in primiparous than in multiparous cows. The objective of this study was to investigate whether this difference might be due to differences in ovulation rate or follicular size. The experiment was conducted with 136 Holstein Frisian cows from a commercial herd in Brandenburg, Germany. All cows were synchronized using Buserelin (GnRH analogue) at day ?10, Tiaprost (PGF2α analogue) at day ?3 and again GnRH at day ?1. Timed artificial insemination (TAI) was carried out 16–20 h after the second dose of GnRH on day 0. Milk samples for analysis of milk progesterone were obtained on days ?17, ?10, ?3 and at TAI. Progesterone concentrations were used to determine the stage of oestrus cycle at the start of the synchronization protocol and to investigate the presence of functional luteal tissue before treatment with PGF2α and TAI. All animals were examined by ultrasound at the second treatment with GnRH, at AI, 8 and 24 h after AI. Overall synchronization rate (proportion of cows with an ovulation within 40 h after GnRH) was 86.8% in primiparous and 88.2% in multiparous cows, respectively. Ovulation occurred earlier in primparous than in multiparous cows (p < 0.05) and ovulatory follicles were smaller. Conception rates were numerically higher in primiparous cows but the difference was not significant. Cows that displayed signs of oestrus on day ?1 and received an additional AI on this day were more likely to conceive than cows that only received TAI 16 to 20 h after GnRH2. It is concluded that ovulation occurs earlier in primiparous than in multiparous cows after Ovsynch. However, a significant relationship between these differences and the probability of conception could not be established.  相似文献   

18.
Two experiments were designed to investigate the administration of intravaginal progesterone in protocols for oestrus and ovulation synchronization in beef heifers. In Experiment 1, cyclic Black Angus heifers (n = 20) received an Ovsynch protocol and were randomly assigned to receive (CIDR‐Ovsynch) or not (Ovsynch) a progesterone device between Days 0 and 7. Treatment with a controlled internal drug release (CIDR) device significantly increased the size of the dominant follicle prior to ovulation (12.8 ± 0.4 CIDR‐Ovsynch vs 11.4 ± 0.4 Ovsynch) (p < 0.02). Plasma progesterone concentrations throughout the experiment were affected by the interaction between group and day effects (p < 0.004). In Experiment 2, cyclic Polled Hereford heifers (n = 382) were randomly assigned to one of the six treatment groups (3 × 2 factorial design) to receive a CIDR, a used bovine intravaginal device (DIB), or a medroxiprogesterone acetate (MAP) sponge and GnRH analogues (lecirelin or buserelin). All heifers received oestradiol benzoate plus one of the devices on Day 0 and PGF on Day 7 pm (device withdrawal). Heifers were detected in oestrus 36 h after PGF and inseminated 8–12 h later, while the remainder received GnRH 48 h after PGF and were inseminated on Day 10 (60 h). The number of heifers detected in oestrus on Day 8 and conception rate to AI on Day 9 were higher (p < 0.01) in the used‐DIB than in the CIDR or MAP groups, while the opposite occurred with the pregnancy rate to FTAI on Day 10 (p < 0.01). There was no effect of progesterone source, GnRH analogue or their interaction on overall pregnancy rates (64.9%). Progesterone treatment of heifers during an Ovsynch protocol resulted in a larger pre‐ovulatory follicle in beef heifers. Progesterone content of intravaginal devices in synchronization protocols is important for the timing of AI, as the use of low‐progesterone devices can shorten the interval to oestrus.  相似文献   

19.
The aim of this study was to investigate the effect of applying a progesterone‐based oestrous synchronization protocol at 51–57 days postpartum in high‐producing dairy cows. The data analysed were derived from 1345 lactating cows. Cows between 51 and 57 days postpartum were assigned to the groups: control, PRID (receiving a progesterone‐releasing intravaginal device for 9 days, and prostaglandin F 24 h before PRID removal) or GnRH–PRID (the same as the PRID group plus GnRH at PRID insertion). Oestrus was detected by using pedometers and confirmed by examination of the genital tract at AI. Oestrous and conception rates before days 71–77 postpartum, pregnancy loss in early pregnant cows or the cumulative conception rate registered on day 120 postpartum were considered as the dependent variables in four consecutive logistic regression analyses. Based on the odds ratios, the oestrous rate increased by a factor of 1.73 in cows showing oestrus before treatment for each unit increase in the number of previous oestruses; decreased by a factor of 0.44 in the control group with respect to the treatment groups; and by a factor of 0.61 in cows without luteal structures at treatment with respect to cows with corpora lutea. The conception rates of cows inseminated before days 71–77 postpartum remained similar across the groups, whereas the likelihood of pregnancy loss for cows becoming pregnant during this period was 0.11 times lower in the PRID group than in the control. Based on the odds ratio, the likelihood of a higher cumulative conception rate on day 120 postpartum: increased in cows showing oestrus before treatment by a factor of 1.41 for each unit increase in the number of previous oestruses, was reduced 0.56‐fold in control cows compared with treated cows, and was also reduced by a factor of 0.98 for each kilogram of milk production increase recorded at treatment. In conclusion, although oestrous synchronization programmes performed in this study did not improve fertility, cows treated with progesterone could be inseminated earlier than untreated cows, such that the treatments increased the cumulative pregnancy rates determined on day 120 postpartum. In addition, fewer pregnancy losses were observed in early pregnant cows in the PRID group than the GnRH–PRID group.  相似文献   

20.
Objectives were to evaluate risk factors affecting ovulatory responses and conception rate to the Ovsynch protocol. Holstein cows, 466, were submitted to the Ovsynch protocol [day 0, GnRH‐1; day 7, prostaglandin (PG) F; day 9, GnRH‐2] and 103 cows were inseminated 12 h after GnRH‐2. Information on parity, days in milk at GnRH‐1, body condition, milk yield, exposure to heat stress, pre‐synchronization with PGF and the use of progesterone insert from GnRH‐1 to PGF was collected. Ovaries were scanned to determine responses to treatments. Overall, 54.7%, 10.6%, 2.2%, 81.1%, 9.0%, 91.5% and 36.9% of the cows ovulated to GnRH‐1, multiple ovulated to GnRH‐1, ovulated before GnRH‐2, ovulated to GnRH‐2, multiple ovulated to GnRH‐2, experienced corpus luteum (CL) regression and conceived, respectively. Ovulation to GnRH‐1 was greater in cows without a CL at GnRH‐1, cows with follicles >19 mm and cows not pre‐synchronized with PGF 14 days before GnRH‐1. Multiple ovulations to GnRH‐1 increased in cows without CL at GnRH‐1 and cows with follicles ≤19 mm at GnRH‐1. Ovulation before GnRH‐2 was greater in cows without CL at PGF. Ovulation to GnRH‐2 increased in cows that received a progesterone insert, cows with a CL at GnRH‐1, cows with follicles not regressing from the PGF to GnRH‐2, cows with larger follicles at GnRH‐2, cows that ovulated to GnRH‐1 and cows not pre‐synchronized. Multiple ovulations after GnRH‐2 increased in cows with no CL at GnRH‐1, multiparous cows and cows that multiple ovulated to GnRH‐1. Conception rate at 42 days after AI increased in cows with body condition score > 2.75 and cows that ovulated to GnRH‐2. Strategies that optimize ovulation to GnRH‐2, such as increased ovulation to GnRH‐1, should improve response to the Ovsynch protocol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号