首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Effects of feeding crystalline triglycerides (TGA), free fatty acids (FFA), and a starch-rich ration (STA) on metabolite and hormone concentrations in blood plasma were studied in high-yielding dairy cows over a 24-h period in week 9 and 19 of lactating. Energy-corrected milk production in the three groups was similar, but was lower in week 19 than in week 9. Energy and protein intakes were greater in week 9 than in week 19, but energy and protein balances in the three groups and in weeks 9 and 19 were similar. Plasma glucose and triglyceride concentrations were lower in week 9 than in week 19. In cows fed FFA, glucose concentrations were highest in week 9. Plasma triglyceride, phospholipid and cholesterol concentrations were highest, whereas beta-hydroxybutyrate concentrations were lowest in FFA-fed cows in weeks 9 and 19. Concentrations of insulin-like growth factor-I in week 19 were lower in cows fed TGA and FFA than in those fed the starch-rich ration. Post-prandial responses were usually greater following morning than afternoon meals. Fructosamine, albumin, urea, growth hormone, thyroxine, and 3,5,3'-triiodothyronine concentrations were similar in weeks 9 and 19 and were not influenced by dietary treatment or feeding times. In conclusion, there were distinct metabolic and endocrine effects of feeding TGA and FFA compared with STA and the concentrations as well as the 24-h changes of various metabolic and endocrine traits in weeks 9 and 19 of lactation were also different.  相似文献   

2.
Supplementing conjugated linoleic acid ( CLA ) is supposed to spare glucose due to the milk fat‐depressing effect of the trans ‐10, cis ‐12 CLA isomer, and allows repartitioning nutrients despite an energy deficiency in early lactation. However, there is still a lack of knowledge in terms of the dynamic pattern of the glucose turnover in transition dairy cows. We hypothesized that dairy cows supplemented with CLA have an altered rate of glucose turnover and insulin sensitivity during early lactation. We conducted three consecutive hyperglycaemic clamps (HGC ) in weeks ?2, +2 and +4 relative to parturition in Holstein cows supplemented daily either with 70 g of lipid‐encapsulated CLA (6.8 g trans ‐10, cis ‐12 and 6.6 g of the cis ‐9, trans ‐11 CLA isomer; CLA ; n  = 11) or with 56 g of control fat ( CON ; n  = 11). From week ?3 up to week +4 relative to parturition, milk yield and dry matter intake (DMI ) were recorded daily, while body weight (BW ) and milk composition were obtained once weekly. Blood samples were taken once weekly and every 30 min during the HGC . Plasma was analysed for concentrations of glucose, fatty acids (FFA ), beta‐hydroxybutyrate (BHB ), insulin, triglycerides and cholesterol. The CLA supplementation did not affect performance and metabolic parameters except for BHB and cholesterol. Furthermore, insulin concentrations and insulin sensitivity were affected by treatment. During the HGC in early lactation, insulin response was lower and decrease in FFA and BHB greater compared with the HGC in week ?2 although glucose target concentration achieved during the steady‐state period was similar for all three HGC . Our findings in terms of insulin and cholesterol suggest that body reserves are preserved through CLA feeding without restraining animal's performance. Furthermore, CLA effects on cholesterol and triglyceride concentrations indicated beneficial effects on hepatic lipid export contributing to an improved efficiency of prevailing metabolites in circulation.  相似文献   

3.
过瘤胃脂肪对泌乳早期奶牛血液生化指标的影响   总被引:1,自引:0,他引:1  
选取高产荷斯坦牛24头,随机分为4组,每组各6头。Ⅰ组、Ⅱ组、Ⅲ组分别在基础日粮中每头每天添加200g、300g和400g过瘤胃脂肪;Ⅳ组为对照组,饲喂基础日粮。试验期20d。在饲喂前、饲喂后10d和20d检测试验奶牛血浆葡萄糖、β-羟丁酸、游离脂肪酸、尿素氮、总胆固醇和甘油三酯的水平,结果显示:与对照组比较,Ⅲ组血糖浓度显著升高(P0.05);血浆β-羟丁酸、游离脂肪酸、甘油三酯、总胆固醇、尿素氮变化均不显著(P0.05)。这些结果表明过瘤胃脂肪能提高血糖水平,从而改善奶牛的能量负平衡。  相似文献   

4.
The reported effects of feeding on growth hormone (GH) secretion in ruminants have been inconsistent, and are likely influenced by energy status of animals. High-producing dairy cows in early lactation and late lactation were used to assess the effects of energy balance on temporal variation of plasma metabolites and hormones. Cows were fed a single diet once daily, and feed was withdrawn for 90 min prior to feeding. Beginning at the time of feed withdrawal, plasma samples were collected via jugular catheters hourly for 24h. Concentrations of non-esterified fatty acids and GH were measured for all samples, while insulin, glucose, and acylated (active) ghrelin were quantified for four sample times around feeding. As expected, calculated energy balance was significantly lower in early lactation than late lactation cows (-43.5 MJ retained/day versus 7.2 MJ retained/day). Following the primary meal of the day, a GH surge was observed in early lactation but not in late lactation cows. This difference was not explained by temporal patterns in non-esterified fatty acid, insulin, or glucose concentrations. However, a preprandial ghrelin surge was observed in early lactation only, suggesting that ghrelin was responsible for the prandial GH surge in this group. Results of a stepwise regression statistical analysis showed that both preprandial ghrelin concentration and energy balance were significant predictors of prandial GH increase over baseline. Adaptations to negative energy balance in lactating dairy cattle likely include enhanced ghrelin secretion and greater GH response to ghrelin.  相似文献   

5.
The goal of this study was to determine the effect of fermentation-resistant glucose on the glucose concentration and other metabolites in portal and jugular blood in 15 non-lactating cows. In all cows, an indwelling catheter was placed in the left jugular vein and the portal vein for collection of blood samples. Five control cows were fed hay as a normal diet, five control cows were fed straw to induce an energy deficit and five cows were fed hay and they received additionally 2000 g of a fermentation-resistant D-glucose product. The glucose concentration in jugular and portal blood was not influenced by feeding. The concentration of urea and bile acids were significantly higher in portal blood than jugular blood. There was no difference between portal and jugular blood of glucose and total solids. Diet had a significant effect on the concentrations of ammonia, urea, free fatty acids and triglycerides. The concentrations of ammonia and urea were higher in blood of cows fed straw than in blood of cows fed either hay or a fermentation-resistant glucose product. The concentration of urea remained constant in cows fed hay, but increased in cows fed straw and decreased in cows fed a fermentation-resistant glucose product. The concentration of free fatty acids and triglycerides were significantly higher in cows fed a fermentation-resistant glucose product than in cows fed hay. In the present study, a single administration of 300 g of fermentation-resistant glucose did not affect the concentration of blood glucose. Therefore, despite ongoing promotion of such products, there is no indication at this time that administration of fermentation-resistant glucose to cows at the start of lactation results in an increase in blood glucose concentration.  相似文献   

6.
The fate of carbon from long-chain fatty acids and glucose in dairy cows which were fed with protected fat was studied using stable isotope technique. The experiment was carried out on two groups of dairy cows (n=16 in each group) during the first 15 weeks of the lactation period. The cows were fed isoenergetic and isoproteinogenous diets based on corn silage. About 1.8 kg of tapioca starch in the diet of the starch group was substituted by about 0.7 kg of rumen protected fat (Ca salts of palm oil and soybean oil) in the diet of the fat group. The carbon atoms of dietary fat were naturally depleted in 13C as compared to carbon atoms of starch. Daily milk performance and lactose output were significantly (P < 0.05) higher among the cows fed with fat diet. In comparison to the starch group, the enrichment of milk fat with 13C was significantly lower, while that of breath CO2 was significantly higher in the fat group (P < 0.05). This means the fatty acids were incorporated into milk fat in preference to metabolic oxidation. Further studies showed that blood glucose is oxidized to a lower extent and is used for the synthesis of lactose to a higher proportion if the cows were fed with the fat diet. The glucose entry rate into the body glucose pool was not different between the diets. In conclusion, the dietary fatty acids perform a glucose sparing effect and improve the glucose supply for the mammary gland.  相似文献   

7.
This experiment was designed to compare the effects of high ambient temperature and of feed restriction on plasma hormones and metabolites in primiparous lactating sows. Females were exposed to a constant thermoneutral (20 degrees C) or hot environment (30 degrees C) during lactation. Sows housed at 30 degrees C were given free access to feed (30AL: n = 12), whereas those housed at 20 degrees C were either pair-fed with those at 30 degrees C (20RF: n = 6) or were fed ad libitum (20AL: n = 6). A jugular vein catheter was surgically inserted in all sows at 100 d of gestation. Absorption of nutrients during the meal induced significant increases in plasma glucose, insulin, and glucagon, and a decrease in nonesterified fatty acids on Day 19 of lactation and Day 1 postweaning (P < 0.05). On Day 19, feed restriction at 20 degrees C was associated with higher plasma glucagon before the meal, lower plasma insulin after the meal and a lower insulin-to-glucagon ratio (I/GA) before and after the meal (P < 0.05). On Day 19, mean plasma concentrations measured in 30AL females were between those measured in 20AL and 20RF sows for nonesterified fatty acids and glucagon before feeding, and for glucose, nonesterified fatty acids, insulin, and glucagon after feeding. None of the differences between the 30AL and the 20RF groups was significant (P < 0.1). On Day 19, the only significant differences between the 30AL and 20AL groups were observed after the meal for plasma insulin and I/GA. Plasma insulin-like growth factor-I increased after farrowing in 20AL and 30AL sows only (P < 0.05). It was higher in 20AL than in 20RF and 30AL sows on Days 4 and 19 of lactation (P < 0.05). Overall, underfeeding at 20 degrees C induced changes in plasma insulin, glucagon, I/GA, and insulin-like growth factor-I, which would favor gluconeogenesis and body-reserve mobilization during lactation. Differences in glucagon and I/GA before the meal between well-fed sows at 20 degrees C and heat-exposed sows were attenuated, which could have detrimental consequences on glucose availability to the mammary gland and hence on milk production at 30 degrees C.  相似文献   

8.
We investigated the influence of rumen-protected choline (RPC) supplementation on milk production, lipid metabolism and vitamin E status in dairy cows receiving a silage-based diet. Twenty-six Italian Holstein multiparous cows were assigned by weight and average production in the previous lactation, to one of two groups: control (no RPC supplementation) and RPC (supplemented with 20 g/day rumen-protected choline chloride). Treatment began 14 days before expected calving and continued for 30 days after parturition. Choline administration significantly increased milk production during the first month of lactation and also the concentration (and total secretion) of choline in milk, but did not affect fat or protein concentrations in milk, or plasma levels of glucose, beta-hydroxybutyrate, cholesterol and non-esterified fatty acids (NEFA). However, around parturition, NEFA concentrations in plasma were lower in treated animals than in controls, suggesting improved lipid metabolism as a result of choline supplementation. Choline supplementation also increased alpha-tocopherol plasma concentrations, suggesting a novel aspect in dairy cows.  相似文献   

9.
Plasma concentration stability of glucose, free fatty acids, ketone bodies, growth hormone, insulin were determined in lactating dairy cows. Concentrations of these metabolites and hormones were measured during a 36- to 48-hour period in 3 normal, mature dairy cows in the 2nd month of lactation. Samples were taken at 30-minute intervals; also, intensive sampling (every 10 minutes) was done at varying times in relation to feeding and milking. Of the 5 components measured, glucose concentration was the most stable, easiest to assay, and most reliable for use as a diagnostic aid in assessing metabolic carbohydrate disturbances in dairy cattle.  相似文献   

10.
奶牛养殖过程中,围产期被认为是最重要的时期之一,在该时期奶牛从干奶状态转为泌乳状态,生理上所受的应激造成奶牛泌乳早期采食量降低,易发生能量负平衡.此外,奶牛生产性能和繁殖性能也会降低,并常常伴有一些围产期疾病的发生,如脂肪肝、酮症、乳房炎等.胆碱能影响奶牛的生产与繁殖性能,参与奶牛的脂肪代谢,可降低脂肪肝发生率,提高免疫性能.对围产期奶牛饲喂过瘤胃保护胆碱(rumen protected choline,RPC),可改善奶牛机体代谢,增加小肠胆碱供应,进而提高奶产量、改善乳成分、缓解脂肪肝、减少围产期疾病的发生.本文综述了RPC对围产期奶牛干物质采食量、生产性能、乳成分以及健康状况的影响,旨在为围产期奶牛的养殖提供理论参考依据.  相似文献   

11.
Twenty-four multiparous Holstein cows were utilized in a completely randomized design to examine the effect of feeding field beans (FB, Vicia faba L. var. minor) as substitute for soybean meal (SBM) on lactation performance and metabolic response during the early lactation period. Cows were individually divided into two equal groups and fed for 16 weeks on one each of the two experimental diets. The controls were fed pelleted concentrate contained 150 g/kg dry matter (DM) of SBM as the main protein source, whereas the experimental concentrate contained 345 g/kg DM of FB. Oat hay was offered ad libitum to cows and water was freely available. Blood samples were assayed for their content of: urea, glucose, triglycerides, cholesterol, total protein, albumin, calcium and phosphorus, aspartate aminotransferase (AST) and alanine aminotransferase (ALT), nonesterified fatty acids (NEFA) and β-hydroxybutyrate (BHBA). Inclusion of FB had no detectable effects on DM intake (DMI), body weight (BW), or body condition score (BCS). Neither milk yield nor quality were influenced by dietary treatment, except for milk urea nitrogen (MU) that was reduced in cows fed the FB diet (P < 0.05). Clotting properties of milk were not affected adversely by added dietary FB. Concentration of blood urea (BU) was lower in cows fed the FB diet than in those fed the control SBM diet (P < 0.05). These findings indicate that feeding FB in a lactation diet supported lactation performance similar to cows fed traditional SBM-based diet, and the results may elicit great interest for countries where soybean utilization is adversely influenced by high supply costs.  相似文献   

12.
Hereford x Angus cows (n = 36; initial wt 568+/-59 kg) were used to evaluate the effects of undegradable intake protein (UIP) supplementation on plasma hormone and metabolite concentrations. Treatments were control (unsupplemented) or one of three protein supplements. Supplements were fed at 1.3 kg DM/d and included UIP at low, medium, or high levels (53, 223, or 412 g UIP/kg supplement DM, respectively). Supplements were formulated to be isocaloric (1.77 Mcal NEm/kg) and to contain equal amounts of degradable intake protein (DIP; 211 g DIP/kg supplement DM). Prairie hay (5.8% CP) was offered for ad libitum consumption. Jugular blood samples were collected daily from each cow during six 7-d collection periods (corresponding to mo 7, 8, and 9 of gestation and to mo 1, 2, and 3 of lactation). Plasma glucose concentrations were similar between control and supplemented cows during mo 2 and 3 of lactation; however, the low UIP treatment group had consistently higher plasma glucose (P< or =.02) than cows fed medium or high UIP supplements during gestation and the last month of lactation. During gestation, cows fed the high UIP supplement had higher (P< or =.08) plasma glucose than cows fed the medium UIP supplement. During gestation, plasma insulin concentration was increased (P = .01) by supplementation; insulin also increased (P<.01; mo 8 and 9) as supplemental UIP increased. During lactation, plasma insulin was greater (P = .01) in supplemented than in control cows. During mo 2 and 3 of lactation, insulin was lower (P< or =.04) in cows fed low UIP supplement compared with cows fed medium or high UIP supplements. Growth hormone concentration was higher (P< or =.03) in control cows than in supplemented cows in all periods measured except mo 7 of gestation. Plasma nonesterified fatty acid concentrations were higher (P< or =.03) in control cows than in supplemented cows in all periods measured except the 1st mo of lactation. These data are interpreted to suggest that protein supplementation and level of UIP can alter plasma concentrations of hormones and metabolites in gestating and lactating beef cows consuming low-quality hay.  相似文献   

13.
Glucose delivery and uptake by the mammary gland are a rate-limiting step in milk synthesis. It is thought that insulin-independent glucose uptake decreases in tissues, except for the mammary gland, and insulin resistance in the whole body increases following the onset of lactation. To study glucose metabolism in peak-, late-, and nonlactating cows, the expression of erythrocyte-type glucose transporter (GLUT1) and the insulin-responsive glucose transporter (GLUT4) in the mammary gland, adipose tissue, and muscle were assessed by Western blotting and real-time PCR. Our results demonstrated that the mammary gland of lactating cows expressed a large amount of GLUT1, whereas the mammary gland of nonlactating cows did not (P < 0.05). On the other hand, adipose tissue of late and nonlactating cows expressed a large amount of GLUT1, whereas the adipose tissue of peak-lactating cows did not (P < 0.05). There were no significant differences in the abundance of GLUT4 mRNA in adipose tissue and muscle, whereas GLUT4 mRNA was not detected in the mammary gland. The plasma insulin concentration was greater (P < 0.05) in nonlactating cows than in peak- and late-lactating cows. The results of the present study indicate that in lactation, GLUT1 expression in the mammary gland and adipose tissue is a major factor for insulin-independent glucose metabolism, and the expression of GLUT4 in muscle and adipose tissue is not an important factor in insulin resistance in lactation; however, the plasma insulin concentration may play a role in insulin-dependent glucose metabolism. Factors other than GLUT4 may be involved in insulin resistance.  相似文献   

14.
Two experiments were conducted with lactating Angus x Gelbvieh beef cows to determine the effects of postpartum lipid supplementation, BCS at parturition, and day of lactation on fatty acid profiles in plasma, adipose tissue, and milk. In Exp. 1, 36 pri-miparous cows (488 +/- 10 kg of initial BW; 5.5 +/- 0.02 initial BCS) were given ad libitum access to hay and assigned randomly to a low-fat (control) supplement or supplements with cracked, high-linoleate safflower seeds (linoleate) or cracked, high-oleate safflower seeds (oleate) from d 3 to 90 of lactation. Diets were formulated to be isonitrogenous and isocaloric; safflower seed diets provided 5% of DMI as fat. Plasma and milk samples were collected on d 30, 60, and 90 of lactation. Adipose tissue biopsies were collected near the tail-head region of cows on d 45 and 90 of lactation. In Exp. 2, 3-yr-old cows achieving a BCS of 4 +/- 0.07 (479 +/- 36 kg of BW) or 6 +/- 0.07 (580 +/- 53 kg of BW) at parturition were used in a 2-yr experiment (n = 36/yr). Beginning 3 d postpartum through d 61 of lactation, cows were fed diets similar to those of Exp. 1. Adipose tissue and milk samples were collected on d 30 and 60, and plasma was collected on d 31 and 61 of lactation. Responses to postpartum dietary treatment were comparable in both experiments. Cows fed linoleate and oleate had greater (P < 0.001) total fatty acid concentrations in plasma than cows fed control. Except for 15:1, milk fatty acids with <18 carbons were greatest (P < or = 0.01) for cows fed control, whereas milk from cows fed linoleate had the greatest (P < or = 0.02) 18:1trans-11, 18:2n-6, and cis-9, trans-11 CLA. Milk from cows fed oleate had the greatest (P < 0.001) 18:1cis-9. In Exp. 1, total fatty acid concentrations in adipose tissue samples decreased at d 90 compared with d 45 of lactation, but the fatty acid profile of cow adipose tissue was not affected (P = 0.14 to 0.80) by dietary treatment. In Exp. 2, the percentage of cis-9, trans-11 CLA in adipose tissue of cows with a BCS of 6 decreased (P = 0.001) from d 30 to 60 of lactation. Plasma and milk fatty acid composition reflected alterations in postpartum diet. Less medium-chain fatty acids and more 18-carbon fatty acids in milk were indicative of reduced de novo fatty acid synthesis in the mammary gland of beef cows fed lipid supplements; however, the metabolic demands of lactation prevented the deposition of exogenously derived fatty acids in adipose tissue through d 90 of lactation.  相似文献   

15.
This study tested the hypothesis that the increased glucose requirement of lactation had effects that were independent of the suckling-dependent inhibition of postpartum endocrine function in beef cows. Mature Hereford cows were either suckled ad libitum and infused with saline iv (n = 9) from d 2 through 4 (d 0 = jugular catherization on d 32 +/- 3 postpartum); were nonsuckled and infused with saline from d 2 through 4 (n = 10); or were nonsuckled and infused with phlorizin (3 g/d) from d 2 through 4 (n = 10). Nonsuckled cows infused with phlorizin had lower (P less than .05) plasma concentrations of glucose and amino acid nitrogen (AAN) on d 2 compared with pre-infusion levels (d 1), but their metabolic profile returned to levels similar to the suckled cows by d 3 and 4. Nonsuckled cows infused with saline had elevated glucose and insulin and lower AAN and free fatty acids (FFA) on d 3 and 4 compared with pre-weaning (d 1) levels (P less than .05). Nonsuckled cows infused with phlorizin did not show this weaning-induced elevation in glucose and insulin. The number of luteinizing hormone (LH) pulses was not affected by treatment. However, in contrast to the large LH pulses observed in the nonsuckled cows infused with saline, both the suckled cows and the nonsuckled cows treated with phlorizin had more small and fewer large amplitude pulses (P less than .01). Treatment did not affect serum concentrations of follicle stimulating hormone, gonadotropin release in response to gonadotropin releasing hormone (25 micrograms) or the number of cows ovulating by 55 d after calving. We conclude that the increased glucose clearance caused by phlorizin infusion or lactation results in depression of LH pulse amplitude in suckled postpartum beef cows.  相似文献   

16.
To determine the effect of supplemental feeding of Diamond V-XP yeast (XPY) alone or in combination with propionibacteria strain P169 on milk production, milk components, body weight, days to first and second ovulation, plasma insulin, and plasma and milk glucose, 31 primiparous and multiparous (MP) Holstein cows were fed one of three dietary treatments between 2 weeks prepartum to 30 weeks postpartum: (i) control (n = 10), fed a corn silage-based total mixed ration (TMR); (ii) XPY (n = 11), fed control TMR plus XPY (at 56 g/head/day); and (iii) P169+XPY (n = 10), received control TMR plus XPY plus P169 (at 6 x 10(11) cfu/head/day). After parturition, daily milk weights were recorded, and milk samples were collected twice weekly for milk component analyses. Daily uncorrected milk, solids-corrected milk, and 4% fat-corrected milk production for MP cows fed P169+XPY was 9-16% greater than control MP cows, but these increases were only evident during mid lactation (9-30 weeks). The percentage of milk fat was 8-18% greater in control than XPY and P169+XPY groups. Milk lactose percentage in MP cows fed P169+XPY was 3-5% greater than in control and XPY MP cows. Primiparous and MP cows fed P169+XPY had 28-32% greater milk glucose levels than control and XPY-fed cows. Diurnal plasma glucose concentration was not affected by diet in MP cows. Plasma insulin levels in MP cows fed P169+XPY were 30-34% greater than in other groups of MP cows. Milk glucose and plasma insulin responses to P169+XPY feeding suggest that P169+XPY might have enhanced gluconeogenesis and increased glucose uptake by the mammary gland in Holstein cows. Thus, a combined feed supplement of P169 and XPY may hold potential as a natural feed alternative to hormones and antibiotics to enhance lactational performance.  相似文献   

17.
OBJECTIVE: To determine whether dietary fatty acids affect indicators of insulin sensitivity, plasma insulin and lipid concentrations, and lipid accumulation in muscle cells in lean and obese cats. ANIMALS: 28 neutered adult cats. PROCEDURE: IV glucose tolerance tests and magnetic resonance imaging were performed before (lean phase) and after 21 weeks of ad libitum intake of either a diet high in omega-3 polyunsaturated fatty acids (3-PUFAs; n = 14) or high in saturated fatty acids (SFAs; 14). RESULTS: Compared with the lean phase, ad libitum food intake resulted in increased weight, body mass index, girth, and percentage fat in both groups. Baseline plasma glucose or insulin concentrations and glucose area under the curve (AUC) were unaffected by diet. Insulin AUC values for obese and lean cats fed 3-PUFAs did not differ, but values were higher in obese cats fed SFAs, compared with values for lean cats fed SFAs and obese cats fed 3-PUFAs. Nineteen cats that became glucose intolerant when obese had altered insulin secretion and decreased glucose clearance when lean. Plasma cholesterol, triglyceride, and non-esterified fatty acid concentrations were unaffected by diet. Ad libitum intake of either diet resulted in an increase in both intra- and extramyocellular lipid. Obese cats fed SFAs had higher glycosylated hemoglobin concentration than obese cats fed 3-PUFAs. CONCLUSION AND CLINICAL RELEVANCE: In obese cats, a diet high in 3-PUFAs appeared to improve long-term glucose control and decrease plasma insulin concentration. Obesity resulted in intra- and extramyocellular lipid accumulations (regardless of diet) that likely modulate insulin sensitivity.  相似文献   

18.
Twenty-two nonlactating Hereford cows exhibiting normal estrous cycles were fed either maintenance (M) or restricted (R) diets until most of the R cows became anestrus; R cows then were fed 160% of the M diet until estrous cycles resumed. Concentrations of progesterone, glucose, insulin and nonesterified fatty acids (NEFA) were determined in weekly blood samples. Blood also was collected frequently, before and after i.v. infusion of 300 ml of a 40% glucose solution, to evaluate responses in blood concentrations of glucose and insulin when cows were exhibiting normal estrous cycles, when R cows were initiating anestrus, during anestrus, and at the reinitiation of estrous cycles. Losses in BW and body condition score in R cows were associated with reduced (P less than .01) concentrations of glucose and insulin and greater (P less than .01) concentrations of NEFA in blood plasma compared with those of M cows. During normal estrous cycles, disappearance of infused glucose from plasma and concentrations of insulin in serum were similar for R and M cows. Glucose disappearance from plasma was retarded and serum concentrations of insulin remained increased for a longer time after glucose infusion in R at the start of anestrus compared with M cows (P less than .01). Similarly, during anestrus, the rate of glucose disappearance was slower for R cows (P less than .01). During refeeding of R cows, disappearance of infused glucose was similar for R and M cows. In conclusion, reduced concentrations of glucose and insulin and increased concentrations of NEFA in blood were associated with nutritional anestrus and the glucoregulatory effects of insulin were compromised during nutritional anestrus.  相似文献   

19.
Concentrations of acetoacetate, D-3-hydroxybutyrate, glucose and free fatty acids were determined in blood from 3 Jersey cows during a 5-months period. The cows were fed an identical complete feed every hour, from ad libitum intake to maintenance level, for 28 days at each of the following levels of intake: 170, 138, 102, 53 and 37 g organic matter per kg bodyweight0.75 (metabolic bodyweight). Throughout the experimental period, the cows were in negative energy balance, which was reflected in an average weight loss of 640 g per day. None of the metabolites differed from reference values for healthy lactating cows. The concentration of D-3-hydroxybutyrate decreased linearly with the level of feeding and reflected a decreased ruminal production of butyrate. The high feeding frequency to lactating cows may be considered an essential factor in the prevention of ketosis.  相似文献   

20.
This experiment was conducted to study the effect of amino acid balance diet on production performance,serum biochemical indexes and economic benefits in dariy cows.36 healthy Holstein cows in the early lactation period were selected,the average number of lactation (DIM) was (39.69±12.48) d,the average parity was 3.02±0.64.Principle of experiments using single factor randomized experimental design accroding to age,milk yield,parity identical same or similar,the 36 Holstein cows were assigned by random block design to 3 groups,and each group were 12 cows.The control group cows were fed with TMR diets only adding rumen-protected methionine (HMBi);Diets of group 1 and 2 were on the basis of control group,respectively adding two kinds of rumen-protected lysine levels in order to balance the amino acid in diet.The results showed as follows:① Compared with control group,the feeding conversion ratio in groups 1 and 2 were increased by 10.60% and 11.26% (P>0.05),respectively,while the dry matter intake had no significantly changed (P>0.05),the 4% average daily milk yield in groups 1 and 2 were significantly increased by 8.65% and 10.58% (P<0.05),respectively,and the milk fat and milk protein yield in groups 1 and 2 were significantly or extremely significantly increased (P<0.05;P<0.01),respectively.Adding amino acid balance diet had no significantly effects on reproductive performance and health conditions in dariy cows (P>0.05).② When feeding the amino acid balance diets for 60 days,the contents of GLU and TAA in serum of dairy cows were significantly increased (P<0.05),while the BUN content was significantly decreased (P<0.05).③ Compared with control group,the economic benefits of groups 1 and 2 were increased by 15.09 and 16.36 yuan/(head·d).The results indicated that feeding the amino acid balance diets could significantly improve production performance of dairy cows,and there was a tendency to improve metabolic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号