首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rewetting events after a drought produce a pulse of soil respiration (the “Birch Effect”) that leads to a loss of carbon from soil, especially in Mediterranean ecosystems. Two main hypotheses have developed to explain the Birch effect: the “metabolic explanation”, based on the rapid consumption of intracellular osmolytes previously accumulated to survive to dry conditions, and the “physical explanation”, based on the consumption of carbon made accessible by physical destruction of internal structures of the soil.Here, we compared the respiration response of intact and crushed 9–4 mm aggregates from a California grassland soil under two different rewetting schemes: (1) successive short dry/wet events and (2) increased drought periods followed by a single rewetting. In intact aggregates, both microbial biomass and respiration rates were relatively stable through both experimental treatments. In crushed aggregates, through multiple short dry/wet cycles, both respiration rate and microbial biomass increased, while as drought length increased, biomass was unaffected but the magnitude of the following rewetting pulse increased. A mechanism that explains both these results is that crushing aggregates exposes occluded particular material that must be degraded into an immediately bioavailable form for microbes to take it up and metabolize it. Nitrification was generally higher in intact than crushed aggregates, suggesting the importance of physical association between nitrifiers and resources in regulating overall soil nitrification.This work suggests that physical processes are most important in driving respiration pulses through multiple rewetting cycles and that the physical association of organisms, substrates, and mineral particles are critical in controlling the functioning of the “microbial landscape”.  相似文献   

2.
干湿交替对水稻土碳氮矿化的影响   总被引:9,自引:1,他引:8  
刘艳丽 《土壤》2008,40(4):554-560
通过室内培育试验,研究干湿交替条件下长期不同施肥处理水稻土微生物生物量和理化性状变化对土壤C、N矿化的影响机制.结果表明,与连续淹水(Cw)处理相比,干燥处理不仅显著地提高了所有施肥处理土壤有机C的矿化速率,其幅度为78%~204%,而且也提高了各处理土壤微生物生物量C和N,其幅度分别为55%~77%和57%~72%;干燥后淹水处理土壤有机C矿化速率的提高幅度为74%~95%,呈先降低再升高的趋势.土壤N的矿化在干湿交替过程的干燥处理中降低34%~78%:干燥后淹水过程仅使NPK处理的升高21%,而CK和NPKOM处理分别降低5%和13%.在培养过程中土壤Eh值仅在-60~60 mV范围时,与土壤微生物生物量C之间有显著的负相关关系.在干湿交替的干燥过程,随土壤pH值的升高土壤微生物生物量C有增加的趋势,在淹水条件下土壤pH值则仅与NPKOM处理土壤微生物生物量C之间有明显的负相关关系.干湿交替条件下土壤 pH和 Eh 值、微生物群落组成和数量与有机质的矿化之间的相互作用关系复杂,三者间的作用机理需进一步研究.  相似文献   

3.
The effect of drying and rewetting (DRW) on C mineralization has been studied extensively but mostly in absence of freshly added residues. But in agricultural soils large amounts of residues can be present after harvest; therefore, the impact of DRW in soil after residue addition is of interest. Further, sandy soils may be ameliorated by adding clay‐rich subsoil which could change the response of microbes to DRW. The aim of this study was to investigate the effect of DRW on microbial activity and growth in soils that were modified by mixing clay subsoil into sandy top soil and wheat residues were added. We conducted an incubation experiment by mixing finely ground wheat residue (20 g kg–1) into top loamy sand soil with clay‐rich subsoil at 0, 5, 10, 20, 30, and 40% (w/w). At each clay addition rate, two moisture treatments were imposed: constantly moist control (CM) at 75% WHC or dry and rewet. Soil respiration was measured continuously, and microbial biomass C (MBC) was determined on day 5 (before drying), when the soil was dried, after 5 d dry, and 5 d after rewetting. In the constantly moist treatment, increasing addition rate of clay subsoil decreased cumulative respiration per g soil, but had no effect on cumulative respiration per g total organic C (TOC), indicating that the lower respiration with clay subsoil was due to the low TOC content of the sand‐clay mixes. Clay subsoil addition did not affect the MBC concentration per g TOC but reduced the concentration of K2SO4 extractable C per g TOC. In the DRW treatment, cumulative respiration per g TOC during the dry phase increased with increasing clay subsoil addition rate. Rewetting of dry soil caused a flush of respiration in all soils but cumulative respiration at the end of the experiment remained lower than in the constantly moist soils. Respiration rates after rewetting were higher than at the corresponding days in constantly moist soils only at clay subsoil addition rates of 20 to 40%. We conclude that in presence of residues, addition of clay subsoil to a sandy top soil improves microbial activity during the dry phase and upon rewetting but has little effect on microbial biomass.  相似文献   

4.
Drying and rewetting cycles are known to be important for the turnover of carbon (C) in soil, but less is known about the turnover of phosphorus (P) and its relation to C cycling. In this study the effects of repeated drying-rewetting (DRW) cycles on phosphorus (P) and carbon (C) pulses and microbial biomass were investigated. Soil (Chromic Luvisol) was amended with different C substrates (glucose, cellulose, starch; 2.5 g C kg−1) to manipulate the size and community composition of the microbial biomass, thereby altering P mineralisation and immobilisation and the forms and availability of P. Subsequently, soils were either subjected to three DRW cycles (1 week dry/1 week moist) or incubated at constant water content (70% water filled pore space). Rewetting dry soil always produced an immediate pulse in respiration, between 2 and 10 times the basal rates of the moist incubated controls, but respiration pulses decreased with consecutive DRW cycles. DRW increased total CO2 production in glucose and starch amended and non-amended soils, but decreased it in cellulose amended soil. Large differences between the soils persisted when respiration was expressed per unit of microbial biomass. In all soils, a large reduction in microbial biomass (C and P) occurred after the first DRW event, and microbial C and P remained lower than in the moist control. Pulses in extractable organic C (EOC) after rewetting were related to changes in microbial C only during the first DRW cycle; EOC concentrations were similar in all soils despite large differences in microbial C and respiration rates. Up to 7 mg kg−1 of resin extractable P (Presin) was released after rewetting, representing a 35-40% increase in P availability. However, the pulse in Presin had disappeared after 7 d of moist incubation. Unlike respiration and reductions in microbial P due to DRW, pulses in Presin increased during subsequent DRW cycles, indicating that the source of the P pulse was probably not the microbial biomass. Microbial community composition as indicated by fatty acid methyl ester (FAME) analysis showed that in amended soils, DRW resulted in a reduction in fungi and an increase in Gram-positive bacteria. In contrast, the microbial community in the non-amended soil was not altered by DRW. The non-selective reduction in the microbial community in the non-amended soil suggests that indigenous microbial communities may be more resilient to DRW. In conclusion, DRW cycles result in C and P pulses and alter the microbial community composition. Carbon pulses but not phosphorus pulses are related to changes in microbial biomass. The transient pulses in available P could be important for P availability in soils under Mediterranean climates.  相似文献   

5.
Many surface soils in Japan may experience more frequent and intense drying–rewetting (DRW) events due to future climate changes. Such DRW events negatively and positively affect microbial biomass carbon (MBC) through microbial stress and substrate supply mechanisms, respectively. To assess the MBC immediately after DRW and during the incubation with repeated DRW cycles, two laboratory experiments were conducted for a paddy soil. In the first experiment, we exposed the soil to different drying treatments and examined the MBC and hourly respiration rates immediately after the rewetting to evaluate the microbial stress. In the second experiment, we compared microbial growth rates during the incubation of the partially sterilized soil with a continuously moist condition and repeated DRW cycles to evaluate the contribution of the substrate supply from non-biomass soil organic C on MBC. First, all drying treatments caused a reduction in MBC immediately after the rewetting, and higher drying intensities induced higher reduction rates in MBC. A reduction of more than 20% in MBC induced the C-saturated conditions for surviving microbes because sufficient concentrations of labile substrate C were released from the dead MBC. Second, repeated DRW cycles caused increases in the microbial growth rates because substrate C was supplied from non-biomass organic C. In conclusion, MBC decreased immediately after DRW due to microbial stress, whereas MBC increased during repeated DRW cycles due to substrate C supplied from non-biomass organic C.  相似文献   

6.
Drying and rewetting cycles are known to be important for the dynamics of carbon (C), phosphorus (P), and nitrogen (N) in soils. This study reports the short‐term responses of these nutrients to consecutive drying and rewetting cycles and how varying soil moisture content affects microbial biomass C and P (MBC and MBP), as well as associated carbon dioxide (CO2) and nitrous oxide (N2O) emissions. The soil was incubated for 14 d during which two successive drying–rewetting episodes were imposed on the soils. Soils subjected to drying (DRW) were rewetted on the seventh day of each drying period to return them to 60% water holding capacity, whilst continually moist samples (M), with soil maintained at 60% water holding capacity, were used as control samples. During the first seven days, the DRW samples showed significant increases in extractable ammonium, total oxidized nitrogen, and bicarbonate extractable P concentrations. Rewetting after the first drying event produced significant increases only in CO2 flux (55.4 µg C g?1 d?1). The MBC and MBP concentrations fluctuated throughout the incubation in both treatments and only the second drying–rewetting event resulted in a significantly MBC decrease (416.2 and 366.8 mg kg?1 in M and DRW soils, respectively). The two drying–rewetting events impacted the microbial biomass, but distinguishing the different impacts of microbial versus physical impacts of the perturbation is difficult. However, this study, having a combined approach (C, N, and P), indicates the importance of understanding how soils will react to changing patterns of drying–rewetting under future climate change.  相似文献   

7.
The soil microbial biomass and activity were estimated for seven field (intensive and extensive management), grassland (dry and wet), and forest (beech, dry and wet alder) sites. Three of the sites (wet grassland, dry and wet alder) are located on a lakeshore and are influenced by lake water and groundwater. Four different methods were selected to measure and characterize the microbial biomass. Values of microbial biomass (weight basis) and total microbial biomass per upper horizon and hectare (volume basis) were compared for each site.Fumigation-extraction and substrate-induced respiration results were correlated but dit not give the same absolute values for microbial biomass content. When using the original conversion factors, substrate-induced respiration gave higher values in field and dry grassland soils, and fumigation-extraction higher values in soils with low pH and high water levels (high organic content). Results from dimethylsulfoxide reduction and arginine ammonification, two methods for estimating microbial activity, were not correlated with microbial biomass values determined by fumigation-extraction or substrate-induced respiration in all soils examined. In alder forest soils dimethylsulfoxide reduction and arginine ammonification gave higher values on the wet site than on the dry site, contrary to the values estimated by fumigation-extraction and substrate-induced respiration. These microbial activities were correlated with microbial biomass values only in field and dry grassland soils. Based on soil dry weight, microbial biomass values increased in the order intensive field, beech forest, extensive field, dry grassland, alder forest, wet grassland. However, microbial biomass values per upper horizon and hectare (related to soil volume) increased in agricultural soils in the order intensive field, dry grassland, extensive field, wet grassland and in forest soils in the order beech, wet alder, dry alder. We conclude that use of the original conversion factors with the soils in the present study for fumigation-extraction and substrate-induced respiration measurements does not give the same values for the microbial biomass. Furthermore, dimethylsulfoxide reduction and arginine ammonification principally characterize specific microbial activities and can be correlated with microbial biomass values under specific soil conditions. Further improvements in microbial biomass estimates, particularly in waterlogged soils, may be obtained by direct counts of organisms, ATP estimate, and the use of 14C-labelled organic substrates. From the ecological viewpoint, data should also be expressed per horizon and hectare (related to soil volume) to assist in the comparison of different sites.  相似文献   

8.
The effects of adding P and of drying and rewetting were studied in two acid forest soils from southeast Australia. The soils were a yellow podzolic with a low soil organic matter content (3.75% C) and a red earth with a high organic matter content (13.5% C). C and N mineralization and microbial C and N contents were investigated in a laboratory incubation for 151 days. Microbial C and N were estimated by a hexanol fumigation-extraction technique. Microbial C was also determined by substrate-induced respiration combined with a selective inhibition technique to separate the fungal and the bacterial biomass. The results obtained by the selective inhibition technique were not conclusive. Adding P to the soil and drying and rewetting the soil reduced microbial N. This effect was more pronounced in rapidly and frequently dried soils. Microbial C was generally less affected by these treatments. Compared with the control, the addition of P caused a reduction in respiration in the red earth (-13%) but an increase in the yellow podzolic soil (+12%). In the red earth net N mineralization was highest following the addition of P. In the yellow podzolic soil highest N mineralization rates were obtained when the soil was subjected to drying and rewetting cycles. In both soils increased N mineralization was associated with a decrease in microbial N, indicating that the mineralized N was of microbial origin. Nitrification decreased with rapid drying and rewetting. The addition of P promoted heterotrophic nitrification in both soils.  相似文献   

9.
Little is known about the effects of temperature and drying–rewetting on soil phosphorus (P) fractions and microbial community composition in regard to different fertilizer sources. Soil P dynamics and microbial community properties were evaluated in a soil not fertilized or fertilized with KH2PO4 or swine manure at two temperatures (10 and 25 °C) and two soil water regimes (continuously moist and drying–rewetting cycles) in laboratory microcosm assays. The P source was the dominant factor determining the sizes of labile P fractions and microbial community properties. Manure fertilization increased the content of labile P, microbial biomass, alkaline phosphomonoesterase activity, and fatty acid contents, whereas KH2PO4 fertilization increased the content of labile inorganic P and microbial P. Water regimes, second to fertilization in importance, affected more labile P pools, microbial biomass, alkaline phosphomonoesterase activity, and fatty acid contents than temperature. Drying–rewetting cycles increased labile P pools, decreased microbial biomass and alkaline phosphomonoesterase activity, and shaped the composition of microbial communities towards those with greater percentages of unsaturated fatty acids, particularly at 25 °C in manure-fertilized soils. Microbial C and P dynamics responded differentially to drying–rewetting cycles in manure-fertilized soils but not in KH2PO4-fertilized soils, suggesting their decoupling because of P sources and water regimes. Phosphorus sources, temperature, and water regimes interactively affected the labile organic P pool in the middle of incubation. Overall, P sources and water availability had greater effects on P dynamics and microbial community properties than temperature.  相似文献   

10.
Drying and rewetting of soil can have large effects on carbon (C) and nitrogen (N) dynamics. Drying-rewetting effects have mostly been studied in the absence of plants, although it is well known that plant–microbe interactions can substantially alter soil C and N dynamics. We investigated for the first time how drying and rewetting affected rhizodeposition, its utilization by microbes, and its stabilization into soil (C associated with soil mineral phase). We also investigated how drying and rewetting influenced N mineralization and loss. We grew wheat (Triticum aestivum) in a controlled environment under constant moisture and under dry-rewetting cycles, and used a continuous 13C-labeling method to partition plant and soil organic matter (SOM) contribution to different soil pools. We applied a 15N label to the soil to determine N loss. We found that dry-rewetting decreased total input of plant C in microbial biomass (MB) and in the soil mineral phase, mainly due to a reduction of plant biomass. Plant derived C in MB and in the soil mineral phase were positively correlated (R2 = 0.54; P = 0.0012). N loss was reduced with dry rewetting cycles, and mineralization increased after each rewetting event. Overall drying and rewetting reduced rhizodeposition and stabilization of new C, primary through biomass reduction. However, frequency of rewetting and intensity of drought may determine the fate of C in MB and consequently into the soil mineral phase. Frequency and intensity may also be crucial in stimulating N mineralization and reducing N loss in agricultural soils.  相似文献   

11.
Temperature, drying, and rewetting are important climatic factors that control microbial properties. In the present study we looked at the respiration rates, adenosine 5′‐triphosphate (ATP) content, and adenylate energy charge (AEC) as a measure for energy status of microbial biomass in the upper 5 cm of mineral soils of three beech forests at different temperatures and after rewetting. The soils differed widely in pH (4.0 to 6.0), microbial biomass C (92 to 916 μg (g DW)—1) and ATP content (2.17 to 7.29 nmol ATP (g DW)—1). The soils were incubated for three weeks at 7 °C, 14 °C, and 21 °C. After three weeks the microbial properties were determined, retaining temperature conditions. The temperature treatment did not significantly affect AEC or ATP content, but respiration rates increased significantly with increasing temperature. In a second experiment the soils were dried for 12 hours at 40 °C. Afterwards the soils were rewetted and microbial properties were monitored for 72 hours. After the drying, respiration rates dropped below the detection limit, but within one hour after rewetting respiration rates increased above control level. Drying reduced AEC by 16 % to 44 % and ATP content by 47 % to 78 %, respectively. Rewetting increased AEC and ATP content significantly as compared to dry soil, but after 72 hours the level of the controls was still not reached. The level of AEC values indicated dormant cells, but ATP content increased. These results indicate that the microbial carbon turnover was not directly linked to microbial growth or microbial energy status. Furthermore our results indicate that AEC may describe an average energy status but does not reflect phases of growing, dormant, or dying cells in the complex microbial populations of soils.  相似文献   

12.

Purpose

The aim of the research was to explore the effect of Chinese milk vetch (CM vetch) addition and different water management practices on soil pH change, C and N mineralization in acid paddy soils.

Materials and methods

Psammaquent and Plinthudult paddy soils amended with Chinese milk vetch at a rate of 12 g?kg?1 soil were incubated at 25 °C under three different water treatments (45 % field capacity, CW; alternating 1-week wetting and 2-week drying cycles, drying rewetting (DRW) and waterlogging (WL). Soil pH, dissolved organic carbon, dissolved organic nitrogen (DON), CO2 escaped, microbial biomass carbon, ammonium (NH4 +) and nitrate (NO3 ?) during the incubation period were dynamically determined.

Results and discussion

The addition of CM vetch increased soil microbial biomass concentrations in all treatments. The CM vetch addition also enhanced dissolved organic N concentrations in all treatments. The NO3–N concentrations were lower than NH4–N concentrations in DRW and WL. The pH increase after CM vetch addition was 0.2 units greater during WL than DRW, and greater in the low pH Plinthudult (4.59) than higher pH Paleudalfs (6.11) soil. Nitrogen mineralization was higher in the DRW than WL treatment, and frequent DRW cycles favored N mineralization in the Plinthudult soil.

Conclusions

The addition of CM vetch increased soil pH, both under waterlogging and alternating wet–dry conditions. Waterlogging decreased C mineralization in both soils amended with CM vetch. Nitrogen mineralization increased in the soils subjected to DRW, which was associated with the higher DON concentrations in DRW than in WL in the acid soil. Frequent drying–wetting cycles increase N mineralization in acid paddy soils.  相似文献   

13.
The effects of repeated drying-rewetting (DRW) cycles on the microbial biomass and activity in soils taken from long-term field experiment plots with different fertilization (FERT) management practice histories were studied. We investigated the hypothesis that soil response to DRW cycles differs with soil fertility gradient modified by FERT management practices. The soils were incubated for 51 days, after exposure to either nine or three DRW cycles, or remaining at constant moisture content (CMC) at field capacity. We found that both DRW and FERT significantly affected soil properties including NH4-N, NO3-N, dissolved organic C (DOC), microbial biomass C (Cmic), basal soil respiration rate (BSR), urease activity (URE) and dehydrogenase activity (DHD). Except for NH4-N and BSR, variation in the properties was largely explained by FERT, followed by DRW, and then their interaction. Irrespective of the soils' FERT treatment, repeated DRW cycles significantly raised the DOC and Cmic levels compared with CMC, and the DRW cycles also resulted in a significant decline in BSR and URE and increase in DHD, probably because the organisms were better-adapted to the drying and rewetting stresses. The variations in soil biological properties caused by DRW cycles showed a significantly negative relationship with the soil organic C content measured prior to the start of the DRW experiments, suggesting that soils with higher fertility are better able to maintain their original biological functions (i.e., have a higher functional stability) in response to DRW cycles.  相似文献   

14.
Water repellency is influenced by soil management and biological process. We carried out a 60‐day laboratory incubation experiment to evaluate the effects of straw amendment, together with the intensity and frequency of wetting and drying (W/D), on microbial processes and water repellency. One W/D cycle consisted of 1.5‐day wetting at −0.03 kPa from the soil core bottom and different drying lengths in a temperature‐controlled laboratory, resulting in different drying intensities. At a regular interval, soil respiration rate (SRR) on drying and wetting, soil microbial biomass C and N (SMB‐C and N), and soil water repellency (SWR) after the wetting were measured simultaneously. Rice straw amendment had a greater effect on SRR, but smaller influences on SMB and SMB‐C : N than W/D frequency and drying intensity. The first W/D caused the largest decrease in soil respiration and the soil respiration recovered partly in the subsequent W/D cycles. The increase in SMB and SMB‐C : N as well as metabolic quotient with W/D frequency and intensity suggested a shift of microbial community from bacterial dominance to fungal dominance. SWR was significantly related to SMB‐C (R2= 0.689, P < 0.001). However, this study was limited to these indirect measurements. Direct measurements of fungal biomass and microbial community are needed in the future. The results suggest that rice straw amendment in dry season may increase C sequestration due to reduced decomposition and stabilize soil structure due to the enhancement of microbial induced water repellency.  相似文献   

15.
Drying and rewetting are common events in soils during summer, particularly in Mediterranean climate where soil microbes may be further challenged by salinity. Previous studies in non-saline soils have shown that rewetting induces a flush of soil respiration, but little is known about how the extent of drying affects the size of the respiration flush or how drying and rewetting affects soil respiration in saline soils. Five sandy loam soils, ranging in electrical conductivity of the saturated soil extract (ECe) from 2 to 48 dS m−1 (EC2, EC9, EC19, EC33 and EC48), were kept at soil water content optimal for respiration or dried for 1, 2, 3, 4 or 5 days (referred to 1D, 2D, 3D, 4D and 5D) and maintained at the achieved water content for 4 days. Then the soils were rewet to optimal water content and incubated moist for 5 days. Water potential decreased with increasing drying time; in the 5D treatment, the water potential ranged between −15 and −30 MPa, with the lowest potentials in soil EC33. In moist and dry conditions, respiration rates per unit soil organic C (SOC) were highest in soil EC19. Respiration rates decreased with increasing time of drying; when expressed relative to constantly moist soil, the decline was similar in all soils. Rewetting of soils only induced a flush of respiration compared to constantly moist soil when the soils were dried for 3 or more days. The flush in respiration was greatest in 5D and smallest in 3D, and greater in EC2 than in the saline soils. Cumulative respiration per unit SOC was highest in soil EC19 and lowest in soil EC2 Cumulative respiration decreased with increasing time of drying, but in a given soil, the relationship between water potential during the dry phase and cumulative respiration at the end of the experiment was weaker than that between respiration rate during drying and water potential. In conclusion, rewetting induced a flush in respiration only if the water potential of the soils was previously decreased at least 3-fold compared to the constantly moist soil. Hence, only marked increases in water potential induce a flush in respiration upon rewetting. The smaller flush in respiration upon rewetting of saline soils suggests that these soils may be less prone to lose C when exposed to drying and rewetting compared to non-saline soils.  相似文献   

16.
Microbial activity is affected by changes in the availability of soil moisture. We examined the relationship between microbial activity and water potential in a silt loam soil during four successive drying and rewetting cycles. Microbial activity was inferred from the rate of CO2 accumulating in a sealed flask containing the soil sample and the CO2 respired was measured using gas chromatography. Thermocouple hygrometry was used to monitor the water potential by burying a thermocouple in the soil sample in the flask. Initial treatment by drying on pressure plates brought samples of the test soil to six different water potentials in the range -0.005 to -1.5MPa. Water potential and soil respiration were simultaneously measured while these six soil samples slowly dried by evaporation and were remoistened four times. The results were consistent with a log-linear relationship between water potential and microbial activity as long as activity was not limited by substrate availability. This relationship appeared to hold for the range of water potentials from ?0.01 to ?8.5 MPa. Even at ?0.01 MPa (wet soil) a decrease in water potential from ?0.01 to ?0.02 MPa caused a 10% decrease in microbial activity. Rewetting the soil caused a large and rapid increase in the respiration rate. There was up to a 40-fold increase in microbial activity for a short period when the change in water potential following rewetting was greater than 5 MPa. Differences in microbial activity between the wetter and drier soil treatments following rewetting to the original water potentials are discussed in terms of the availability of energy substrate.  相似文献   

17.
Sixteen topsoils from Denmark and the UK were subjected to two wetting and drying treatments: (i) moist incubation (wet), (ii) eleven wetting and drying cycles (W/D). The W/D treatment resulted in larger P adsorption and resin extraction of soil P than the wet treatment. The differences in P adsorption at the final concentration of 800 μM P were mainly above 20 per cent, whereas the differences in amount of resin-extracted P were mainly less than 20 per cent. The effects were positively correlated with the cation exchange capacity of inorganic components. Furthermore, the increase in rapidly released P was positively correlated with pH. It is suggested that wetting and drying effects on P adsorption and desorption are associated with changes in soil structure caused by rewetting of dry samples.  相似文献   

18.
The short-term pulse of carbon (C) and nitrogen (N) mineralization that accompanies the wetting of dry soils may dominate annual C and N production in many arid and semi-arid environments characterized by seasonal transitions. We used a laboratory incubation to evaluate the impact of short-term fluctuations in soil moisture on long-term carbon and nitrogen dynamics, and the degree to which rewetting enhances C and N release. Following repeated drying and rewetting of chaparral soils, cumulative CO2 release in rewet soils was 2.2-3.7 times greater than from soils maintained at equivalent mean soil moisture and represented 12-18% of the total soil C pool. Rewetting frequency did not affect cumulative CO2 release but did enhance N turnover, and net N mineralization and nitrification increased with rewetting in spite of significant reductions in nitrification potential. Litter addition decreased inorganic N release but enhanced dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) from dry soils, indicating the potential importance of a litter-derived pulse to short-term nutrient dynamics.  相似文献   

19.
On sunny summer days, the top 10 cm of soil in southern Australia are heated to temperatures between 50 and 80 °C for a few hours a day, often for several successive days. These extreme temperature events are likely to have profound effects on the microbiota in these soils, but we do not know how this recurrent heat exposure influences microbial dynamics and associated nutrient cycling. In this study, an air-dry soil from southern Australia was exposed to one or two diurnal heating events with maximum temperature of 50 or 70 °C. The control was left at ambient temperature (Amb). All soils were rapidly rewet. Soil respiration was measured for 7 days after rewetting; microbial biomass C, available N and P were determined before rewetting and 1 and 7 days after rewetting. After heating and before rewetting compared to Amb, microbial biomass C (MBC) was 50–80% lower, but available P was 25% higher in heated soils. Available N differed little between Amb and heated soils. Rewetting resulted in a flush of respiration in Amb and soils heated once, but there was no respiration flush in soils heated twice. Cumulative respiration compared to Amb was about 10% higher in soils heated once and about 25% lower in soils heated twice. In Amb, MBC 1 day after rewetting was similar as before rewetting. But in heated soils, MBC increased from before rewetting to 1 day after rewetting about fourfold. Compared to Amb, available N 1 day after rewetting was 20–30% higher in soils heated to 70 °C. Seven days after rewetting, available N was 10% higher than Amb only in soils heated twice to 70 °C. It can be concluded that diurnal heating kills a large proportion of the microbial biomass and influences soil respiration and nutrient availability after rewetting of soils. The effect of heating depends on both maximum temperature and number of events.  相似文献   

20.
Soil microbial activity is greatly affected by soil water content. Determining the appropriate moisture content to rewet soils that have been dried in preparation for laboratory incubations to determine microbial activity can be laborious and time-consuming. The most common methods used achieve sufficient moisture content for peak microbial respiration are gravimetric water content, soil matric potential, or percentage of water-filled pore space (WFPS). Alternatively, a fast, simple, and accurate way to ensure that a given soil receives the appropriate amount of water for peak soil microbial respiration is to rely on natural capillary action for rewetting the dry soil. The capillary method is related to the gravimetric method for water uptake and has a strong correlation with WFPS. A microbial respiration test was conducted to compare rewetting methods. The 24-h carbon dioxide (CO2) / carbon (C) results were very similar and strongly correlated using the gravimetric method and the capillary method for rewetting dried soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号