首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) is an important pest on maize, and it can cause large yield losses. As S. frugiperda has invaded many developing countries in Africa and Asia in recent years, it could impact food security. Pesticides remain the main method to control S. frugiperda in the field, and this pest has developed resistance to some pesticides. In this study, we used second-generation sequencing technology to detect the gene expression change of S. frugiperda after treatment by LC20 of three pesticides, lufenuron, spinetoram, and tetrachloroamide, which have different modes of actions. The sequence data were first assembled into a 60,236 unigenes database, and then the differential expression unigenes (DEUs) after pesticide treatment were identified. The DEU numbers, Gene Ontology catalog, and Kyoto Encyclopedia of Genes and Genomes pathway catalog were analyzed. Finally, 11 types of unigenes related to detoxification and DEUs after pesticide treatment were listed, and Cytochrome P450, Glutathione S-transferase, and ATP-binding cassette transporter were analyzed. This study provides a foundation for molecular research on S. frugiperda pesticide detoxification.  相似文献   

2.
The Cry1F protein from Bacillus thuringiensis Berliner expressed in event TC1507 maize (Zea mays L.) was one of the most effective ways to control Spodoptera frugiperda (J. E. Smith) in Brazil. After reports of reduced effectiveness of this Bt maize event in some areas of Brazil, research was undertaken to investigate if damage to Cry1F maize was caused by resistant S. frugiperda. Additional investigations were conducted to evaluate the genetic basis of the resistance and to test if Cry1F resistant S. frugiperda selected from populations of different regions of Brazil share the same resistance locus by using complementation tests. Neonate larvae of S. frugiperda collected from TC1507 maize fields with damage in Western Bahia region in 2011 were able to survive on Cry1F maize plants under laboratory conditions and subsequently produced normal adults. Survival of Cry1F-susceptible S. frugiperda on non-Bt maize was significantly higher in leaf than plant bioassays. Resistance ratio in diet overlay bioassays was >5000-fold. A discriminating concentration of 2000 ng cm−2 of Cry1F protein was defined for monitoring the frequency of resistance of S. frugiperda to Cry1F. Cry1F resistant S. frugiperda showed a recessive autosomal inheritance for alleles involved in resistance to Cry1F protein. In complementation tests, the resistant population from Western Bahia was crossed with the other seven resistant populations collected from different States of Brazil. F1 larvae from each cross had the same survival at discriminating concentration of 2000 ng cm−2 of Cry1F protein, indicating that the resistance alleles in each population were likely at the same locus. Therefore, implementation of resistance management strategies is urgent to prolong the lifetime of Cry1F for controlling S. frugiperda in Brazil.  相似文献   

3.
Spodoptera frugiperda is a polyphagous pest of several crops of economic importance. Nowadays, the insect is broadly distributed in America and, recently, in Africa, Asia, and Australia. The species has diverged into corn and rice strains. The role of the gut microbiota in insect physiology is relevant due to its participation in crucial functions. However, knowledge of seasonal variations that alter the gut microbiome in pests is limited. Gut microbiome composition between the dry and rainy seasons was analyzed with cultured and uncultured approaches in S. frugiperda corn strain larvae collected at Northwest Colombia, as seasonal microbiome changes might fluctuate due to environmental changes. On the basis of culture-dependent methods, results show well-defined microbiota with bacterial isolates belonging to Enterococcus, Klebsiella (Enterobacteriales: Enterobacteriaceae), Enterobacter (Enterobacterales: Enterobacteriaceae), and Bacillus (Bacillales: Bacillaceae) genera. The community composition displayed a low bacterial diversity across all samples. The core community detected with uncultured methods was composed of Enterococcus, Erysipelatoclostridium (Erysipelotrichales: Erysipelotrichaceae), Rasltonia (Burkholderiales: Burkholderiaceae), and Rhizobium (Hyphomicrobiales: Rhizobiaceae) genera, and Enterobacteriaceae family members. Significant differences in microbiome diversity were observed between the two seasons. The relative abundance of Erysipelatoclostridium was high in the dry season, while in the phylotype ZOR0006 (Erysipelotrichales: Erysipelotrichaceae) and Tyzzerella (Lachnospirales: Lachnospiraceae) genus, the relative abundance was high in the rainy season. The overall low gut bacterial diversity observed in the S. frugiperda corn strain suggests a strong presence of antagonist activity as a selection factor possibly arising from the host, the dominant bacterial types, or the material ingested. Targeting the stability and predominance of this core microbiome could be an additional alternative to pest control strategies, particularly in this moth.  相似文献   

4.
Fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith), is the main target pest of transgenic maize expressing insecticidal proteins from Bacillus thuringiensis Berliner (Bt) in Brazil. To optimize resistance management strategies, we evaluated the functional dominance of different aged larvae of Bt-resistant FAW on Vip3Aa20 maize. We measured the survival and development of Vip3Aa20-resistant, -heterozygote, and -susceptible strains on MIR162 (expressing Vip3Aa20) and Bt11 × MIR162 × GA21 (expressing Vip3Aa20 and Cry1Ab) maize. The resistant strain, from neonate to sixth instar, showed more than 72% survival on Vip3Aa20 maize. From surviving larvae, more than 64 and 54% developed to pupae and adults, respectively. In contrast, heterozygote and susceptible strains showed no larval survival up to fourth instar, and less than 25% larval survival in the fifth and sixth instar on Vip3Aa20 maize. These larvae produced less than 21% of pupae and adults. The development time of FAW strains from neonate-to-adult exposed to Vip3Aa20 maize was similar; however, the resistant strain showed an increase of ∼ 2 d when compared to those fed only non-Bt maize. In summary, the resistance of S. frugiperda to Vip3Aa20 maize is functionally recessive from neonate up to fourth instar larvae. However, high larval survival of resistant strain and some survival of heterozygote larvae in advanced instars on Vip3Aa20 maize were observed. These results will be important for designing insect resistance management to Bt maize plants expressing Vip3Aa20 protein in Brazil.  相似文献   

5.
The presence of lignin within biomass impedes the production of liquid fuels. Plants with altered lignin content and composition are more amenable to lignocellulosic conversion to ethanol and other biofuels but may be more susceptible to insect damage where lignin is an important resistance factor. However, reduced lignin lines of switchgrasses still retained insect resistance in prior studies. Therefore, we hypothesized that sorghum lines with lowered lignin content will also retain insect resistance. Sorghum excised leaves and stalk pith Sorghum bicolor (L.) Moench (Poales: Poaceae) from near isogenic brown midrib (bmr) 6 and 12 mutants lines, which have lowered lignin content and increased lignocellulosic ethanol conversion efficiency, were examined for insect resistance relative to wild-type (normal BTx623). Greenhouse and growth chamber grown plant tissues were fed to first-instar larvae of corn earworms, Helicoverpa zea (Boddie) and fall armyworms Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), two sorghum major pests. Younger bmr leaves had significantly greater feeding damage in some assays than wild-type leaves, but older bmr6 leaves generally had significantly less damage than wild-type leaves. Caterpillars feeding on the bmr6 leaves often weighed significantly less than those feeding on wild-type leaves, especially in the S. frugiperda assays. Larvae fed the pith from bmr stalks had significantly higher mortality compared with those larvae fed on wild-type pith, which suggested that bmr pith was more toxic. Thus, reducing lignin content or changing subunit composition of bioenergy grasses does not necessarily increase their susceptibility to insects and may result in increased resistance, which would contribute to sustainable production.  相似文献   

6.
草地贪夜蛾[Spodoptera frugiperda(J.E.Smith)]是2019年由缅甸开始入侵我国的一种迁飞性农业害虫,具有取食范围广、极强的迁飞性、适应性及繁殖能力等特点.选育抗性品种是一项重要的农业防治手段,而评价不同玉米品种的危害级别对后续利用多组学分析筛选出特定的抗性基因,培育抗性品种具有指导作用.本...  相似文献   

7.
Food characteristics strongly regulate digestive enzymatic activity of insects through direct influences on their midgut mechanisms. Insect performance is better on diets that contain nutrients in proportions that fit its digestive enzymes. Little is known about the influences of rearing history on parasitism success of Habrobracon hebetor Say. This research focused on the effect of nutrient regulation on survival, development, and parasitism of H. hebetor. Life history and digestive enzyme activity of fourth-stage larvae of H. hebetor were studied when reared on Ephestia kuehniella Zeller. This parasitoid was then introduced to Helicoverpa armigera (Hübner), and above-mentioned parameters were also studied in the first and fourth generations after transfer. In term of parasitism success, H. hebetor preferred E. kuehniella over He. armigera. When the first and fourth generations of He. armigera-reared H. hebetor were compared, the rearing history affected the life history and enzymatic activity of the parasitoid. A better performance of H. hebetor was achieved after it was reared on He. armigera for the four generations. Because, digestive α-amylase and general protease of the parasitoid were matched with the new host, it used reserve energy for a better performance. Thus, a better performance of H. hebetor could be obtained when the parasitoid was reared on its original host for at least four generations.  相似文献   

8.
Spodoptera cosmioides (Walker), Spodoptera eridania (Stoll) and Spodoptera frugiperda (J. E. Smith) have caused significant damage on soybean Glycine max (L.) Merrill in Brazil. Genetically-modified MON 87701 × MON 89788 soybean that expresses the Cry1Ac protein is potentially an alternative tool for the management of these species. Purified protein bioassays were done to evaluate the susceptibility of S. cosmioides, S. eridania and S. frugiperda to Cry1Ac protein. The level of efficacy of the Bt soybean plants in controlling these species was measured through laboratory and greenhouse trials under high artificial insect infestations. The biology of these insects was evaluated over their development cycles to understand their life history when fed on Bt soybean. Purified Cry1Ac protein at the maximum concentration tested (100 μg Cry1Ac mL−1 diet) resulted in low mortality of S. cosmioides and S. eridania (<13%) and intermediate mortality of S. frugiperda (50%). No significant effects of the Bt soybean plants were observed in the life table parameters of S. cosmioides and S. eridania. However, S. frugiperda fed on Bt soybean plants had a prolonged larval stage (by 5 days), reduced larvae viability, increased mean generation time (by 8 days) and reduced intrinsic rate of increase. In general, the Bt soybean plants showed poor control of Spodoptera species when evaluated by leaf-disc bioassay and greenhouse trials. Consequently, other control tactics must be used in combination with MON 87701 × MON 89788 soybean in the field for the efficient management of S. cosmioides, S. eridania and S. frugiperda.  相似文献   

9.
The oriental armyworm, Mythimna separata (Walk), is one of the most serious pests of cereals in Asia and Australasia. The structure and distribution of the antennal sensilla of M. separata were studied by scanning electron microscopy and transmission electron microscopy. The results showed that antennae of both female and male M. separata are filiform in shape. Three groups and seven morphological sensillum types were recorded in both sexes, including uniporous sensilla (sensilla chaetica), multiporous sensilla (sensilla trichodea, basiconica, coeloconica, and styloconica), and aporous sensilla (sensilla squamiformia and Böhm bristles). S. trichodea, which were the most abundant sensilla, was made of three subtypes (ST I, ST II, and ST III) according to external features and two subtypes of s. basiconica (SB I and SB II) and s. coeloconica (SCo I and SCo II) were identified, respectively. Sexual dimorphisms in sensilla of M. separata were mainly perceived as the variations in the numbers of several sensilla subtypes. Also, the possible functions of the antennal sensilla were discussed. These results contribute to our understanding of the function of antennae in the behavior of M. separata.  相似文献   

10.
A method for rearing the southern green stinkbug, (Nezara viridula L.) (Heteroptera: Pentatomidae), using a modified lygus semi-solid artificial diet was developed. First to second-instar nymph were reared in a density of 631.5 ± 125.05 eggs per Petri-dish (4 cm deep × 15 cm diam). Second instar to adult were reared in a density of 535.0 ± 112.46 s instar nymphs per rearing cage (43 × 28 × 9 cm). Mating and oviposition occurred in popup rearing cages (30 × 30 cm), each holding 60–90 mixed sex adults of similar age. Adults emerged 35.88 ± 2.13 d after oviposition and survived for an average of 43.09 ± 9.53 d. On average, adults laid 223.95 ± 69.88 eggs in their lifetime, for a total production of 8,099 ± 1,277 fertile eggs/oviposition cage. Egg fertility was 77.93% ± 16.28. Egg masses held in petri-dishes had a total hatchability of 79.38% ± 20.03. Mortality of early nymphs in petri-dishes was 0.64% ± 0.12 for the first instar and 1.37% ± 0.45 for second instar. Late nymphal mortality in rearing cages was 1.41% ± 0.10, 3.47% ± 1.27, and 4.72% ± 1.29 for the third, fourth, and fifth instars, respectively. Survivorship from nymphs to adults was 88.48% ± 2.76. Using artificial diet for rearing N. viridula could reduce cost by avoiding time-consuming issues with daily feeding fresh natural hosts and insect manipulation. It could increase reliability and simplicity of bug production, which should facilitate mass rearing of its biological control agents.  相似文献   

11.
Wild swarms of the long-horned grasshoppers Ruspolia differens (Serville) which are widely harvested for consumption and sale in Africa are seasonal and unsustainable, hence the need for innovative ways of artificially producing the insects. We investigated the development, survival, and reproduction of R. differens in the laboratory on diets mixed with host plants [Digitaria gayana Kunth, Cynodon dactylon (L.) and Megathyrsus maximus Jacq (Poales: Poaceae); Ageratum conyzoides L. (Asterales: Asteraceae)] identified from guts of their wild conspecifics with a view to developing a suitable diet for artificial mass rearing of the edible insect. A standard diet comprising ground black soldier fly, Hermetia illucens L. (Diptera: Startiomyidae) larvae, soybean flour, maize flour, vitamin premix, and ground bones was tested for rearing R. differens as a control against the same ingredients incorporated with individual powders of the different host plants. Whereas R. differens developed more slowly in the diet mixed with D. gayana than in the control diet; its development was faster in the diet mixed with C. dactylon. Mortalities of R. differens in host plant-based diets were 42.5–52.5%, far lower than in the control diet with 71% mortality. The insects raised on the diet mixed with M. maximus laid approximately twice more eggs compared to R. differens fecundities from the rest of the diets. However, inclusion of host plants in the diets had no detectable influence on R. differens adult weight and longevity. These findings support inclusion of specific host plants in artificial diets used for mass rearing of R. differens to enhance its survival, development, and fecundity.  相似文献   

12.
室内测定了黄蝉花素对斜纹夜蛾幼虫的抑制生长发育活性。结果表明,黄蝉花素对斜纹夜蛾幼虫的抑制生长发育活性与其处理浓度具有一定的相关性。与对照相比,处理组食物消耗量减少,幼虫生长发育被抑制,发育历期延长。处理组幼虫在蛹期不能正常化蛹而形成畸形蛹,羽化后的成虫表现为形态畸形。在预蛹期和蛹期由于不能正常蜕皮导致死亡率较高。研究显示黄蝉花素作为一类新型的昆虫生长发育控制剂或害虫田间种群管理的先导化合物值得进一步研究。  相似文献   

13.
Profenofos, an acetylcholine esterase inhibitor insecticide, has been used for the management of various lepidopteron pests of many crops in Pakistan. In the present study, we investigated the impact of insecticide resistance on fitness cost in Spodoptera litura, and evaluated cross resistance to other insecticides. The effect of profenofos on different life history parameters including survival rate, female ratio, fecundity and hatchability, intrinsic rate of population increase and biotic potential was determined. Significant differences associated with fitness costs were revealed. A field collected S. litura strain was selected by exposure to profenofos in the laboratory (Profen-SEL) and after 14 generations of selection it developed a 52-fold resistance to this insecticide. The Profen-SEL strain showed high cross-resistance to chlorpyrifos (62-fold), but very low to no cross resistance to lambda-cyhalothrin (2.34-fold) or methomyl (0.80-fold), respectively. The resistant strain had a relative fitness of 0.38 with a low larval survival rate, longer larval duration, longer male pupal duration, longer development time, low emergence rate of healthy adults, fecundity and hatchability compared with an unselected strain. The intrinsic rate of natural population increase, mean relative growth rate and biotic potential were lower for the selected strain compared with an unselected strain. Development of resistance may cause fitness costs for the resistant strain. This study provided important information for understanding profenofos resistance and facilitating a better strategy for the management of resistance.  相似文献   

14.
《Crop Protection》1986,5(2):100-104
A simple but effective method is presented of assessing damage caused by the cotton leafworm, Spodoptera littoralis, on cotton. A minimum economic damage threshold of 10 000 egg masses/ha was found to be a practical level for most years in Fayoum, Egypt.  相似文献   

15.
Toxoneuron nigriceps Viereck (Hymenoptera: Braconidae), a koinobiont endoparasitoid of the tobacco budworm, Heliothis virescens F. (Lepidoptera: Noctuidae), derives nutrition from the host hemolymph during the internal portion of its larval development but feeds destructively on host tissues externally after egression. To investigate the importance of this tissue-feeding phase, and to evaluate the behaviors associated with postegression feeding, T. nigriceps larvae were subjected to one of four treatments: 1) allowed to carry out normal tissue feeding, 2) deprived of tissue feeding, 3) presented with tissues scraped away from the host remains, and 4) fed tissues scraped from an unparasitized H. virescens larva. Additionally, total carbohydrates, lipids, and proteins were quantified from pre and posttissue feeding T. nigriceps larvae to examine the effect of postegression feeding on parasitoid nutritional physiology. Parasitoids that received no tissues after egression, or that received tissue from an unparasitized H. virescens larva, had significantly smaller body masses at all stages than those allowed to feed naturally or fed tissues scraped from a parasitized host. Parasitoids that underwent normal host feeding after egression also reached larger masses then those fed scraped host tissue. Parasitoids that received no tissue after egression survived to adulthood significantly less often than those that were presented with any H. virescens tissue. This suggests that postegression tissue feeding is a vital developmental step for T. nigriceps, and that T. nigriceps will not only feed when normal postegression behavior is disrupted, but will also feed on unparasitized tissue. The quantification of macronutrients in the tissues of pre and posttissue feeding T. nigriceps larvae showed significantly elevated proportions of proteins, lipids, and carbohydrates in the tissues of larvae that had completed feeding, with the greatest difference being in total lipids.  相似文献   

16.
Hemolysins cause the lysis of invading organisms, representing major humoral immunity used by invertebrates. Hemolysins have been discovered in hemolymph of Helicoverpa armigera larvae as immune factors. As oral immunity is great important to clear general pathogens, we presumed that hemolysins may be present in oral secretions (OS). To confirm this hypothesis, we conducted four testing methods to identify hemolysin(s) in larval OS of H. armigera, and analyzed physicochemical properties of the hemolysin in comparison with hemolytic melittin of Apis mellifera (L.) (Hymenoptera: Apidae) venom. We found hemolysin(s) from OS of H. armigera for the first time, and further identified in other lepidopteran herbivores. It could be precipitated by ammonium sulfate, which demonstrates that the hemolytic factor is proteinaceous. Labial gland showed significantly higher hemolytic activity than gut tissues, suggesting that hemolysin of OS is mainly derived from saliva secreted by labial glands. Physicochemical properties of hemolysin in caterpillar’s OS were different from bee venom. It was noteworthy that hemolytic activity of OS was only partially inhibited even at 100°C. Hemolytic activity of OS was not inhibited by nine tested carbohydrates contrary to bee venom melittin. Moreover, effects of metal ions on hemolytic activity were different between OS and bee venom. We conclude that there is at least a novel hemolysin in OS of herbivorous insects with proposed antibacterial function, and its hemolytic mechanism may be different from melittin. Our study enriches understanding of the potential role of hemolysins in insect immunity and provides useful data to the field of herbivorous insect-pathogen research.  相似文献   

17.
Spodoptera litura is one of the most destructive pests in Pakistan and in many other regions of the world. A field collected population of S. litura was selected with spinosad for eleven generations under controlled laboratory conditions to study the cross resistance, mechanism and stability of spinosad resistance in S. litura. The resistance to spinosad in S. litura increased 3921-fold (after eleven generations of selection with spinosad) as compared to a susceptible population of S. litura. No cross resistance between spinosad and emamectin benzoate, methoxyfenozide, fipronil, indoxacarb, profenofos, lufenuron or deltamethrin was found in the spinosad-selected population of S. litura. To find the possible mechanism of spinosad resistance in S. litura two synergists, Piperonyl butoxide (PBO), S, S, S-tributyl phosphorotrithioate (DEF) were tested on the susceptible and resistant strains and on the un-selected field population. The values of the synergism ratios of PBO and DEF were 2.33 and 1.06 for the spinosad-selected strain, 1.36 and 1.06 for the un-selected field population and 1.14 and 1.00 for the susceptible strain, respectively. As high PBO ratio indicates the role of microsomal O-demethylase in causing spinosad resistance in S. litura. The spinosad-resistant and field populations of S. litura were reared without any selection pressure from the 12th to the 16th generation (G12–G16). The spinosad resistance decreased from 3921 to 678-fold in the spinosad-resistant population and from 31.1 to 15.1-fold in the un-selected population of S. litura as compared to the susceptible strain. Spinosad resistance in S. litura has a high reversion rate (−0.15) which indicates that spinosad resistance in S. litura is unstable and can be easily managed by switching off the selection pressure for a few generations or alternating with insecticides having different modes of action.  相似文献   

18.
The main insect pest in Brazilian corn is fall armyworm, Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae). Entomopathogenic nematodes (EPNs) can be used to control this pest, and can be applied together with various insecticides. Thus, the objective of this work was to evaluate the efficacy of mixtures of EPNs and insecticides to control S. frugiperda in corn crops. In laboratory bioassays three species of EPNs were tested (Heterorhabditis indica, Steinernema carpocapsae and Steinernema glaseri) together with 18 registered insecticides to control S. frugiperda in corn. Efficacy of association between insecticides and EPNs on S. frugiperda larvae was evaluated against the insect's third instar, 2 and 4 days after applications in laboratory. Experiments in the field were performed in two consecutive years, with located application of H. indica and S. carpocapsae (250 IJs/cm2) mixed with chlorpyrifos (0.3 L/ha) and lufenuron (0.15 L/ha) on the corn husk. In laboratory, after two days exposure the interaction between chlorpyrifos and H. indica was synergistic, while interaction with cypermethrin, spinosad, methoxyfenozide and deltamethrin + triazofos was additive, as was interaction between lufenuron, chlorpyrifos and cypermethrin with S. carpocapsae. In contrast, the interaction between chlorpyrifos (Vexter™ and Lorsban™) and lufenuron with S. glaseri was synergistic. In the field, the best treatment was the mixture of H. indica with lufenuron (0.15 L/ha), with 62.5% and 57.5% larval mortality in the two evaluation years in the field, respectively.  相似文献   

19.
20.
Spodoptera exigua is a phytophagous pest that causes critical economic losses in vegetable crops, and insecticides are commonly used against it in vegetable growing areas. However, excessive and frequent applications of insecticides cause resistance in S. exigua. The current resistance in field populations of S. exigua collected from Huizhou, Guangdong Province, China to 12 insecticides was investigated. S. exiguahad developed very high resistance to lambda cyhalothrin (2925- to 3449-fold), chlorpyrifos (>1786-fold), emamectin benzoate (174- to 867-fold), and metaflumizone (60.3- to 942-fold). High resistance to tebufenozide (51.5- to 75.4-fold) and chlorfluazuron (60.4- to 63.0-fold) was also found. Synergism assays revealed that the resistance to metaflumizone and lambda cyhalothrin was associated with esterase and microsomal oxidases, respectively. The resistance to emamectin benzoate was not affected by detoxification enzymes inhibitors and might be conferred by other mechanisms. The selection of the field population by metaflumizone for 10generations in the laboratory resulted in a 6.1-fold increase in metaflumizone resistance but did not lead to increases in resistance to other insecticides. After metaflumizone selection, susceptibilities to spinosad and endosulfan did not change, and the susceptibilities to indoxacarb, methomyl, pyridalyl, tebufenozide, chlorfluazuron, emamectin benzoate and lambda cyhalothrin decreased slightly. However, no statistically significant differences in the resistance levels were observed among the selected population, its starting strain and the unselected strain. The resistance to chlorantraniliprole noticeably decreased in unselected strain and the strain subjected to selection for 10 generations compared with their starting strains. Lack of cross-resistance to tested insecticides suggested the involvement of multiple mechanisms of resistance and the need for wise application of these insecticides for the management of S. exigua.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号