首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We evaluated the behavior of skipjack (Katsuwonus pelamis), yellowfin (Thunnus albacares) and bigeye tuna (T. obesus) associated with drifting fish aggregating devices (FADs) in the equatorial central Pacific Ocean. A total of 30 skipjack [34.5–65.0 cm in fork length (FL)], 43 yellowfin (31.6–93.5 cm FL) and 32 bigeye tuna (33.5–85.5 cm FL) were tagged with coded transmitters and released near two drifting FADs. At one of the two FADs, we successfully monitored the behavior of all three species simultaneously. Several individuals remained around the same FAD for 10 or more days. Occasional excursions from the FAD were observed for all three species, some of which occurred concurrently for multiple individuals. The detection rate was higher during the daytime than the nighttime for all the species, and the detection rate for bigeye tuna was higher than for yellowfin or skipjack tuna. The swimming depth was deeper during the daytime than nighttime for all species. The fish usually remained shallower than 100 m, but occasionally dived to around 150 m or deeper, most often for bigeye and yellowfin tuna during the daytime. The swimming depth for skipjack tuna was shallower than that for bigeye and yellowfin tuna, although the difference was not large, and is probably not sufficient to allow the selective harvest of skipjack and yellowfin tuna by the purse seine fishery. From the detection rate of the signals, bigeye tuna is considered to be more vulnerable to the FAD sets than yellowfin and skipjack tuna.  相似文献   

2.
Anchored and drifting Fish Aggregating Devices (FADs) are intensively used in tropical tuna fisheries. In both small-scale and industrial fisheries, skipjack (Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares) are the main targets. The increasing development of this fishing practice by industrial purse seiners has raised the question of the impact of FADs on tuna communities, as they might act as an ecological trap. This study investigated the feeding habits of skipjack and yellowfin tuna associated with anchored and drifting FADs in the western Indian Ocean. The diet of 352 tunas was analysed taking into account the type of FAD, ontogenetic variations, and the resources richness of the area. Poor-food and rich-food areas were defined according to the abundance of stomatopod Natosquilla investigatoris, the main prey of tunas, on the fishing sites. Diet composition was expressed through functional groups of prey. Significant dietary differences were found between both FAD types, as well as an effect of individual size. Around anchored FADs tuna preyed on diverse assemblages of coastal fish and crustacean larvae and juveniles, whereas a low diversity of epipelagic prey dominated the tuna diet associated with drifting FAD. Compared to anchored FADs, the frequency of empty stomachs was significantly higher and the stomach content mass significantly lower among skipjack and small yellowfin tunas caught around drifting FADs. This was magnified in poor-food areas, where drifting FADs often evolved, suggesting that these FADs could negatively impact the growth of skipjack and small yellowfin tuna. Larger yellowfin tuna exhibited differences in their dietary habits between anchored and drifting FADs, and between poor-food and rich-food areas. However, drifting FADs did not impact them as strongly as juveniles of yellowfin or skipjack tunas. Our study gives new highlights on possible detrimental effects of FAD on tunas, and this has to be considered in future sustainable management strategies of tuna fisheries.  相似文献   

3.
We have extracted information on the habitats of bigeye (Thunnus obesus), skipjack (Katsuwonus pelamis) and yellowfin (Thunnus albacares) in the Eastern Tropical Pacific Ocean by matching the spatial‐temporal distribution of catch and effort of purse seine and longline fleets collected by the Inter‐American Tropical Tuna Commission with oceanographic conditions and subjecting the matched data to Quotient Analysis and General Additive Models (GAMs). These analyses yielded the following results. The habitats defined by the GAM analysis of young fish differ significantly between two periods, one before and one after the introduction of fish aggregation devices (FADs). This was not true for the older fish caught by longline. We speculate that these changes were caused by the extensive use of FADs. Younger bigeye and yellowfin caught by the purse seine fleet have a different preference of environmental variables compared to older fish caught by longline. This is to be expected since tuna of different age groups have different sizes, metabolic capabilities and swimming skills. Moreover, as revealed by GAMs, the habitats of young fish differ between species to a much larger degree than those of older fish. Our results indicate the fundamental differences between fishing methods, targeted species, and operating region of the two fisheries. Specifically, young bigeye occupy equatorial waters farther from the coast and where the hypoxic layer is deeper, young skipjack occupy more productive waters associated with equatorial and coastal upwelling, and young yellowfin occupy broad areas where waters are underlain by a shallow hypoxic layer.  相似文献   

4.
《水生生物资源》2000,13(4):213-223
In Hawaii, a variety of small- and medium-scale pelagic fisheries target fishing effort on a network of coastal moored FADs, natural inshore tuna aggregation points, offshore seamounts and offshore weather monitoring buoys. Large-scale longline vessels also operate in the Hawaii exclusive economic zone (EEZ) and beyond. These circumstances provide an ideal setting for tag-and-release experiments designed to elucidate the movement patterns, residence times, exchange rates and vulnerability of bigeye tuna (Thunnus obesus) and yellowfin tuna (Thunnus albacares) within the Hawaiian EEZ. Preliminary recapture data indicate that FADs, island reef ledges and seamounts exert an overwhelming influence on the catchability of tuna. Recapture rates from these locations vastly outweigh tag returns from open water areas. As of August 31, 1999, a total of l5 387 bigeye and, yellowfin tuna ranging in size from 29 to 133 cm fork length (FL) and from 26 to143 cm FL respectively (mean 59.8 ± 14.1 cm; 58.4 ± 17.3 cm) have been tagged and released throughout the Hawaii EEZ. Recapture rates for both species have been similar with an overall recapture rate of l0.3 %. The location of tag releases reflects the importance of associative behavior and schooling to the vulnerability of tuna; seamounts and FADs accounted for 72.4 % and 23.5 % of all tag releases. Within the main Hawaiian Island group (excluding the offshore seamounts and buoys), 83.1 % of all recaptures have been made on anchored FADs and 11.9 % of recaptures have come from ledges or tuna aggregation areas close to the islands where bigeye and yellowfin tuna become vulnerable to hook and line gear. As these studies continue, additional and longer-term recaptures will provide increasingly detailed information on the movement patterns and vulnerability of bigeye and yellowfin tuna as they grow, move and recruit to different fisheries.  相似文献   

5.
近十年来,越南将南海的金枪鱼资源作为其"外向型"渔业的重要支撑,不断增加捕捞强度,产量逐年升高。本文总结了越南发展南海金枪鱼渔业的过程,分析了南海金枪鱼资源的开发趋势。越南现代化的金枪鱼捕捞技术主要来自日本,使用的渔具主要有金枪鱼延绳钓、手钓、刺网和小型围网,捕捞的种类主要为鲣鱼、黄鳍金枪鱼和大眼金枪鱼,主要作业区域在西沙群岛南部海域和南沙群岛海域。越南2009年金枪鱼的产量已达到5.9×104t,计划2015年达到30×104t。根据越南海洋渔业研究所(RIMF)的评估,南海中西部的金枪鱼资源量为66~67×104t,可捕量23.3×104t,其中鲣鱼的可捕量21.6×104t,黄鳍金枪鱼和大眼金枪鱼的可捕量1.7×104t。随着全球金枪鱼捕捞配额的缩减和越南"外向型"渔业经济的发展,越南将继续加强对南海金枪鱼资源的开发。  相似文献   

6.
《水生生物资源》2000,13(4):193-202
This article describes tracking experiments conducted on eleven yellowfin tuna using ultrasonic transmitters in French Polynesia between 1985 and 1997. Nine fish were caught near Fish Aggregating Devices (FADs) while the other two were tracked in coastal areas without FADs. The fish showed different patterns of horizontal movements: tight associations with FADs lasting several days, foraging movements confirmed by simultaneous acoustic observations of prey-sized fauna, movements parallel to the shore, and traveling between FADs. This intra- and inter-individual variety of behaviour might depend on the local environment (prey), and on individual biological differences. The influence of FADs, coastlines, and prey on tuna movements is discussed. The lack of information about the surrounding environment, the internal state of the fish and the recent history of the fish usually prevent scientists from adequately interpreting the observed movements. Ideas for future research to studying tuna behaviour near FADs are discussed.  相似文献   

7.
Stomach contents of yellowfin (Thunnus albacares) and skipjack (Katsuwonus pelamis) tuna caught by trolling and purse seining in the tropical western Indian Ocean, together with those of the prey-fish found in their stomachs, have been analysed. Epipelagic fish are the main prey of these tunas, whereas no vertically migrating fish, which inhabit subsurface layers at night, have been found in their stomachs. These tunas are thus considered day-feeders. Purse-seine-caught tunas, which belong to large schools, have a much higher number of prey-fish in their stomachs than tunas caught by trolling on small schools. Similarly, prey-fish from purse-seine tunas have a much higher number of plank-tonic prey in their stomachs than those from troll-caught tunas. Therefore, these tunas adopt a wandering strategy in small schools when food resources are scarce and form large schools when they are abundant. The planktonic organisms found in the stomachs of prey-fish are described by taxa and sizes; they represent the fraction of the planktonic biomass actually supporting the stock of tuna. Size ratios between the three links tuna-prey-fish-plankton are very high, suggesting that these tunas benefit from a short food chain which is probably efficient from the energetic point of view.  相似文献   

8.
The spatio‐temporal distribution of tuna fishing effort has been related to oceanographic circulation and features in several seas of the world. Understanding the relationship between environmental variables and fishery resource dynamics is important for management decisions and to improve fishery yields. The relationship between sea temperature variability and the pole‐and‐line skipjack tuna (Katsuwonus pelamis) fishery in the south‐western Atlantic Ocean was investigated in this work. Data from logbooks, satellite images (sea surface temperature), and oceanographic surveys were used in the analyses. Skipjack are caught in warm tropical waters of the Brazil Current (BC). The north–south displacement of fishing effort was strongly associated to seasonal variation of the surface temperature, which was coupled to the tropical BC flow. Oceanographic fronts from autumn to spring and a shallow thermocline in summer probably induces the aggregation of skipjack schools over the shelfbreak, favouring fishing operations. Hypotheses are proposed to explain the relationship between peaks of fishing events and the presence of topographic peculiarities of the shelfbreak.  相似文献   

9.
《水生生物资源》2000,13(4):203-211
A fuzzy logic model of tuna behaviour near Fish Aggregating Devices (FADs) was developed to reproduce individual differences in horizontal movements observed from ultrasonic telemetry experiments. In this model, the behaviour of an individual is based on its surrounding environment (FADs and prey) and on its internal state (stomach fullness), which depends on its recent past actions. Internal sensors are used to determine the motivation of the fish, combined with external sensors, this determines its movements. Sensory information and motivation are modeled using fuzzy sets. A FAD attracts an individual when it is located within the FAD’s range of influence. The time spent near a FAD depends on the feeding motivation of the fish and on its surrounding environment. If the fish is not hungry, it stays near the FAD. Otherwise, the fish has to forage in order to eat, and might therefore leave the FAD if no prey is available in its vicinity. By varying the environmental conditions near FADs, the model reproduces the different horizontal movement patterns observed for tunas. The model is then extended to allow multiple individuals to co-exist, each individual modeled through the above behavioural model, without any direct or indirect interactions between them. This way, we study the effects of individual behaviour on tuna aggregation near FADs. We find that the model predicts the temporal dynamics of aggregation around FADs exhibited by tunas. By examining the effects of several FAD network models on the aggregation, we also estimate optimal spatial arrangements of FADs.  相似文献   

10.
研究了2012-2015年中国金枪鱼围网船队大眼金枪鱼(Thunnus obesus)渔获物的特征变化与人工集鱼装置(fish aggregation devices,FAD)禁渔期的关系,文章收集了2012-2015年中国大陆金枪鱼围网船队在中西太平洋的渔捞日志数据,对随附鱼群捕捞努力量与小体大眼金枪鱼和大体大眼金枪鱼的船均产量进行分析比较。结果显示:1)从2013年开始,对随附鱼群投网的次数占总投网次数的比例有所降低,均不超过50%;2)K-S检验显示研究期内禁渔期前后的船均随附鱼群网次存在显著差异(P0.05);3)2013-2015年大眼金枪鱼渔获量的平均水平明显低于2012年;4)从2013年开始,禁渔期结束后的第一个月(即11月)的船均产量都发生猛增;5)从捕捞努力量与渔获量的相关性结果看,不论是小体大眼金枪鱼还是全部大眼金枪鱼,2013年和2014年两者都呈现出显著的强正相关关系(P0.05)。这些结果表明2012年以后中国船队对大眼金枪鱼幼鱼的兼捕水平有所下降,延长FAD禁渔期的管理措施对于保护大眼金枪鱼幼鱼在某些年份可能具有一定的效果。  相似文献   

11.
Abstract. A coccidian identified as Goussia auxidis (Dogiel, 1948) is recorded for the first time from the liver and spleen of albacore, Thunnus alalunga; the liver of slender tuna, Allothunnus fallai , skipjack tuna, Katsuwonus pelamis and yellowfin tuna, T. albacares: and in the spleen of Scomber australasicus. All host fish were caught in the western and central South Pacific Ocean. Coccidian spores were not found in the liver of southern bluefin tuna, T. maccoyii , or butterfly tuna, Gasterochisma melampus.  相似文献   

12.
中西太平洋海域10°N~10°S是我国金枪鱼围网渔业的主要生产海域,本研究采用点格局分析方法对自由群鲣(Katsuwonus pelamis)和随附群鲣的空间格局特征进行分析。根据我国渔业公司2015年23艘围网渔船的渔捞日志数据,采用点格局分析方法的单变量函数配对相关函数g(r)、交叉相关函数J12(r)和标记相关函数kmm(r)对不同集群(自由群和随附群)的鲣资源的空间分布格局及竞争关系进行了研究。发现围网自由群和随附群点事件的空间分布上都是非均质的,表现为聚集性;自由群在1.9°~2.3°尺度下表现出随机分布格局。表明热带太平洋鲣在生命史的两个不同阶段,空间格局为相互吸引的集聚式分布特征,其原因在于中西太平洋鲣喜好生活于高温低盐的暖池东侧水域,且有永久收敛的表层水团和盐度锋面能够提供鲣群所需的生物饵料;出现随机分布的原因为这个海域的饵料生物分布的斑块状和不可持续性,鲣高度洄游特性能够保证其跟随饵料迁徙。在0°~0.35°尺度下,自由群和随附群的关系为竞争关系;当空间尺度超过0.35°后,随着尺度增大,两者关系为随机性关系。在随附群在空间尺度超过0.8°后,CPUE之间表现为正相关,有相对较弱的聚集热点和冷点区域,其他各尺度上CPUE为随机关系;自由群的CPUE在各尺度上都表现为随机关系。总之,自由群鲣和随附群鲣的空间格局在小尺度下表现为排斥竞争关系,在较大尺度下为独立的随机关系,其竞争关系主要为食物的有限性导致。  相似文献   

13.
The western and central Pacific Ocean supports the world's largest tuna fisheries. Since the 1990s, the purse‐seine fishery has increasingly fished in association with fish aggregating devices (FADs), which has increased catches of juvenile bigeye and yellowfin tunas and vulnerable bycatch species (e.g., sharks). This has raised concerns regarding the sustainability of these species’ populations and the supporting ecosystem, but may provide improved food security of Pacific Island nations through utilisation of FAD‐associated byproduct species (e.g., wahoo). An ecosystem model of the western Pacific Warm Pool Province was used to explore the potential ecological impacts of varying FAD fishing effort (±50% or 100%) over 30 years. The ecosystem has undergone a significant change in structure since 1980 from heavy exploitation of top predators (e.g., tunas) and “fishing up the food web” of high‐trophic‐level non‐target species. The ecosystem appeared resistant to simulated fishing perturbations, with only modest changes (<10%) in the biomass of most groups, although some less productive shark bycatch species decreased by up to 43%, which had a subsequent positive effect on several byproduct species, the prey of sharks. Reduction of FAD effort by at least 50% was predicted to increase the biomass of tuna species and sharks and return the ecosystem structure to a pre‐industrial‐fishing state within 10 years. Spatial disaggregation of the model and integration of economic information are recommended to better capture ecological and economic changes that may result from fishing and/or climate impacts and to develop appropriate management measures in response.  相似文献   

14.
《水生生物资源》2000,13(4):259-262
This paper examines the fishing of blackfin tuna (Thunnus atlanticus) around Fish Aggregating Devices (FADs) in Martinique (French West Indies). It is based on the compared analysis of catches from monthly experimental fishing surveys and sampling of commercial landings. The data collected in these two different ways allowed comparison of blackfin tuna length frequencies. A large part of the commercial landings were made up of young immature tuna with a fork length of less than 40 cm, whereas the experimental longline catches were mainly made up of fish with a fork length ranging between 55 and 75 cm. We give evidence that these discrepancies were mostly due to the fishing technique used. Indeed, contrarily to the experimental surveys, Martinican fishermen only fish during daytime and usually on the surface by trolling. This way, fishermen do not have access to the largest fish, which are found deeper. Our results suggested that a new fishing technique such as vertical longlining, could improve commercial catches of big blackfin tuna under FADs.  相似文献   

15.
中西太平洋金枪鱼围网渔获物组成分析   总被引:1,自引:6,他引:1  
根据 2 0 0 4年 7月 2 8日至 9月 1日在中西太平洋海域的金枪鱼围网生产调查结果 ,以及“金汇 2号”2 0 0 3年全年的生产数据 ,对中西太平洋金枪鱼围网渔获物组成进行了初步分析。结果显示 ,渔获物种类有鲣鱼 (Katsuwonuspelamis)、黄鳍金枪鱼 (Thunnusalbacares)和大眼金枪鱼 (Thunnusobesus)等 19种 ;渔获物重量组成中鲣鱼占 70 .5 1% ,黄鳍金枪鱼占 2 6 .92 % ,其它鱼类占 2 .5 6 % ;鲣鱼的叉长范围为 2 7~ 81cm ,优势叉长组为 4 0~ 5 0cm ,占 4 1% ;黄鳍金枪鱼叉长范围为 32~ 16 5cm ,优势叉长组为 5 0~ 70cm ,占 33% ,另一优势叉长组为 110~ 130cm ,占 2 0 % ;渔获物重量组成存在海域差异 ,在 16 2°E以东海域鲣鱼比例高于以西海域 ,黄鳍金枪鱼则是在 16 2°E以西海域的比例较高。  相似文献   

16.
17.
We developed a simple dry shipper method for cryopreserving the sperm of Scombridae fish in outdoor environments. First, we undertook a preliminary study to optimize the sperm cryopreservation conditions using bullet tuna, Auxis rochei (Risso, 1810) sperm. We found that the optimum cryomedium contained 90% foetal bovine serum (FBS) or 300 mM trehalose as an external cryoprotectant and 10% dimethyl sulfoxide (DMSO) as an internal cryoprotectant. Under these optimized conditions, the post‐thaw sperm had a duration of motility of 500 s and a motility rate of >70%. We then performed practical trials of the optimized protocol in various outdoor environments (e.g., fishing boats and ports) using the sperm of five Scombridae species: chub mackerel, Scomber japonicus (Houttuyn, 1782); blue mackerel, S. australasicus (Cuvier, 1832); skipjack tuna, Katsuwonus pelamis (Linnaeus, 1758); longtail tuna Thunnus tonggol, (Bleeker, 1851) and Pacific bluefin tuna, T. orientalis (Temminck & Schlegel, 1844). The post‐thaw sperm of all five of these species had a duration of motility of 650 s and a motility rate of >70%, indicating that this simple method can be used to obtain high‐quality cryopreserved sperm of various Scombridae species in outdoor environments.  相似文献   

18.
《水生生物资源》2000,13(4):183-192
Eighty-seven two-hour acoustic surveys (radius 0.8 nautical mile, vertical range 0–500 m) around 17 fish aggregating devices (FADs) were conducted in French Polynesia between December 1995 and February 1997. Associated tuna densities were calculated using two different techniques: echo counting when the fish had sufficient distances from each other and echo integration when the fish swam close together (in schools). No acoustic detection of tuna was observed during 27 of the 87 surveys, representing 81 % of all the nocturnal surveys and 15 % of the diurnal ones. The 60 other surveys showed three different classes of aggregations: (1) ‘deep scattered fish’, observed 45 times, (2) ‘intermediate scattered fish’, observed 16 times, and (3) ‘shallow schooling fish’, observed 16 times. Sometimes aggregations of different classes were observed beneath the same FAD. The size of the fish inside the aggregations (determined from target strength values), the distance between the individuals, and the depth of the fish all decreased from ‘deep scattered fish’ to ‘shallow schooling fish’ (100–300 m for ‘deep scattered fish’, 50–150 m for ‘intermediate scattered fish’, and above the depth of 50 m for ‘shallow schooling fish’). Fish densities also varied according to the class of aggregations: 7.3, 26, and 801 fish per km3 on average for ‘deep scattered fish’, ‘intermediate scattered fish’, and ‘shallow schooling fish’, respectively. The highest densities were observed during daytime, while night-time observations indicated a variety of situations, from the absence of individuals to large amounts of fish.  相似文献   

19.
A better understanding of the relationships between oceanic environments and fishing conditions could make the utilization of fish more efficient, profitable, and sustainable. The current lack of high‐precision subsurface seawater information has long been a constraint on fishery research. Using near‐real‐time Argo observations, this paper presents a new approach called gradient‐dependent optimal interpolation. This approach provides daily subsurface oceanic environmental information according to fishery dates and locations. An experiment was conducted in the western and central Pacific Ocean using yellowfin tuna (YFT) catch data in August 2017. The results of seawater temperature and salinity represented differences of less than ±0.5°C and ±0.05, respectively, according to verification of error analysis and truth‐finding comparisons. After applying the constructed temperature and salinity profiles, we described the relationship between subsurface information and yellowfin tuna catch distribution. Statistical analysis revealed that yellowfin tuna were more adapted to warmer and saltier seawater. At the near‐surface (<5 m), the most suitable temperature was 28–29°C, although yellowfin tuna can endure a temperature range from 11 to 12°C at a depth of 300 m. The corresponding upper boundary of the thermocline was approximately 75 m, with a mean strength of 0.074°C/m, and the most suitable salinity for yellowfin tuna was 34.5–36.0 at depths shallower than 300 m. These results indicated that the constructed subsurface information was very close to the true values and they had high spatial and temporal accuracy.  相似文献   

20.
《水生生物资源》1999,12(5):303-313
The behaviour and spatial distribution of tuna, aggregated beneath fish aggregating devices (FADs), have been studied through ultrasonic tagging experiments but, surprisingly, very few studies on FADs have used underwater acoustic devices. We present techniques, and their limits, incorporating a scientific echo sounder connected to a split-beam transducer to observe and characterise tuna aggregations around FADs, and propose a general approach for future studies. Experiments were conducted in French Polynesia between December 1995 and February 1997. Two methods, echo-counting and echo integration, were used. Echo-counting is possible when individual fish are sufficiently scattered so that each target can be discerned. On the other hand, echo integration can be used with both scattered and aggregated fish schools. The knowledge of tuna target strength is useful for separating targets for echo-counting, and essential for obtaining absolute estimates of densities by echo integration. Sonar performances and settings should be considered when choosing the most suitable method to determine fish density or assessing spatial structure of a tuna aggregation. These techniques allow one to study an entire tuna aggregation, its behaviour in space and time at very fine time–space scales (about a nautical mile and over a few hours), and open up a new scientific field to study the spatial structure and behaviour of tuna aggregations around anchored or drifting FADs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号