首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrolysis of extracellular phytate (InsP(6)) by high-phytase yeast strains and survival of yeast cells were studied at simulated digestive conditions using yeast peptone dextrose growth medium and wheat gruel as model meals. An in vitro digestion method was modified to better correlate with the gastric pH gradient following food intake in vivo. High-phytase yeast gave a strong reduction of InsP(6) (up to 60%) in the early gastric phase, as compared to no degradation by wild-type strains. The degree of InsP(6) degradation during digestion was influenced by the type of yeast strain, cell density, and InsP(6) concentration. Despite high InsP(6) solubility, high resistance against proteolysis by pepsin, and high cell survival, degradation in the late gastric and early intestinal phases was insignificant. Dependency on pH for phytase expression and/or activity seemed thus to be an important limiting factor. Although further studies are needed, our results show the potential of using yeast as a phytase carrier in the gastrointestinal tract.  相似文献   

2.
Interest is increasing in establishing renewable sources for squalene, a functional lipid, as the conventional ones are limited. In the present study, squalene production was achieved in a wild-type laboratory Saccharomyces cerevisiae strain by two safe chemical means using terbinafine (0.05-0.55 mM) and methyl jasmonate (MJ) (0-1.00 mM). Bioprocess kinetics optimized by response surface methodology and monitored by high-performance liquid chromatography revealed a clear dependence of growth and squalene content (SQC) and yield (SQY) on the above regulators. Maximum SQC (10.02±0.53 mg/g dry biomass) and SQY (20.70±1.00 mg/L) were achieved using 0.442 mM terbinafine plus 0.044 mM MJ after 28 h and 0.300 mM terbinafine after 30 h, respectively. A 10-fold increase in SQY was achieved in comparison to that in the absence of regulator. The ruggedness of optimum conditions for SQY was verified for five industrial strains. The cellular lipid fraction (~12% of dry biomass) was rich in squalene (12-13%). Results are encouraging toward bioprocess scale up.  相似文献   

3.
Aggregation of rennet-altered casein micelles at low temperatures   总被引:2,自引:0,他引:2  
The rennet-induced coagulation of bovine milk at 10 degrees C was investigated. The rate of change of absorbance at 600 nm was higher in milk renneted at 30 degrees C than that at 10 degrees C. The amount of casein sedimented on centrifuging skim milk at 5000g for 1 h at 10 degrees C increased with time after renneting. The viscosity of milk at 10 degrees C at low shear rates did not change significantly until 10 h after rennet addition, but it increased markedly after 20 h. Smaller particles in milk at 10 degrees C disappeared slowly over 36 h after rennet addition and aggregated into larger particles. These results suggested that casein micelles in milk aggregate at low temperatures. Reasons for the slow aggregation of milk renneted at 10 degrees C were investigated by inhibiting chymosin activity by pepstatin A. It is likely that beta-casein, or its hydrolysis, plays a role in aggregation of rennet-altered casein micelles at low temperatures.  相似文献   

4.
The interaction of ochratoxin A (OTA) and 20 yeast strains of Saccharomyces cerevisiae and Kloeckera apiculata during alcoholic fermentation was studied. Levels of OTA were determined in the fermentation liquid and in the yeast cells solid using a high-performance liquid chromatography system with a fluorescence detector. Yeast cells do not adsorb OTA, and for all yeasts, OTA levels did not affect the alcoholic fermentation. Some yeast strains reduced levels of OTA, whereas other strains did not show any effect demonstrating that OTA level reduction is not a genus species characteristic but a strain trait.  相似文献   

5.
为了开发玉米粉低温酶解新工艺,采用双酶法对粒度不同的市售玉米粉(中位粒径273.6 μm)和细微玉米粉(中位粒径17.1 μm)进行液化、糖化处理,调查了30~70℃范围内的液化温度对液化速度和葡萄糖收率的影响。试验结果表明,市售玉米粉在40~70℃的温度范围内,细微玉米粉在30~70℃的温度范围内,液化速率常数与温度的关系可用Arrhenius方程式表示。细微粉碎使液化反应活化能从市售玉米粉的4.63×104 J/mol降低到2.15×104 J/mol。40℃时,细微玉米粉的液化速度大约是市售玉米粉的2.5倍。液化温度对细微玉米粉的葡萄糖收率没有显著影响。细微玉米粉的葡萄糖收率可达95.4%,大大高于市售玉米粉的79.2%。由此可见,通过细微粉碎可以降低玉米粉的液化温度,同时提高液化速度和葡萄糖收率。  相似文献   

6.
The effects of three fungicide residues (cyprodinil, fludioxonil, and pyrimethanil) on the aromatic composition (acids, alcohols, and esters) of Vitis vinifera white wines (var. Airén) inoculated with three Saccharomyces cerevisiae strains (syn. bayanus, cerevisiae, and syn. uvarum) are studied. The aromatic exponents were extracted and concentrated by adsorption-thermal desorption and were determined by gas chromatography using a mass selective detector. The addition of the three fungicides at different doses (1 and 5 mg/L) produces significant differences in the acidic fraction of the aroma, especially in the assays inoculated with S. cerevisiae, although the final contents do not exceed the perception thresholds. The lower quality wines, according to isomeric alcohol content [(Z)-3-hexen-1-ol and 3-(methylthio)propan-1-ol] are those obtained by inoculation with S. cerevisiae(syn. bayanus) and addition of cyprodinil. The addition of fungicides in the assays inoculated with S. cerevisiae (syn. bayanus) produces an increase in the ethyl acetate and isoamyl acetate contents, which causes a decrease in the sensorial quality of the wine obtained.  相似文献   

7.
Napa Gamay grapes were fermented with four different strains of the yeast Saccharomyces cerevisiae (VL1, MI16, Fermirouge, and RA17). Petite Sirah grapes were fermented with seven different strains of the same yeast (BM45, Fermirouge, RA17, NI, CX3079, A350, and A796). Volatile compounds formed in the wines were analyzed by gas chromatography/mass spectrometry. Volatile compounds found in both wines were alcohols, esters, and acids, as well as some miscellaneous compounds. Isoamyl alcohol was the compound found in the highest relative amount with all four yeast strains in the Napa Gamay wines, followed by 2-phenyl ethanol, monoethyl succinate, and hexanoic acid. The relative amounts of isoamyl alcohol ranged from 30.84% (VL1) to 43.28% (RA17). Major volatile compounds found in Petite Sirah wines were isoamyl alcohol, 2-phenyl ethanol, 2-hydroxy ethyl propanoate, monoethyl succinate, and octanoic acid. The several esters, including 2-hydroxyethyl propanoate, may contribute to the fruity flavor of Petite Sirah wines. Overall, the S. cerevisiae yeast strains used to ferment Napa Gamay grapes and Petite Sirah grapes produced the same major components, with certain variations in formation levels.  相似文献   

8.
The gas-liquid partition coefficients of ethyl acetate and ethyl hexanoate have been measured in water and aqueous sucrose solutions from 25 to -10 degrees C by dynamic headspace. Experiments were carried out on sucrose solutions at temperatures where no ice formation was possible. Results showed that when sucrose concentration increased, aroma volatility increased except for ethyl hexanoate and in the highest sucrose concentration solution (57.5%). A quasi-linear temperature decrease on aroma volatility was observed in sucrose solutions from 25 to around 4 and 0 degrees C. Then, from 0 to -10 degrees C, aroma volatility did not decrease: ethyl acetate volatility remained constant but that of ethyl hexanoate increased. Enthalpy of vaporization and activity coefficients of the aroma compounds were calculated.  相似文献   

9.
Natural dihydrocoumarin, which is of great interest in the flavor industry, was biotechnologically produced from pure coumarin or tonka bean meal with Pseudomonas orientalis, Bacillus cereus, and various Saccharomyces cerevisiae strains. Coumarin was shown to be converted to melilotic acid, which yielded dihydrocoumarin upon distillation during purification. About 1.0 g/L product was obtained from 25 g/L tonka beans with S. cerevisiae within 147 h. This dihydrocoumarin thus fulfills all of the criteria of a natural raw material and can be used as a natural flavoring in accordance with U.S. and European Union regulations.  相似文献   

10.
A novel enzymatic dehalogenating activity of 3-chloro-1,2-propanediol (3-MCPD) with Saccharomyces cerevisiae (baker's yeast) is reported. All bioconversion assays were carried out under aerobic conditions, at 28 degrees C, and the kinetics were monitored. The biodegradation was performed at different pH values (6.2, 7.0, and 8.2), in the presence and absence of glucose, using racemic 3-MCPD at two different concentrations (7.3 micromol/L and 27 mmol/L). Optimal conversion (68%) of racemic (R,S)-3-MCPD at a concentration of 27 mmol/L was achieved after 48 h of reaction time, at pH 8.2, and in the presence of glucose. At a concentration of 7.3 micromol/L, 73% degradation was observed after 72 h, at pH 8.2 and in the absence of glucose. Under the same experimental conditions, the conversion of pure (S)-3-MCPD (85%) was higher than that of the (R)-enantiomer (60%).  相似文献   

11.
A biocatalyst was prepared by immobilization of Saccharomyces cerevisiae strain AXAZ-1 on apple pieces. It was examined by electron microscope and studied during the fermentation of grape must for batch wine-making. The immobilized yeast showed an important operational stability without any decrease of its activity even at low temperatures (1-12 degrees C). Specifically, at 6 degrees C the biocatalyst favored wine production within 8 days, which is less time than is required for the natural fermentation of grape must. At 1 degrees C wine production was effected in 1 month. This speeding up of the fermentation could be accepted and adopted by the industry for scaling up the wine-making process. Total and volatile acidities were similar to those found in dry wines. The concentrations of higher alcohols (propanol-1 and isobutyl alcohol) were low. The presence of amyl alcohols proved to be temperature dependent and decreased with the temperature decrease. The values of ethyl acetate concentrations were relatively high, up to 154 mg/L. This probably contributes to the fruity aroma and excellent taste of the produced wines. There was no indication of vinegar odor in the product given that the volatile acidity was <0.47 g of acetic acid/L. From the GC-MS analysis it was concluded that cell immobilization did not create serious changes in the product (wine) with regard to the qualitative composition of the aroma compounds.  相似文献   

12.
Denitrification of paddy fields is a key process for improving water quality in fields where nitrate concentrations are high. The objective of the present study was to understand the effects of incorporating organic carbon (C) into soil on the denitrification rate of paddy fields in winter. On 11 December 2007, separate paddy field plots were prepared by incorporating 5 Mg ha−1 of rice straw (RS), 11 Mg ha−1 of rice straw compost (RSC) or a control. A field with a high concentration of nitrate in the water (averaging 18 mg N L−1) was irrigated until 29 March. During the experiment, the daily average soil temperature at a depth of 0.05 m ranged between 3 and 15°C. The nitrate concentration in the surface water in the RS plot, where the residence time was 2 days, decreased more than the concentration in the control or RSC plots. The total estimated nitrate removal from each plot in relation to the other plots was RS > RSC = control. Measurements of the soil from each plot on 29 February 2008 showed that incorporation of RS significantly increased the denitrification potential, even at low temperatures (5–10°C). Furthermore, the RS plot contained more dissolved organic C than the control or RSC plots. This result indicates that supplying RS effectively increases denitrification under low-temperature conditions.  相似文献   

13.
为探究高压脉冲电场(PEF)对微生物的钝化机理,该试验主要采用Lowry法、SDS-PAGE电泳、APIZYM试剂盒、流式细胞仪等方法测定PEF处理对酿酒酵母蛋白质含量、胞内酶活性和DNA等的影响。结果显示:PEF处理后,酿酒酵母胞内蛋白质含量显著降低(p<0.05),SDS-PAGE 电泳图分析发现酿酒酵母胞内蛋白谱图不清晰,且有小分子和 60 KDa 以上大分子蛋白谱带缺失,酿酒酵母细胞内13种酶的活性均有不同程度的下降,细胞DNA含量降低,部分DNA变性。PEF钝化微生物与其胞内酶失活、蛋白质和DNA发生外泄或变性有关。  相似文献   

14.
Moderate consumption of red wine reduces the risk of heart disease and extends lifespan, but the relative contribution of wine polyphenols to these effects is unclear. In this work, the capacity of resveratrol and catechin to protect the eukaryotic microorganism Saccharomyces cerevisiae against oxidative stress caused by different agents, hydrogen peroxide, carbon tetrachloride, and cadmium, was evaluated. Under all stress conditions, both polyphenols increased tolerance, although their protection was more evident under peroxide exposure. By using mutant strains deficient in specific antioxidant defense systems (superoxide dismutases, catalase, or glutathione), it was observed that increased H2O2 tolerance produced by both polyphenols was associated with catalase, as well as the rise in survival rates caused by resveratrol under CCl4. The acquisition of tolerance was correlated with a reduction in lipid peroxidation, indicating that the antioxidant property of resveratrol and catechin involves protection against membrane oxidation.  相似文献   

15.
为了使工业酿酒酵母(Saccharomyces cerevisiae)能直接利用木糖发酵乙醇,本研究设计带有 kanMX和ura两种不同筛选标记的强启动子TPI的载体,并将启动子插入木酮糖激酶(xylulokinase gene,XKS1)及非氧化磷酸戊糖途径(pentose phosphate pathway, PPP)关键基因之前,并构建木糖异构酶基因(xylose isomerase gene,XylA)表达载体pYES2-FBA-xylA,将该载体转入XKS1及PPP关键基因增强表达的重组菌株,XylA在工业酿酒酵母里成功表达,其活性为0.39 U/mg蛋白.qRT-PCR结果显示,XKS1及PPP四个关键基因TAL、RPE、RKI和TKL分别比出发菌株表达量提高4.08、1.62、3.98、17.36和4.17倍.重组菌株葡萄糖和木糖共发酵,重组菌株木糖代谢比原始菌株提高17.64%;研究结果表明,通过增强木糖代谢流关键基因的表达以及XI的表达,使工业酿酒酵母获得直接代谢木糖能力,这为工业酿酒酵母生产纤维素乙醇提供参考.  相似文献   

16.
The production of pyruvate and acetaldehyde by 10 strains of Saccharomyces cerevisiae was monitored during the fermentation of Vitis vinifera L. variety Tempranillo grape must to determine how these compounds might influence the formation of the pyroanthocyanins vitisin A and B (malvidin-3-O-glucoside-pyruvate acid and malvidin-3-O-glucoside-4 vinyl, respectively). Pyruvate and acetaldehyde production patterns were determined for each strain. Pyruvate production reached a maximum on day four of fermentation, while acetaldehyde production was at its peak in the final stages. The correlation between pyruvate production and vitisin A formation was especially strong (R (2) = 0.80) on day 4, when the greatest quantity of pyruvate was found in the medium. The correlation between acetaldehyde production and the formation of vitisin B was strongest (R (2) = 0.81) at the end of fermentation when the acetaldehyde content of the medium was at its highest. Identification and quantification experiments were performed by HPLC-DAD. The identification of the vitisins was confirmed by LC/ESI-MS.  相似文献   

17.
We studied in laboratory microcosms (intact soil cores) N2O and CO2 emissions from four different agricultural soil types (organic soil, clay, silt and loam) at low temperatures with or without freezing-thawing events. When the temperature of the frozen soil cores was increased stepwise from −8 °C the N2O emissions began to increase at −0.5 °C, and peaked at −0.1 °C in the organic, clay and silt soils, and at +1.6 °C in the loam soils. However, a stepwise decrease in soil temperature from +15 °C also induced an increase in the N2O emissions close to the 0 °C. These emissions peaked between −0.4 and +2.5 °C depending on the soil type and water content. However, the emission maxima were from 2 to 14.3% of those encountered in the experiments where frozen soils were thawed. Our results show that in addition to the well-documented thawing peak, soils also can have a maximum in their N2O emission near 0 °C when soil temperature decrease. These emissions, however, are less than those emitted from thawing soils. The correlations between the N2O and CO2 emissions were weak. Our results suggest that N2O is produced in soils down to a temperature of −6 °C.  相似文献   

18.
Translational diffusion coefficients (D(12)) of volatile compounds were measured in model media with the profile concentration method. The influence of sample temperature (from 25 to -10 degrees C) was studied on translational diffusion in sucrose or maltodextrin solutions at various concentrations. Results show that diffusivity of volatile compounds in sucrose solutions is controlled by temperature, molecule size, and the viscosity of the liquid phase as expected with the Stokes-Einstein equation; moreover, physicochemical interactions between volatile compounds and the medium are determinant for diffusion estimation. At negative temperature, the winding path induced by an ice crystal content of >70% lowered volatile compound diffusion. On the contrary, no influence on translational diffusion coefficients was observed for lower ice content.  相似文献   

19.
The aim of this research was to assess the antimicrobial activity of nine different industrial essences used in a soft drink factory in relation to their composition, as well as to verify the role of vapor pressure on their bioactivity. The essences were tested against a Saccharomyces cerevisiae strain isolated from spoiled soft drinks. The tests were carried out by adding the essences directly to a liquid medium or into the headspace of closed systems inoculated with the yeast. The headspace composition was evaluated through a solid phase microextraction-gas chromatography technique. The use of a mass spectrometer allowed the identification of the peaks detected. The microbial growth was indirectly monitored by measuring the metabolic CO2 released by the yeast. The results obtained indicated that the most effective essences were characterized by the highest concentration of some terpenes, such as citral, beta-pinene, and p-cymene. Moreover, all of the essences were more bioactive when added directly to the liquid medium.  相似文献   

20.
Saccharomyces cerevisiae was cultivated in the presence of cis-9,trans-11 or trans-10,cis-12 isomers of free conjugated linoleic acid (CLA), and the effects of the isomers on the regioisomerisms of triacylglycerol (TAG) of the yeast were elucidated. Both isomers constituted about 34% of all fatty acids and increased drastically the number of different TAG species. Nearly all of the species contained CLA in at least one sn-position. In the most abundant species analyzed (20% of total species), the cis-9,trans-11 isomer appeared in combination with monounsaturated fatty acids (C16:1, C:18:1) whereas trans-10,cis-12 isomer was most frequently present with a medium chain fatty acid (C10:0 or C12:0) in the sn-2 position and C16:0 in one of the end positions (14% of total species). With either isomer, the amount of TAG species in which CLA encompassed all sn-positions was ca. 4%. Thus, S. cerevisiae can be used to produce edible single cell oil characterized by very heterogeneous distribution of CLA among the different TAG species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号