首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R L Witter 《Avian diseases》1987,31(4):752-765
Attempts were made, through selection of optimum viral strains, to develop improved vaccines against Marek's disease (MD). Seven attenuated serotype 1 strains and 22 avirulent serotype 2 strains, both alone and in combination with the FC126 strain of serotype 3, were screened for protective efficacy against challenge with virulent and very virulent MD viral strains. The three viruses selected as most promising were evaluated alone and in various combinations and compared with commercially available vaccines, including FC126, bivalent (FC126 + SB-1), and CV1988/C, in 12 separate assays. Two of these new viruses--301B/1 (serotype 2) and Md11/75C/R2 (serotype 1)--were exceptionally protective compared with prototype vaccine strains. Four new monovalent and polyvalent vaccines based on these two isolates protected chickens better than FC126 alone or CV1988/C alone. Three of these new vaccines provided better protection than the bivalent (FC126 + SB-1) vaccine. Protective synergism was noted commonly between viruses of serotypes 2 and 3 but only sporadically between serotypes 1 and 2 or between serotypes 1 and 3. Strain CVI988/C was protective but was no better than FC126 alone, and it was less effective than bivalent (FC126 + SB-1) vaccine, even when used as a bivalent vaccine with FC126 or SB-1.  相似文献   

2.
R L Witter 《Avian diseases》1991,35(4):877-891
In earlier studies, a revertant serotype 1 Marek's disease virus (MDV), clone Md11/75C/R2, was found to be a highly protective vaccine virus but was mildly pathogenic for susceptible chickens. The term "revertant" indicates that the virus, after attenuation, gained virulence following backpassage in chickens. The present study is an attempt to develop a more attenuated but still protective vaccine virus from Md11/75C/R2. Forty-two derivative viruses or clones from Md11/75C/R2 were evaluated. Two of these, designated clones R2/23 and R2/29, induced viremia but little or no pathology in preliminary trials and were selected for further study. In a series of nine trials, both clones provided protection against challenge with very virulent MDV strains that was superior to that induced by turkey herpesvirus (HVT) and was not significantly different (P greater than 0.05) from that induced by a bivalent (HVT + SB-1) vaccine. Both clones appeared fully attenuated based on pathogenicity tests in susceptible antibody-negative chickens. Both clones gained virulence on backpassage in chickens, but this seemed of little concern because neither virus spread by contact to other chickens. Although the two clones were very similar, clone R2/23 appeared to have a slightly lower pathogenic potential following backpassage and thus best meets the combined criteria of safety and efficacy.  相似文献   

3.
The effect of feeding aflatoxin B1 (AFB1) (0.5 ppm) was studied in young chicks. The frequency and the severity of gross and microscopic lesions of Marek's disease were significantly higher in those birds which had been vaccinated with turkey herpesvirus (HVI) and birds challenged with Marek's disease virus which had been given AFB1 in the feed than in those given normal feed. The protective efficacy of HVT vaccine, as judged on the basis of gross and histopathological lesions, was 86.1 and 77.3 per cent in normally fed birds in comparison to 37.6 and 8 per cent in AFB1 fed birds.  相似文献   

4.
Two new Marek's disease vaccine viruses, Md11/75C/R2 (serotype 1) and 301B/1 (serotype 2), were evaluated in chickens with maternal antibodies (ab+) or without maternal antibodies (ab-). Strain Md11/75C/R2 was mildly pathogenic in ab--chickens, but this pathogenicity was markedly reduced in ab+ chickens. Md11/75C/R2 spread less by contact and replicated better, both in vivo and in vitro, than CVI988/C, another serotype 1 vaccine virus. Strain 301B/1 was similar to SB-1, another serotype 2 vaccine virus: both were nonpathogenic for ab--chickens, spread readily by contact, and replicated well in vivo. In vitro, 301B/1 grew more rapidly and produced larger plaques than SB-1. Notable characteristics of strain CVI988/C included absence of pathogenicity, poor replicative ability, and the absence of one epitope detected by a common serotype-1-specific monoclonal antibody. All four viruses could be distinguished from each other by restriction enzyme analysis of viral DNA. We conclude that Md11/75C/R2, although exceptionally protective, may require further attenuation. On the other hand, 301B/1, which in other studies induced higher levels of protection than SB-1, is nonpathogenic and may be considered for use as a commercial vaccine.  相似文献   

5.
Two experiments determined the influence of an experimental reovirus-antibody complex vaccine on Mareks disease virus (MDV) vaccine when used in ovo. Designs were the same except that specific-pathogen-free (SPF) broiler eggs were used in Experiment 1 and commercial broiler eggs with maternal antibodies against reovirus were used in Experiment 2. At 18 days of incubation, embryos were separated into four groups and inoculated with either diluent, MDV vaccine, reovirus-antibody complex vaccine, or a combination of reovirus-antibody complex and MDV vaccine. At 5 days of age, half the chickens in each group were challenged with MDV. At 7 wk old, all were euthanatized, weighed, and examined. At 7 days of age, remaining chickens in each group were challenged with reovirus. At 21 days old, chickens were euthanatized and weighed. No vaccine adversely affected hatchability or posthatch mortality in SPF or commercial chickens. There were no significant differences in protection against reovirus challenge when vaccines were used separately or in combination, and lesion scores were nearly identical in all vaccinated groups in both experiments. However, percentage of protection against reovirus was lower in Experiment 2, indicating an adverse effect of maternal immunity on efficacy of the reovirus vaccine. There were no significant differences in protection against MDV when the vaccines were used separately or combined. Severity of MDV lesions was nearly identical in all vaccinated groups in both experiments. However, the combination of vaccines gave numerically lower protection against MDV than MDV vaccine alone. Use of a larger number of birds, as in field conditions, may result in statistically lower protection for the vaccine combination. Large field trials are needed to determine the potential of the reovirus-antibody complex vaccine.  相似文献   

6.
银杏叶提取物具有广泛的药理学作用,银杏提取物的生物活性,如免疫调节、抗肿瘤、改善心血管功能等已有报道。高媛等以S180种鼠建立模型,研究银杏叶多糖对实体瘤、腹水瘤的作用,结果证实(GBLP)可明显抑制实体瘤、腹水瘤的生长,延长荷瘤水鼠的存活时间。陈群等也对银杏叶提取物的抗肿瘤作用进行研究,结果与高嫒等的报道基本一致。  相似文献   

7.
OBJECTIVE: To demonstrate the safety and efficacy of the Marek's Disease Virus-1 vaccine (strain BH 16) from field studies in comparison with the CVI 988 Rispens vaccine currently available in Australia. STUDY DESIGN: A small field trial was carried out on nine breeder flocks and a larger trial on 21 breeder flocks. All chickens were obtained from a commercial hatchery and each was vaccinated at hatch with cell-associated Herpes Virus of Turkeys vaccine. A group of chickens vaccinated with BH 16 vaccine was placed in one shed per property and the remainder were vaccinated with the Rispens vaccine and placed in the remaining sheds. At 25, 30, 35, and 40 weeks after hatch, the field veterinarian or farm manager examined all birds dying on two consecutive days in the designated placement sheds. RESULTS: In the small trial there was a significantly lower incidence of MD in birds vaccinated with the MDV-1 vaccine compared with the Rispens vaccine (P < 0.001). In a larger trial there was no difference in the incidence of MD between the treatment groups, due possibly to a lower rate of natural challenge. Egg production results and average weekly mortality results for both groups were similar. CONCLUSION: The present study describes an attenuated type 1 MD vaccine which is at least equivalent to a vaccine derived from the CVI 988 Rispens strain in terms of safety and efficacy when used in combination with HVT vaccine.  相似文献   

8.
9.
10.
Witter RL 《Avian diseases》2002,46(4):925-937
Studies were conducted to better understand the relationship among Marcek's disease (MD) vaccine strains between induction of protective immunity and the degree of attenuation (or virulence). To obtain viruses at different stages of attenuation, very virulent plus MD strains 584A and 648A and selected clones of these strains were serially passaged in chicken and duck cells. These viruses were considered fully attenuated after passage for 70-100 times in chicken embryo cell cultures until they no longer induced gross lesions in susceptible, maternal antibody-negative (ab-) chickens. Lower passages of the same strains were considered partially attenuated, provided their virulence was less than that of the parent strain. Four of five partially attenuated preparations derived from MD virus strains 584A and 648A or the previously attenuated Md11 strain induced 28%-62% higher levels of protection in maternal antibody-positive (ab+) chickens against virulent MD challenge than the fully attenuated counterpart viruses. The partially attenuated 584A/d2/3 strain replicated in chickens but was totally nonprotective. Data from two subsequent trials in ab+ chickens confirmed that protection induced by the partly attenuated (passage 80) preparations was 79% and 118% higher, respectively, than that induced by the fully attenuated (passage 100) preparations of strain 648A. However, in one trial with ab- chickens, no difference in protection between partially and fully attenuated virus was observed. Strong protection (up to 85%) against highly virulent challenge also was provided by preparations of 648A at passages 40-60, which were moderately oncogenic when used alone. Partially attenuated strains tended to replicate to higher titers in both ab+ and ab- chickens compared with fully attenuated vaccines. Also, ab+ and ab- chickens vaccinated with partially attenuated strains developed three- to nine fold more extensive microscopic lesions in peripheral nerves at 14 and 22 days after virulent challenge than chickens vaccinated with fully attenuated strains. When measured in ab+ chickens, loss of lesion induction by 648A was achieved 30 passages earlier (at passage 70) than when measured in ab- chickens. Thus, maternal antibodies appeared to abrogate the pathogenicity of some partially attenuated strains. These studies establish for MD the principle that at least some partially attenuated MD viruses may replicate better and induce stronger immunity against virulent challenge than fully attenuated preparations of the same strain, at least when tested in ab+ chickens. Moreover, depending on passage level, partially attenuated vaccine strains may be relatively innocuous for ab+ chickens, causing few or no lesions.  相似文献   

11.
12.
Objective To develop a serotype 1 Marek's disease (MD) vaccine from a very virulent MDV (vvMDV) pathotype and demonstrate safety and efficacy against early challenge with very virulent field strains in the presence of maternal antibody.
Study design Strain BH 16 was isolated and attenuated by serial cell culture passage. One of two cloned passages was selected for vaccine development following early laboratory-scale protection trials in commercial birds. Comparative protection trials were carried out on the BH 16 vaccine and on a CVI 988 Rispens vaccine using commercial and SPF chickens. Challenge viruses used were either a low passage strain BH 16 virus, the Woodlands No. 1 strain or MPF 57 strain of MDV. The BH 16 vaccine was back-passaged in SPF chickens six times and virus recovered from the final passage and the original vaccine virus were tested for safety. The immunosuppressive potential of the BH 16 and Rispens vaccines was also assessed in parallel.
Results The BH 16 and Rispens vaccines induced comparable levels of protection when used as monovalent or multi-valent vaccines, although protection achieved with the mono-valent vaccines was lower. No gross tumour formation was evident in any birds receiving the BH 16 vaccine or bird-passaged virus, although microscopic lesions were present in 2/12 birds that received the bird-passaged virus. In tests for immunosuppression, there was no histological evidence of damage to either the bursa of Fabricius or the thymus.
Conclusion The BH 16 vaccine was shown to be safe and at least as protective as the Rispens vaccine against three highly virulent MD challenge viruses.  相似文献   

13.
OBJECTIVE: To develop a serotype 1 Marek's disease (MD) vaccine from a very virulent MDV (vvMDV) pathotype and demonstrate safety and efficacy against early challenge with very virulent field strains in the presence of maternal antibody. STUDY DESIGN: Strain BH 16 was isolated and attenuated by serial cell culture passage. One of two cloned passages was selected for vaccine development following early laboratory-scale protection trials in commercial birds. Comparative protection trials were carded out on the BH 16 vaccine and on a CVI 988 Rispens vaccine using commercial and SPF chickens. Challenge viruses used were either a low passage strain BH 16 virus, the Woodlands No. 1 strain or MPF 57 strain of MDV. The BH 16 vaccine was back-passaged in SPF chickens six times and virus recovered from the final passage and the original vaccine virus were tested for safety. The immunosuppressive potential of the BH 16 and Rispens vaccines was also assessed in parallel. RESULTS: The BH 16 and Rispens vaccines induced comparable levels of protection when used as monovalent or multivalent vaccines, although protection achieved with the monovalent vaccines was lower. No gross tumour formation was evident in any birds receiving the BH 16 vaccine or bird-passaged virus, although microscopic lesions were present in 2/12 birds that received the bird-passaged virus. In tests for immunosuppression, there was no histological evidence of damage to either the bursa of Fabricius or the thymus. CONCLUSION: The BH 16 vaccine was shown to be safe and at least as protective as the Rispens vaccine against three highly virulent MD challenge viruses.  相似文献   

14.
The mechanisms of Marek's disease virus (MDV) entry to host cells have not yet been analyzed. Heparan sulfate (HS) on the cell surface serves as a receptor for several herpesviruses in mammalian species. In this study, we demonstrated that plaque formation by cell-free MDV is inhibited by the addition of soluble heparin to the cell culture. Moreover, pretreatment of susceptible cells, chicken embryo fibroblasts, with heparinase, partially reduced infectivity of the cell-free MDV. From these results, it was suggested that the MDV entry, at least in the case of cell-free MDV, is dependent on the presence of cell surface glycosaminoglycans, principally HS.  相似文献   

15.
Dilution of Marek's disease (MD) vaccines is a common practice in the field to reduce the cost associated with vaccination. In this study we have evaluated the effect of diluting MD vaccines on the protection against MD, vaccine and challenge MD virus (MDV) kinetics, and body weight when challenged with strains Md5 (very virulent MDV) and 648A (very virulent plus MDV) by contact at day of age. The following four vaccination protocols were evaluated in meat-type chickens: turkey herpesvirus (HVT) at manufacturer-recommended full dose; HVT diluted 1:10; HVT + SB-1 at the manufacturer-recommended full dose; and HVT + SB-1 diluted 1:10 for HVT and 1:5 for SB-1. Vaccine was administered at hatch subcutaneously. One-day-old chickens were placed in floor pens and housed together with ten 15-day-old chickens that had been previously inoculated with 500 PFU of either Md5 or 648A MDV strains. Chickens were individually identified with wing bands, and for each chicken samples of feather pulp and blood were collected at 1, 3, and 8 wk posthatch. Body weights were recorded at 8 wk for every chicken. Viral DNA load of wild-type MDV, SB-1, and HVT were evaluated by real time-PCR. Our results showed that dilution of MD vaccines can lead to reduced MD protection, reduced relative body weights, reduced vaccine DNA during the first 3 wk, and increased MDV DNA load. The detrimental effect of vaccine dilution was more evident in females than in males and was more evident when the challenge virus was 648A. However, lower relative body weights and higher MDV DNA load could be detected in chickens challenged with strain Md5, even in the absence of obvious differences in protection.  相似文献   

16.
J M Sharma 《Avian diseases》1985,29(4):1155-1169
Studies with specific-pathogen-free chickens revealed that chicks hatching from eggs inoculated at the 18th day of embryonation with infectious bursal disease (IBD) vaccine viruses of low virulence (isolates TC-IBDV and BVM-IBDV) developed antibody against IBD virus (IBDV) and resisted challenge with virulent IBDV at 3 weeks of age or older. Embryo vaccination did not adversely affect hatchability of chicks or survival of hatched chicks. Chicks embryonally vaccinated with TC-IBDV had transient histologic lesions in the bursa of Fabricius at hatch. Similar but milder lesions were also noted in chickens that received TC-IBDV at hatch. The level of protection following embryo vaccination with TC-IBDV and BVM-IBDV was similar to that following vaccination with the same vaccines at hatch. Vaccine viruses of moderate virulence (isolates BV-IBDV and 2512-IBDV) were not suitable as vaccines in embryos lacking maternal antibody to IBDV, because the vaccinated chicks developed acute IBD after hatch. Isolate 2512-IBDV was not pathogenic for embryos bearing maternal antibody to IBDV. Maternal antibody against IBDV interfered with efficacy of embryo vaccination with BVM-IBDV but not with 2512-IBDV. Embryo vaccination with a mixture of vaccines against IBD and Marek's disease resulted in protection of hatched chicks against challenge with virulent IBDV and Marek's disease virus.  相似文献   

17.
We previously reported that deletion of the Meq gene from the oncogenic rMd5 virus rendered it apathogenic for chickens. Here we examined multiple factors affecting Marek's disease vaccine efficacy of this nonpathogenic recombinant Meq null rMd5 virus (rMd5deltaMeq). These factors included host genetics (MHC haplotype), strain or dose of challenge virus, vaccine challenge intervals, and maternal antibody status of the vaccinated chicks. Studies on host genetics were carried out in five chicken lines comprising four different MHC B-haplotypes. Results showed that chicken lines tested were highly protected, with protective indexes of 100% (B*2/*15), 94% (B*2/*2), 87% (B*19/*19), and 83% (B*21/*21). At a challenge dose above 8000 plaque-forming units, differences in protection were observed between the two highly virulent strains examined (648A and 686). The interval between vaccination and challenge indicated a protective efficacy from 0 to 2 days varied greatly (12%-82%) after challenge with vv+686, the most virulent virus. Less variation and significant protection began at 3 days post vaccination and reached a maximum at 5 days post vaccination with about 80%-100% protection. Taken together, our results indicate that the factors examined in this study are important for vaccine efficacy and need to be considered in comparative evaluations of vaccines.  相似文献   

18.
One-day-old White Leghorn and broiler chicks with maternal antibody to turkey herpesvirus (HVT) were vaccinated with 300 or 1,000 plaque-forming units (PFU) of cell-free or cell-associated HVT vaccine and challenged with virulent Marek's disease virus (MDV) by contact exposure. Broiler chicks receiving 300 PFU of cell-associated HVT had a 3.3% incidence of MD lesions, whereas only 2.0% of those receiving 1,000 PFU had macroscopic lesions. Broiler chicks vaccinated with 300 PFU of cell-free vaccine had 6.8% gross lesions, and 0.67% of the birds receiving 1,000 PFU had MD lesions. Unvaccinated broiler chickens had a 28.3% incidence of MD lesions. Unvaccinated White Leghorn chickens had a 48.9% incidence of macroscopic lesions, whereas 5.4% of the birds receiving 300 PFU of cell-associated HVT had gross lesions, and 8.3% of the birds vaccinated with 1,000 PFU had lesions. In contrast, 6.7% of the chicks vaccinated with 300 PFU of cell-free HVT had MD lesions, and only 4.0% of those receiving 1,000 PFU of cell-free HVT had macroscopic lesions.  相似文献   

19.
Marek's disease vaccine: its implications in biology and medicine   总被引:1,自引:0,他引:1  
  相似文献   

20.
Vaccination with turkey herpesvirus (HVT) of 18-day-old chicken embryos from a commercial source or from a cross (15 X 7) of two inbred lines induced better protection against early post-hatch challenge with virulent Marek's disease virus (MDV) than vaccination at hatch, despite the presence in embryos of maternally derived antibodies to HVT or to HVT and MDV. However, 50%-protective-dose (PD50) assays revealed that maternal antibodies in embryos reduced vaccine efficacy. The PD50 assays were conducted by vaccinating 15 X 7 embryos with serial dilutions of HVT at the 18th day of incubation. Embryonally vaccinated and unvaccinated chicks were challenged with MDV on the day of hatch. In the absence of maternal antibodies, the PD50 values in plaque-forming units for cell-associated and cell-free HVT were 57 and 328, respectively. In the presence of maternal antibodies, PD50 values for cell-associated and cell-free HVT were 105 and greater than 4,000, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号